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ABSTRACT

Host cells respond to viral infections by producing type I interferon (IFN), which induces the expression of hundreds of interfer-
on-stimulated genes (ISGs). Although ISGs mediate a protective state against many pathogens, the antiviral functions of the ma-
jority of these genes have not been identified. IFITM3 is a small transmembrane ISG that restricts a broad range of viruses, in-
cluding orthomyxoviruses, flaviviruses, filoviruses, and coronaviruses. Here, we show that alphavirus infection is increased in
Ifitm3~'~ and Ifitm locus deletion (Ifitm-del) fibroblasts and, reciprocally, reduced in fibroblasts transcomplemented with
Ifitm3. Mechanistic studies showed that Ifitm3 did not affect viral binding or entry but inhibited pH-dependent fusion. In a mu-
rine model of chikungunya virus arthritis, Ifitm3~'~ mice sustained greater joint swelling in the ipsilateral ankle at days 3 and 7
postinfection, and this correlated with higher levels of proinflammatory cytokines and viral burden. Flow cytometric analysis
suggested that Ifitm3~'~ macrophages from the spleen were infected at greater levels than observed in wild-type (WT) mice, re-
sults that were supported by experiments with Ifitm3~'~ bone marrow-derived macrophages. Ifitm3~'~ mice also were more
susceptible than WT mice to lethal alphavirus infection with Venezuelan equine encephalitis virus, and this was associated with
greater viral burden in multiple organs. Collectively, our data define an antiviral role for Ifitm3 in restricting infection of multi-
ple alphaviruses.

IMPORTANCE

The interferon-induced transmembrane protein 3 (IFITM3) inhibits infection of multiple families of viruses in cell culture.
Compared to other viruses, much less is known about the antiviral effect of IFITM3 on alphaviruses. In this study, we character-
ized the antiviral activity of mouse Ifitm3 against arthritogenic and encephalitic alphaviruses using cells and animals with a tar-
geted gene deletion of Ifitm3 as well as deficient cells transcomplemented with Ifitm3. Based on extensive virological analysis, we
demonstrate greater levels of alphavirus infection and disease pathogenesis when Ifitm3 expression is absent. Our data establish

an inhibitory role for Ifitm3 in controlling infection of alphaviruses.

he type I interferon (IFN) response is a critical factor that

orchestrates innate protection against viral pathogens. Upon
detection of pathogen-associated molecular patterns (PAMPs),
host cells produce type I IFN, which in turn induces expression of
hundreds of IFN-stimulated genes (ISGs). ISGs can inhibit mul-
tiple steps of the viral life cycle (e.g., entry, protein translation,
assembly, or egress) or modulate the immune response, such as by
enhancing the recruitment of leukocytes or promoting B and T
cell maturation (1).

IFN-induced transmembrane (IFITM) proteins 1, 2, and 3
were among the first [FN-stimulated genes (ISGs) to be identified
(2) and initially were studied for their roles in germ cell homing
and maturation. IFITM proteins are approximately 130 amino
acids in length and are conserved in most vertebrate species (3).
IFITMs have no catalytic subunit but share similar domain archi-
tectures consisting of a short N-terminal domain, two antiparallel
domains, a conserved intracellular loop, and a hydrophobic C-ter-
minal domain (4, 5). The topology of IFITM3 has been clarified by
electron paramagnetic and nuclear magnetic resonance analyses;
the N-terminal domain is located inside the cell, whereas the an-
tiparallel domains reside as intramembrane a-helices, followed by
the transmembrane C-terminal domain (6). Although IFITM1,
-2, and -3 all have reported antiviral activity, IFITM3 exhibits the
greatest protection against the broadest range of viruses, including
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influenza A virus (IAV), flaviviruses (dengue, West Nile [WNV],
and Japanese encephalitis viruses), hepaciviruses (hepatitis C vi-
rus), filoviruses (Ebola and Marburg viruses), bunyaviruses (Rift
Valley fever and La Crosse viruses), rhabdoviruses (vesicular sto-
matitis virus), coronaviruses (severe acute respiratory syndrome
coronavirus [SARS-CoV]), paramyxoviruses (respiratory syncy-
tial virus [RSV]), and reoviruses (7-17). Despite a wealth of in
vitro data, the antiviral effects of IFITM3 in vivo are less well char-
acterized. To date, only IAV and RSV have been shown to have
enhanced pathogenesis in Ifitm3-deficient (Ifitn3 /") mice (11,
18, 19). In humans, the allelic polymorphism rs12252-C, which
results in a splice variant of IFITM3 lacking the first 21 amino-
terminal amino acids, correlates with increased morbidity and
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mortality following IAV infection (19-21). However, some stud-
ies have questioned the significance of this truncated IFITM3 al-
lele in the susceptibility to IAV and other viral infections (22, 23).

The mechanisms by which IFITM3 restricts viral infection are
not fully elucidated. Studies have shown that IFITM3 affects pH-
dependent fusion in the late endosome, which potentially traps
entering virions in a hemifusion state (24-26). IFITM3 expression
also can modulate the efficiency of cathepsin-mediated proteoly-
sis in an as-yet-undefined manner, which is required for the cleav-
age of the fusion proteins of reoviruses, filoviruses, and coronavi-
ruses and release of the viral genome from the endolysosome into
the cytosol (9, 15). Additionally, IFITM3 is incorporated into the
plasma membrane of budding HIV particles, which restricts their
fusogenic capability (27). Finally, ectopic expression of IFITMs
appears to alter the physical characteristics of the endosome, re-
sulting in increased size, reduced membrane fluidity, and in-
creased cholesterol content, which subsequently impact the effi-
ciency of viral fusion (26, 28, 29).

Alphaviruses are enveloped single-stranded positive-sense
RNA viruses of the Togaviridae family, many of which are trans-
mitted by mosquitoes. The binding, entry, and pH-dependent fu-
sion of alphaviruses are directed by the structural glycoproteins E1
and E2 (30, 31). El and E2 are arranged as heterodimers and
assembled into trimeric spikes on the surface of the virion (32). E1
is classified as a type II membrane fusion protein, whereas E2
contains the putative receptor binding site (30).

Chikungunya virus (CHIKV) has emerged rapidly over the last
decade, causing outbreaks in the islands of the Indian Ocean, in
southern Europe, and in Southeast Asia. In 2013, CHIKV spread
to the Western Hemisphere and by the end of 2015 had infected
more than 1.7 million people in North, Central, and South Amer-
ica (33). Other arthritogenic alphaviruses have a more limited
distribution in parts of Oceania, Africa, and South America,
whereas outbreaks of encephalitic alphaviruses occur sporadically
in North, Central, and South America (34). Infection by arthrito-
genic alphaviruses, including CHIKV and Sindbis (SINV), Ross
River, and Mayaro viruses, results in a febrile illness associated
with rash, myalgia, and moderate to severe joint pain (35). The
musculoskeletal disease caused by these viruses is associated with
direct infection of myocytes, synovial fibroblasts, and osteoblasts
(35-39) and the ensuing infiltration of inflammatory cells. Infec-
tion by encephalitic alphaviruses, including Venezuelan (VEEV),
Eastern, and Western equine encephalitis viruses, causes a severe
febrile illness associated with infection and injury to neurons, en-
cephalitis, long-term debilitating neurological sequelae, and death
(34). To date, there are no licensed alphavirus vaccines available
for use in humans.

Several ISGs have been characterized as restriction factors
against alphavirus infection, including ISGI5, PKR, ZAP, and
BST-2; these genes target viral protein translation and virion
egress, respectively (40—44). Ectopic expression-based screens
against alphaviruses also have revealed putative inhibitory genes,
including Isg20, Ifitl, Ifit2, Ifit3, and Rsad2 (45). However, in the
case of Ifit1, which recognizes RNA lacking a 2"-O methylation on
the 5’ cap structure and prevents translation, alphaviruses subvert
its antiviral function via RNA secondary structure motifs that in-
hibit binding (46). Recent studies suggest that ectopic expression
of IFITM genes in cell culture can restrict infection of Sindbis
(SINV) and Semliki Forest (SFV) viruses in cell culture by inhib-
iting viral fusion with cellular membranes (47). Other ISGs (e.g.,
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HSPE and P2RY6) have been identified, with little information
regarding their mechanism of restriction (48, 49). Finally, ISGs
can act in synergy to inhibit alphavirus infection (50).

In this study, we evaluated the antiviral activity of IFITM3
against several alphaviruses by comparing infection of IFN-
treated wild-type (WT), Ifitm3~'~, and Ifitm locus deletion (Ifitm-
del) mouse fibroblasts with CHIKV, SFV, SINV, O’nyong-nyong
virus (ONNV), and VEEV. In the absence of Ifitm3 gene expres-
sion, we observed an increase in alphavirus replication in vitro,
which was inhibited following transcomplementation with Ifitm3.
In vivo, Ifitm3~'~ mice inoculated with CHIKV sustained higher
viral burdens in the spleen, serum, and joint tissues at early times
after infection. This was associated with higher levels of proin-
flammatory cytokines and increased joint swelling along with
greater replication in macrophages in some tissues. Consistent
with the latter observation, bone marrow-derived macrophages
from Ifitm3 '~ mice sustained higher levels of CHIKV infection
than WT cells. Analogous to our observed phenotypes with
CHIKV in vivo, Ifitm3™'~ mice infected with VEEV exhibited
greater weight loss and mortality and supported greater replica-
tion in the liver, spleen, spinal cord, and brain. Collectively, our
data suggest that Ifitm3 contributes to an early host defense re-
sponse against multiple alphaviruses of global concern.

MATERIALS AND METHODS

Ethics statement. This study was carried out in accordance with the rec-
ommendations in the Guide for the Care and Use of Laboratory Animals of
the National Institutes of Health (51). The protocols were approved by the
Institutional Animal Care and Use Committee at the Washington Univer-
sity School of Medicine (assurance number A3381-01). Dissections and
injections were performed under anesthesia that was induced with ket-
amine hydrochloride and xylazine.

Mice. WT C57BL/6 mice were obtained commercially from Jackson
Laboratories. Ifitm-del and Ifitm3~'~ mice have been described previ-
ously (52). Ifitm2 ™'~ mice were described in reference 73. All transgenic
mice were backcrossed to 99% purity using speed congenic analysis (53).
Four-week-old mice were inoculated in the left footpad with 10® focus-
forming units (FFU) of CHIKV-LR in 10 pl of phosphate-buffered saline
(PBS). Ankles were measured (width by height) for joint swelling on days
3 and 7 postinfection. On selected days after infection, mice were sacri-
ficed for the collection of serum and tissues. After intracardiac perfusion
with PBS, organs were harvested, weighed, and homogenized to deter-
mine viral titers by a focus-forming assay. For studies with VEEV, a vac-
cine-derived recombinant strain with a point mutation (TC83-A3G) was
used; this mutation confers partial virulence in WT mice as it restores the
capacity to antagonize the inhibitory actions of the ISG Ifit] (46). Four-
week-old mice were inoculated in the left footpad with 10° FFU of VEEV-
TC83-A3G in 10 pl of PBS. Mice were followed daily for survival and
weighed every 2 days. On selected days, infected mice were sacrificed and
organs were harvested as described above.

Flow cytometric analysis of CHIKV-infected splenocytes. Spleens of
CHIKV-infected mice were harvested after perfusion with PBS. Spleno-
cytes were obtained by generating a single cell suspension, passaging it
through a 70-pm filter, and lysing red blood cells with ACK buffer (Invit-
rogen). Splenocytes were maintained on ice in PBS supplemented with
2% fetal bovine serum (FBS) and 1 mM EDTA. After blockade of Fcy
receptors with anti-CD16/32 (eBioscience; clone 93), staining for viability
(eBioscience; FVD eFluor 506) and cell surface antigens CD45, CD3,
CD19, CD3, Ly6G, Ly6C, CD11b, CD11¢, major histocompatibility com-
plex (MHC) class II, and F4/80 was performed. Viral antigen (E1 and E2
proteins on the surface of cells) was detected using biotinylated human-
ized CHK-152 and murine CHK-166 (54), with biotinylated humanized
West Nile virus (WNV) E16 and murine WNV E60 (55, 56) serving as
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isotype controls, respectively. Secondary staining was followed with
streptavidin-conjugated Alexa 647 (Invitrogen). Cells were fixed subse-
quently using the eBioscience FoxP3 fixation buffer set and processed for
flow cytometry with the BD LSRII flow cytometer. Data were analyzed
with FlowJo software.

Bio-Plex cytokine assay. To measure cytokine levels, a Bio-Plex Pro
assay was performed according to the manufacturer’s protocol (Bio-Rad)
on homogenized ankle tissues isolated at day 1 and 2 postinfection. The
cytokine screen included interleukin-1a (IL-1av), IL-1B, IL-2, IL-3 IL-4,
IL-5, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, eotaxin, granu-
locyte colony-stimulating factor (G-CSF), granulocyte-macrophage CSF
(GM-CSF), gamma interferon (IFN-v), KC, monocyte chemoattractant
protein 1 (MCP-1), macrophage inflammatory protein lao (MIP-1a),
MIP-1B, RANTES (CCL5), and tumor necrosis factor alpha (TNF-a).

Cells and viruses. Primary WT, Ifitm-del, Ifitm2~'~, and Ifitm3~'~
mouse-derived mouse embryonic fibroblasts (MEFs) and bone marrow-
derived macrophages were generated according to published methods
(57). Transformed MEFs were generated by transfection of the SV2 plas-
mid, which encodes the large T antigen of SV2 polyomavirus (58), and
passaged ~10 times. All MEFs were cultured in complete Dulbecco’s
modified Eagle’s medium (DMEM), which was supplemented with 10%
fetal bovine serum and 10 mM (each) GlutaMAX, sodium pyruvate, non-
essential amino acids, and HEPES, pH 7.3. MEFs that ectopically express
c-Myc-tagged firefly luciferase or c-Myc-tagged Ifitm3 were generated via
lentiviral transduction of the pFCIV vector, which contains an internal
ribosome entry site-green fluorescent protein (IRES-GFP) (59, 60). Len-
tivirus was produced by transfecting 293T cells with pSPAX.2 (Addgene
catalog no. 12260), pMD2G (Addgene catalog no. 12259), and pFCIV.
Supernatants were harvested at 48 to 72 h posttransfection. WT, Ifitm-del,
and Ifitm3~'~ transformed MEFs were incubated with lentiviral superna-
tants and 10 pg/ml of Polybrene and spinoculated (300 X g) at room
temperature for 30 min. The inoculum was replaced with complete
DMEM 24 h later and incubated at 37°C. Transduction efficiency was
determined by expression of GFP, and sorting of GFP™ cells was per-
formed on a FACS Aria II cell sorter (Becton, Dickinson). After repeated
passages to ensure stable expression, the MEFs were tested for GFP and
protein expression by flow cytometry and Western blotting, respectively.
Vero and 293T cells were cultured and passaged in complete DMEM.

The CHIKV-LR (La Reunion OPY1 pl42) strain was a gift from S.
Higgs (Kansas State University). SINV (Toto) was a gift from C. Rice and
P. MacDonald (Rockefeller University). VEEV-TC83 was a gift from W.
Klimstra (University of Pittsburgh). These strains were produced from
infectious cDNA clones (61, 62). CHIKV 181/25, ONNV (MP30), and
SFV (Kumba) were provided by the World Reference Center for Arbovi-
ruses (R. Tesh, University of Texas Medical Branch). Virus propagation
and titration were performed in Vero cells.

Genotyping of MEFs. Genomic DNA was extracted from MEFs with
the Qiagen DNeasy blood and tissue kit and was characterized by PCR.
The Ifitm2 WT allele or the knockout (KO) construct was genotyped
using the following primers: Ifitm2 WT F, 5'-ATGTGGTCTGGTCCCT
GTTC-3', and Ifitm2 WT R, 5'-AGGTGCTCTGGCTCCATTTC-3" (WT
band, 520 bp); Ifitm2 KO F, 5'-TCATTCTCAGTATTGTTTTGCC-3/,
and Ifitm2 KO R, 5'-TGGAGACCAGAAGCCTGAC-3" (KO band, 373
bp). PCR conditions for both Ifitm2 WT and KO alleles were as follows:
94°C for 3 min, 94°C for 45 s, 55°C for 30 s, and 70°C for 1 min 30s, for 35
cycles, and 70°C for 10 min. The Ifitm3 ™/~ mouse can be identified by the
in-frame insertion of GFP within the Ifitm3 allele (52). The WT allele or
the knockout construct was genotyped using the following primers: WT
Ifitm3 F, 5'-ATCCTTTGCCCTTCAGTGCT-3', and WT Ifitm3 R, 5'-AC
TCATACCTCGGTGCCATC-3" (WT band, 355 bp; KO band, 1,321 bp).
PCR conditions for both Ifitm3 WT and KO were as follows: 94°C for 1
min 30 s, 94°C for 25 s, and 60°C for 30 s, reducing temperature by 0.1°C
per cycle; 72°C for 1 min 30 s, 35 cycles; and 72°C for 5 min. The IFITM-
del allele was determined using the following primers (52): IFITM-del WT
F, 5'-AACATGCCTTGCATCCCTGGAGTTCCTTCTAAAGGA-3', and
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IFITM-del WT R, 5'-CCCTAAAACACTTAGCAGTGACCCCTCACAA
GCC-3' (WT band, 500 bp); Ifitm-del KO F, 5'-ACTCTAGCCAGAGTC
TTGCATTTCTCAGTCCTAAAC-3', and IFITM-del KO R, 5'-TCTAGT
ACAGTCGGTAAGAACAAAATAGTGTCTATCA-3" (KO band, 600
bp). PCR conditions for Ifitm-del alleles were as follows: 95°C for 30 s,
54°C for 30 s, and 68°C for 1 min 30 s, for 29 cycles, and 68°C for 5 min.

gRT-PCR measurement of Ifitm genes. WT, Ifitm2~'~, Ifitm3™'",
and Ifitm-del MEFs (10* cells per condition) were seeded in a 96-well
plate. After 6 h of incubation with IFN-@ at various doses, MEFs were
lysed and total RNA was extracted with the Qiagen RNeasy kit. Ifitm2
and Ifitm3 were detected using quantitative reverse transcription-PCR
(qRT-PCR) and normalized to Gapdh expression, using the following
PrimeTime assays (IDT) according to the manufacturer’s instructions:
Ifitm2, Mm.PT.58.33172327.¢g; Ifitm3, Mm.PT.51.6979575.g; and Gapdh,
Mm.PT.39a.a.

Western blotting. MEFs were lysed in radioimmunoprecipitation as-
say (RIPA) buffer and electrophoresed under reducing conditions on a
12% Bis-Tris NuPAGE gel with morpholineethanesulfonic acid (MES)
buffer according to the manufacturer’s instructions (Thermo Fisher). Af-
ter transfer onto polyvinylidene difluoride (PVDF) membranes (Thermo
Fisher) using an iBlot apparatus (Thermo Fisher), proteins of interest
were detected with mouse anti-B-actin (CST; 8H10D10), mouse anti-c-
Myc (Sigma; 9E10), goat anti-Ifitm3 (R & D; AF337), horseradish perox-
idase (HRP)-conjugated anti-mouse IgG (Sigma Chemical), and HRP-
conjugated anti-goat IgG (Santa Cruz; sc2304). For quantification of
protein, secondary donkey anti-mouse IRDye 680 (Li-Cor; 925-68072)
and anti-rabbit-IRDye 800CW (Li-Cor; 926-32214) were used instead of
HRP conjugates and visualized on the Odyssey Imager (Li-Cor). Poly-
clonal rabbit anti-Ifitm3 (Proteintech; 11714-1-AP) was used for Ifitm3
detection in these experiments. Quantification was performed with Li-
Cor Odyssey software.

Virus infection of cells. MEFs were plated (10* cells per well) in a
96-well plate and in some experiments pretreated for 6 h with recombi-
nant mouse IFN-B (PBL Assay Science) at concentrations from 5 to 0.1
IU/ml, as indicated in the figure legends. The cells were inoculated with a
given alphavirus (multiplicity of infection [MOI] of 5) and incubated at
37°C. At selected time points, cells were trypsinized, fixed with 1% para-
formaldehyde (PFA), and permeabilized with Hanks’ balanced salt solu-
tion (HBSS) containing 0.1% saponin and 10 mM HEPES. Infection was
determined after sequentially staining cells with mouse or human mono-
clonal antibodies (MAbs) (CHIKV, CHK-11; SFV, 2B4; TC83, 1A4A-1;
ONNV, 4J21) (54, 63) against the E2 glycoprotein. SINV infection was
detected using murine anti-SINV ascites (ATCC; VR-1248AF). Alexa 647-
conjugated goat anti-mouse or human IgG antibody (Life Technologies)
was used for secondary antibody staining. Samples were processed by flow
cytometry using a BD FACSArray cytometer. Data were analyzed with
FlowJo software.

For viral yield assays, cells were plated (10° cells per well in a 12-well
plate) and in some experiments pretreated with specified doses of IFN-f3
for 12 h. Cells then were infected with CHIKV at 37°C. One hour later, the
plates were rinsed twice with warm PBS and replaced with fresh DMEM
supplemented with 10% FBS. Supernatants were collected at specific time
points, and viral titers were determined by focus-forming assay on Vero
cells, as described previously (46, 54). After fixation, infected cell foci were
detected with CHK-11 and HRP-conjugated anti-mouse IgG (Sigma
Chemical) and quantified with an ImmunoSpot analyzer (Cellular Tech-
nologies, Ltd.).

Binding and internalization assays. MEFs were plated (107 cells/well
in a 24-well plate)on the night before use. Cells were chilled on ice for 10
min, exposed to CHIKV-LR at an MOI of 5, and incubated on ice for 1 h.
Unbound virus was removed with repeated washes of chilled medium or
PBS. To determine binding efficiency of virus, MEFs were lysed with
RNeasy lysis buffer (Qiagen), and RNA was extracted using the RNeasy
minikit (Qiagen) and analyzed for CHIKV RNA by qRT-PCR. To deter-
mine the efficiency of virus internalization, warm complete DMEM was
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added to MEFs and incubated at 37°C for 1 h. Medium was removed, and
cells were placed on ice. Proteinase K (500 wg/ml) in ice-cold PBS was
added for 1 h to digest any surface-bound virus (64). MEFs were then
transferred to Eppendorf tubes and washed with PBS before lysing with
RNeasy lysis buffer and extraction of RNA for qRT-PCR. Primer probe
sets ordered from IDT were CHIKV (F, 5'-TCGACGCGCCCTCTTTAA-
3"; R, 5'-ATCGAATGCACCGCACACT-3'; probe, 5'-/56-FAM [6-ca
rboxyfluorescein]/ACCAGCCTGCACCCATTCCTCAGAC/36-TAMSp/-
3') and the glyceraldehyde-3-phosphate dehydrogenase (Gapdh)
PrimeTime assay Mm.PT.39a.a.

Fusion-from-without (FFWO) assay. MEFs were rinsed and then in-
cubated with DMEM, supplemented with 0.2% FBS, 10 mM HEPES (pH
7.3),and 20 mM NH,Cl, on ice for 15 min. Virus (MOI of 100) was added
to MEFs on ice for 1 h to allow binding. Unbound virus was removed after
several rinses with chilled medium. Subsequently, prewarmed acidic
(DMEM, 0.2% FBS, 10 mM HEPES, 30 mM succinic acid, pH 5.5) or
neutral (DMEM, 0.2% FBS, 10 mM HEPES, pH 7.4) medium was added
for 2 min at 37°C. Medium then was removed and replaced with warmed
DMEM-10% FBS-10 mM HEPES supplemented with 20 mM NH,CI to
inhibit endosomal viral fusion and de novo infection via the endosomal
pathway. At 6 h after infection, MEFs were fixed with PFA, permeabilized,
and analyzed for viral antigen by flow cytometry, as described above.

Statistical analysis. All data were analyzed using Prism software
(GraphPad, San Diego, CA). Viral infection assays in cell culture were
analyzed by one-way analysis of variance (ANOVA) with Dunnett’s
multiple-comparison test or Student’s ¢ test. Viral kinetics assays were
analyzed by two-way ANOVA with Dunnett’s or Sidak’s multiple com-
parisons. Viral burden assays were analyzed by the Mann-Whitney test.
qRT-PCR assays were analyzed by Student’s ¢ test. Kaplan-Meier survival
curves were analyzed by the log rank test.

RESULTS

Restriction of alphaviruses by Ifitm proteins in cell culture. Al-
though expression of IFITM genes inhibits infection of several
different genera of viruses (7—16), their antiviral activities against
alphaviruses have yet to be established. To test whether Ifitm
genes restrict alphavirus infection, we developed MEF lines
lacking Ifitm2 (Ifitm2~'"), Ifitm3 (Ifitm3~'7), and Ifitm1, -2,
-3, -5, and -6 (Ifitm-del) (Fig. 1A). To assess their effects on
CHIKYV replication, MEFs were first pretreated with 1 TU/ml of
recombinant mouse IFN-f to induce Ifitm gene expression (Fig.
1B). Ifitm3 protein induction was confirmed by Western blotting in
WT and Iﬁth_/ ~ MEFs after IFN- treatment, whereas, as ex-
pected, Ifitm3 '~ and Ifitm-del MEFs lacked Ifitm3 protein (Fig.
1C). IFN-pretreated MEFs were then infected with a high viral
dose (MOI of 5) of pathogenic (CHIKV-La Reunion 2006 [LR]) or
attenuated (CHIKV 181/25) strains of CHIKV. Fourteen hours
later, cells were harvested, and viral antigen was analyzed by flow
cytometry. Whereas Ifitm3~'~ and Ifitm-del MEFs supported
greater CHIKYV infection (3-fold, P < 0.01, and 4-fold, P < 0.001,
for CHIKV 181/25, respectively; 4.5-fold, P < 0.0001, and 6.5-
fold, P < 0.0001, for CHIKV-LR, respectively) than did WT cells,
no increase in viral antigen expression was observed in Ifitm2~'~
MEFs (Fig. 1D to F). Correspondingly, IFN-B-pretreated Ifitm3 ™'~
and Ifitm-del MEFs infected with CHIKV produced higher titers
of infectious virus than did WT or Ifitm2 '~ cells (Fig. 1G, CHIKV
181/25, 28-fold for Ifitm3 ™'~ [P < 0.01] and 12-fold for Ifitm-del
[P < 0.05]; Fig. 1H, CHIKV-LR, 147-fold for Iﬁtm37/7 P <
0.0001] and 36-fold for Ifitm-del [P < 0.0001]) at 14 h postinfec-
tion. These data suggest that Ifitm3 has a dominant antiviral effect
on CHIKV infection compared to Ifitm2.

We next tested whether Ifitm3 exhibited antiviral activity
against other alphaviruses. Analogous to experiments with

October 2016 Volume 90 Number 19

Journal of Virology

Ifitm3 Inhibits Alphavirus Infection and Pathogenesis

CHIKV, WT and Ifitm-deficient MEFs were pretreated with var-
ious doses of IFN-@, infected at a high MOI, and assayed by flow
cytometry. Notably, Ifitm3 ™'~ and Ifitm-del MEFs pretreated with
IFN-B supported enhanced infection by SFV, ONNV, VEEV
(strain TC-83), and SINV compared to WT cells (P < 0.05, Fig. 2).

To corroborate our findings, we transcomplemented WT,
Ifitm3~'", and Ifitm-del MEFs with c-Myc-tagged to the N termi-
nus of Ifitm3 or firefly luciferase protein as a control. After con-
firmation of ectopic protein expression by flow cytometry and
Western blotting (Fig. 3A and B), MEFs were infected with
CHIKYV 181/25 (MOI of 5) in the absence of [FN-3 treatment and
analyzed at 6 h postinfection. MEFs transcomplemented with
Ifitm3 showed less CHIKV replication than firefly luciferase-ex-
pressing controls (Fig. 3C and D). These data suggest that Ifitm3
inhibits multiple alphaviruses in vitro and does not require expres-
sion of Ifitm1, Ifitm2, Ifitm5, and Ifitm6 proteins to exert its an-
tiviral activity.

Ifitm3 inhibits pH-dependent fusion of alphaviruses. Studies
with IAV have shown that IFITM3 prevents fusion of virions from
the late endosome, which is required for release of viral genomic
material into the cytosol (24, 25). Correspondingly, IFITM3 is
expressed preferentially on membranes of intracellular vesicles,
including endosomes (9). However, following gene upregulation,
such as after IFN induction or ectopic expression, IFITM3 can
accumulate on the plasma membrane (18, 65, 66), which indepen-
dently could restrict attachment of viruses to the cell surface. To
define the stage in the alphavirus life cycle that Ifitm3 inhibits, we
assessed its effect on binding, internalization, and fusion.

To determine if expression of Ifitm3 alters binding of alphavi-
ruses to the cell surface, transcomplemented MEFs were incu-
bated with CHIKV at 4°C for 1 h, washed extensively to remove
unbound virus, and assayed by qRT-PCR. As no differences in
levels of bound CHIKV genomic RNA were detected between
Ifitm3-expressing MEFs and their corresponding controls (Fig.
4A), we concluded that binding efficiency was not appreciably
affected. To assess whether Ifitm3 affected internalization,
CHIKYV was prebound to transcomplemented MEFs for 1 h on ice,
followed by incubation at 37°C for 1 h. MEFs then were treated
with proteinase K to remove residual surface-bound virus before
recovery of cellular RNA. Similarly to cell surface binding assays,
we observed no difference in the levels of internalized viral RNA
(Fig. 4B). As anticipated, in control binding experiments per-
formed at 4°C, proteinase K treatment significantly decreased (11-
fold, P < 0.0001) the level of cell-bound viral RNA (Fig. 4C).

As we did not observe effects of Ifitm3 on attachment or inter-
nalization, we next evaluated pH-dependent fusion. Alphaviruses
can be induced to fuse at the plasma membrane in the presence of
an acidic solution (acid bypass or fusion from without [FFWO])
(67), albeit at low efficiency; this required us to infect at a high
multiplicity of infection. To test whether FFWO is affected by
ectopic expression of Ifitm3, MEFs were preincubated with
CHIKYV at 4°C, washed to remove unbound virus, and then incu-
bated with prewarmed medium at pH 7.4 or pH 5.5. Subse-
quently, medium was replaced with normal-pH culture medium
supplemented with 20 mM NH,CI, which prevents alphavirus
maturation and fusion (67) and was added to inhibit productive
infection of progeny virions. Fourteen hours later, MEFs were
analyzed for viral antigen by flow cytometry. Ifitm3-
transcomplemented MEFs had lower levels of CHIKV antigen
than luciferase-expressing controls in WT, Ifitm3 ', and Ifitm-
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multiple comparisons (*, P < 0.05; **, P < 0.01; ***, P < 0.001).

del MEFs (Fig. 4D and E). Consistent with results with IAV (24),
expression of Ifitm3 also inhibits pH-dependent fusion of alpha-
viruses.

Ifitm3 inhibits alphavirus infection in vivo. To determine
whether Ifitm3 has a protective role against alphaviruses in vivo,

we used an established mouse model of CHIKV infection and
arthritis (68). We inoculated 4-week-old WT and Ifitm3 ™'~ mice
with CHIKV-LR in the left footpad and measured joint swelling
on days 3 and 7 after infection, which correspond to the peaks of
tissue edema and cellular infiltrates, respectively (54, 68). Whereas
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CHIKV 181/25

no difference was seen in viral titers at these time points (Fig. 5A),
greater swelling was observed in ipsilateral ankle joints of Ifitm3 ™'~
mice than in WT mice on both days (Fig. 5B and C, P < 0.001 and
P < 0.01, respectively). Because of the disparity between clinical
signs and virological data, we analyzed viral burden in different
tissues (serum, spleen, ankles, wrists, and quadriceps muscles) at
earlier time points (days 1 and 2 after inoculation) (Fig. 5D to K).
At day 1 after inoculation, the serum, spleen, and ipsilateral ankle
(Fig. 5D to F) of Ifitm3 ™'~ mice had higher viral titers than diid WT
mice (20-fold in serum, P < 0.0001; 160-fold in spleen, P <
0.0001; and 2.5-fold in ipsilateral ankle, P < 0.01). In comparison,
at day 2, the titers in the spleen, serum, and ipsilateral ankle were
similar but levels in the contralateral ankle and contralateral quad-
riceps muscle (Fig. 5G and I) were somewhat higher (4.5-fold, P <
0.001, and 5-fold P < 0.01, respectively). However, by day 3, no
differences in viral titer were observed in any tissues between WT
and Ifitm3~' " mice.
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The early higher viral burden in Ifitm3™'~ mice corre-
sponded to higher levels of inflammatory chemokines and cy-
tokines in the ipsilateral ankle (Table 1). The mean concentra-
tions of several chemokines and cytokines (e.g., IL-2, MCP-1,
TNF-a, IL-1a, IL-12p40, G-CSF, and GM-CSF, P < 0.05) were
higher in ankles from CHIKV-infected Ifitm3~'~ mice than in
those from WT mice at days 1 and/or 2 after infection. These
data suggest that in the context of CHIKV infection in vivo,
Ifitm3 contributes to restriction of early viral infection and
spread, which impacts cytokine induction and the develop-
ment of clinical disease.

Given the increase in viral titers in the spleen of Ifitm3™/~ mice
on day 1, we hypothesized that Ifitm3 might affect the cellular
tropism of CHIKV. To identify the cell subsets that were more
susceptible to CHIKV infection, we performed flow cytometric
analysis on spleens of infected WT and Ifitm3 '~ mice (Fig. 6A to
C). Splenocytes were stained for CHIKV envelope (E1 and E2)
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internalization. MEFs were then treated with proteinase K on ice for 1 h to digest any bound but not internalized virions, followed by washing, RNA extraction,
and analysis by qRT-PCR. Data are representative of three independent experiments performed in duplicate. (C) As a control, we confirmed the efficiency of
proteinase K for removing surface-bound (at 4°C) but not internalized CHIKV. MEFs treated with proteinase K had lower levels of CHIKV RNA as detected by
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0.001; ****, P < 0.0001).

proteins using specific MAbs (54) and compared to isotype con-
trol MAbs. Inflammatory monocytes (CD11b™ Ly6G™), macro-
phages (CD11b" F4/80"°), and red pulp macrophages (CD11b'
F4/80™) expressed high levels of viral antigen (50%, 50%, and
25%, respectively), with no difference in the fraction of infected
cells from WT and Ifitm3 ™' cells (Fig. 6B and data not shown).
Nonetheless, greater numbers of CHIKV antigen-positive
CD11b" F4/80'° and CD11b" F4/80" macrophages were detected
in the spleens of Ifitm3 ™'~ mice than in WT mice (1.3-fold, P <
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0.05; 1.7-fold, P < 0.05; and 2.2-fold, P < 0.05, respectively)
(Fig. 6C). An increased number of Ifitm3~’~ neutrophils ex-
pressed CHIKV antigen (1.6-fold, P < 0.05), but the overall num-
ber of neutrophils was substantially lower than other myeloid cell
populations. No differences in viral antigen-positive inflamma-
tory monocytes were observed between the Ifitm3~/~ and WT
controls, and neither Ifitm3~'~ nor WT CD4*,CD8*,CD19", or
NKI1.17 cells exhibited detectable viral protein staining (data not
shown). To determine if Ifitm3™'~ macrophages can support
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0t P <0.0001).

greater replication of CHIKV, bone marrow-derived macro-
phages were cultured from WT and Ifitm3 ™'~ mice and infected at
an MOI of 0.1. Viral supernatants were collected up to 72 h postin-
fection and analyzed by focus-forming assay. Ifitm3~'~ macro-
phages produced more virus at 24 and 48 h postinfection than did
WT cells (Fig. 6D) (12.5-fold, P < 0.01, and 10-fold, P < 0.01,
respectively). These data suggest that a lack of Ifitm3 allows for
enhanced CHIKV infection in macrophages.

To assess whether Ifitm3 had a protective effect against other
alphaviruses in vivo, we infected 4-week-old WT and Ifitm3 ™'~
mice with a previously described moderately pathogenic enceph-
alitic alphavirus strain (VEEV-TC83-A3G), which is resistant to
the antiviral effects of another ISG, Ifitl (46). Ifitm3~'~ mice ex-
hibited greater mortality (Fig. 7A) and morbidity (as judged by
weight loss) (Fig. 7B) after VEEV-TC83-A3G infection than did
WT mice. Consistent with the clinical phenotypes, higher VEEV
titers were observed at day 1 after infection in the liver and spinal
cord (3-fold, P < 0.05, and 8-fold, P < 0.01, respectively) (Fig. 7C)
and day 2 after infection in the spleen, brain, and liver of Ifitm3 ™'~
mice than in WT mice (2.5-fold, P < 0.05; 250-fold, P < 0.05; and
10-fold, P < 0.01, respectively) (Fig. 7C). These data confirm that
Ifitm3 restricts alphavirus infection in vivo and prevents early dis-
semination.
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DISCUSSION

To evaluate the potential antiviral role of Ifitm3 in restricting al-
phaviruses in vitro, we infected WT, Iﬁtm37/ ~,and Ifitm-del MEFs
with CHIKV, SFV, ONNV, VEEV, and SINV. All alphaviruses
tested exhibited some degree of enhanced infection in Ifitm3~'~
cells. In contrast, studies with CHIKV and Ifitm2~'~ MEFs
showed infection comparable to that of WT MEFs, suggesting that
Ifitm?2 is not the predominant Ifitm gene responsible for inhibit-
ing alphaviruses in the context of an intact type I IFN response.
The antiviral function of Ifitm3 against alphaviruses was validated
using transcomplemented MEFs that ectopically express Ifitm3.
Analogous to how IFITM3 inhibits IAV infection (24, 26), our
mechanism-of-action studies suggest that Ifitm3 does not affect
the binding or internalization of CHIKV but instead prevents pH-
dependent fusion events.

We also observed greater CHIKV infection and disease patho-
genesis in vivo in animals lacking Ifitm3 expression. Ifitm3 ™'~
mice developed greater ankle swelling than did WT animals, and
this difference correlated with an increased viral burden and in-
flammatory chemokine and cytokine levels at early times postin-
oculation. Notably, at later time points, titers became equivalent
inWT and Ifitm3 ™'~ mice, suggesting possible immune evasion of
Ifitm3 by CHIKYV, which could occur by several previously iden-
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TABLE 1 Cytokine levels in joint tissue homogenates after CHIKV infection®

Day 1 Day 2

Cytokine Genotype Mean pg/ml (SEM) P Mean pg/ml (SEM) P

IL-la WT 7.6 (£1.0) 0.2 9.8 (+0.6) 0.03
Ifitm3™/~ 12 (+2.4) 14 (+1.5)

IL-1B WT 52 (*11) 0.3 144 (+18) 0.2
Ifitm3™/~ 71 (+14) 181 (+9.2)

IL-2 WT 11(£1.9) 0.03 15 (£1.9) 0.09
Ifitm3~/~ 16 (£1.8) 21 (+3.1)

IL-3 WT 0.33 (£0.06) 0.9 0.39 (*0.08) 0.006
Ifitm3~/~ 0.33 (%0.06) 0.76 (*0.06)

L-4 WT 3.2 (+0.2) 0.3 42 (*0.5) 0.1
Ifitm3~/~ 3.2 (%0.5) 6.1 (=1.0)

IL-5 WT 0.6 (+0.2) 0.9 3.0 (+£1.0) 0.7
Ifitm3™/~ 0.8 (+0.4) 3.4 (+1.0)

IL-6 WT 1.5 (*+0.4) 0.8 8.8 (+1.1) 0.4
Ifitm3™/~ 1.9 (*£1.0) 11 (*+1.9)

IL-9 WT 22 (*7.1) 0.9 31(+9.1) 0.006
Ifitm3™/~ 28 (£16) 107 (+24)

IL-10 WT 1.1 (%0.06) 0.3 3.1(+0.9) 0.02
Ifitm3™/~ 1.3 (*0.2) 5.3 (+0.8)

IL-12p40 WT 1.1(%0.2) 0.8 10 (£1.6) 0.02
Ifitm3~/~ 1.4 (£0.3) 15(%0.8)

IL-12p70 WT 2.8 (+0.2) 0.1 6.2 (+0.7) 0.5
Ifitm3~/~ 3.8 (£0.5) 7.0 (£0.6)

IL-13 WT LOD (38.7) 0.9 LOD (38.7) 0.9
Ifitm3™/~ 44 (+5.7) 39 (£0.8)

IL-17 WT 0.3 (£0.09) 0.9 0.3 (+0.08) 0.8
Ifitm3™/~ 0.3 (+0.1) 0.2 (+0.06)

Eotaxin WT 151 (+3.8) 0.5 176 (+11) 0.9
Ifitm3~/~ 162 (£8.2) 176 (£12)

G-CSF WT 0.7 (+0.1) 0.9 42(*1.2) 0.007
Ifitm3™/~ 0.9 (+0.3) 8.5 (+0.8)

GM-CSF WT 43 (+4.9) 0.14 59 (+6.4) 0.04
Ifitm3~/~ 55 (£5.0) 77 (£5.7)

IFN-y WT LOD (1.2) >0.9 1.8 (*+0.3) 0.7
Ifitm3~/~ LOD (1.2) 1.5 (+0.14)

KC WT 16 (£2.6) 0.6 81 (+15) 0.8
Ifitm3™/~ 23 (+5.6) 83 (*13)

MCP-1 WT 52 (*15) 0.01 706 (£119) 0.4
Ifitm3™/~ 118.5 (+25.44) 833 (£70)

MIP-1a WT 38 (+1.4) 0.3 168 (+29) 0.8
Ifitm3™/~ 50 (+7.8) 151 (+13)

MIP-1B WT 20 (+3.9) 0.3 150 (+33) 0.2
Ifitm3™/~ 34 (+8.5) 89 (+23)

RANTES WT 13 (£2.4) 0.8 109 (+28) 0.8
Ifitm3~/~ 12 (£3.1) 88 (*£24)

TNF-a WT 17 (*£3.0) 0.004 48 (*7.5) 0.5
Ifitm3~/~ 41 (£6.4) 56 (£7.4)

@ Mice were infected with 10> FFU of CHIKV-LR in the footpad. Ipsilateral joint tissues were collected at 1 and 2 days after infection, homogenates were prepared, and the indicated
cytokines were measured by Bio-Plex array. Data represent the means (*standard errors of the means) in picograms per milliliter from 9 to 11 mice per group. Statistical
significance was determined by the Mann-Whitney test. LOD, limit of detection.
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FIG 6 Infection of splenocyte subsets by CHIKV-LR in WT and Ifitm3 ™/~ mice. Splenocytes from 4-week-old WT and Ifitm3 ™'~ mice were harvested 1 day after
infection (10° FFU in the footpad); stained for neutrophils, inflammatory monocytes, dendritic cells, eosinophils, macrophages, and red pulp macrophages and
for surface expression of CHIKV El and E2 viral antigen; and analyzed by flow cytometry. (A) Detailed gating strategy for different cell subsets is shown. FSC,
forward scatter; SSC, side scatter. (B) Representative contour plots of WT and Ifitm3 ™/~ splenocytes gated for CHIKV antigen-positive cells, stained with either
isotype control or anti-CHIKV envelope protein antibody. (C) Scatter plots indicate the number of CHIKV antigen-positive cells for each subpopulation. Data
were pooled from two independent experiments. Each dot represents one mouse (1 = 9 to 10). Asterisks determine statistical differences by the Mann-Whitney
test (*, P < 0.05). Note the break in the y axis. (D) Viral kinetics of CHIKV-LR infection in bone marrow-derived WT and Ifitm3 ™/~ macrophages infected at an
MOI of 0.1. Data are pooled from five independent experiments performed in triplicate, and each point indicates mean and standard error of the mean. The
dotted line indicates the limit of detection. Asterisks determine statistical differences by two-way ANOVA and Sidak’s multiple comparisons (**, P < 0.01). hpi,

hours postinfection.

tified mechanisms, including host transcriptional shutoff (69) or
antagonism of IFN signaling (70). To assess possible effects of
Ifitm3 on cellular tropism, we assessed CHIKV antigen staining
using flow cytometric analysis of splenocytes at day 1 postinfec-
tion. These cells were chosen because they were easily profiled and
exhibited a substantial (160-fold) difference in viral yield at this
time point. Although the overall percentages of CHIKV-positive
myeloid cells were similar in the spleens of Ifitm3~/~ and WT
mice, a higher number of macrophages were positive for CHIKV
antigen, suggesting a possible role for Ifitm3 in controlling viral
growth in these cell types. One limitation of the flow cytometry
experiments is that we cannot be certain that CHIKV antigen-
positive staining defines bona fide infection, as it remains possible
that we are detecting bound/opsonized virus on the surface of cells
rather than E1 and E2 proteins prior to budding. To address this
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issue, we tried infection studies in WT and Iﬁtm3_/ ~ mice with
double subgenomic reporter gene viruses (e.g., CHIKV-GFP);
however, the fluorescence staining was too dim for conclusive
results, possibly because of the attenuation of these viruses. None-
theless, our studies with bone marrow-derived macrophages sup-
port a role for Ifitm3 restriction of CHIKV infection in this cell
type, as increased titers were observed in cells from Ifitm3 ™'~
mice.

Our in vivo findings were not limited to CHIKYV, as we also
observed greater mortality, weight loss, and viral burden following
VEEV infection of Ifitm3™ '~ mice. These data suggest an impor-
tant role for Ifitm3 in restricting alphavirus pathogenesis in vivo,
by limiting replication and dissemination early during infection.
Future studies using analogous flow cytometric approaches
and conditional gene deletions are planned to define the cell-
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FIG 7 Ifitm3 protects against VEEV pathogenesis. (A and B) Four-week-old WT and Ifitm3~'~ mice were infected with 10° FFU of VEEV-TC83-A3G in the
footpad and followed for survival (A) and morbidity by weight loss (B). Data are pooled from two independent experiments (1 = 19 to 21). Asterisks denote
statistical differences by log rank test (***, P < 0.001). (C) VEEV viral burden of serum, spleen, liver, inguinal lymph nodes (iLN), popliteal lymph nodes (pLN),
brain, and spinal cord at days 1,2, and 4 after infection of WT and Ifitm3 ™'~ mice. Data are pooled from four independent experiments, where each dot represents
one mouse (1 = 6 to 10). Dotted lines represent the limit of detection. Asterisks indicate statistical differences by the Mann-Whitney test (*, P < 0.05; **, P <

0.01).

type-specific antiviral effect of Ifitm3 in the context of VEEV
pathogenesis.

A possible antiviral role of IFITM proteins against alphaviruses
has not been extensively analyzed. Studies with pseudotyped viri-
ons (alphavirus structural proteins and retroviral RNA) initially
suggested that IFITMs had little antiviral activity against CHIKV,
SINV, and VEEV (reference 28; M. Farzan, unpublished observa-
tions). It remains uncertain why Ifitm3 would not inhibit pseu-
dotyped alphavirus virions although the icosahedral display of E1
and E2 may be altered in these viruses, which could affect entry
and fusion of virus particles. Ifitm3 has been implicated, although
not definitively demonstrated, as a restriction factor for alphavi-
ruses. Karki et al. identified IFITM3 as one of 31 human ISGs that
functioned synergistically with zinc finger antiviral protein (ZAP)
to enhance restriction of SINV infection (50). Schoggins et al.
reported that IFITM3 moderately reduced CHIKV and ONNV
infection in human cells ectopically expressing IFITM3 (49, 71).
Consistent with these observations, a recent paper reported an
inhibitory effect of IFITM3 and IFITM1 against SFV and SINV
when ectopically expressed in human A549 cells (47). These data
support our findings of an antiviral activity of Ifitm3 against mul-
tiple alphaviruses.

The characterization of Ifitm3 as an antiviral ISG against al-
phaviruses adds to the known host defense genes that block alpha-
virus infection. ISG15 protects against SINV in vivo, likely via
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conjugation (ISGylation) to viral proteins (40-42); ZAP restricts
SINV, Ross River virus, SFV, and VEEV by blocking the accumu-
lation of viral genomes in the cytoplasm (72); and BST-2 (teth-
erin) prevents CHIKV egress by retaining budding virus on the
plasma membrane (43). SINV also is strongly inhibited by protein
kinase R (PKR) in the context of replication in dendritic cells
(DCs) (44). Finally, a separate genetic screen revealed several
unique ISGs with possible antiviral activity against SINV, includ-
ing Isg20, Ifitl, Ifit2, Ifit3, and Rsad2 (viperin) (45).

In studies with other viruses, IFITM3 appears to restrict early
steps in the viral life cycle, particularly fusion into the cytoplasm
(24-26). This is supported by data from our FFWO experiments
in the context of CHIKV infection and by recent studies with SFV
(47). However, it remains possible that IFITM3, akin to effects
on HIV, could restrict alphavirus infection in a pH-insensitive
manner by integrating into the viral membrane, which we are
currently exploring using mass spectrometric analysis of alpha-
virus virions derived from cells expressing or lacking Ifitm3. An
additional mechanism that warrants investigation is the possi-
ble role for Ifitm3 in preventing viral budding and/or egress.
IFITM3 can be detected at the plasma membrane, and its ex-
pression and localization are enhanced upon IFN stimulation
(18, 65, 66).

In summary, we have shown that Ifitm3 can restrict several
alphaviruses both in vitro and in vivo. Our data in mice suggest
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that Ifitm3 may function to restrict early replication and dissem-
ination of alphaviruses, thereby preventing pathogenesis. Further
investigation into additional mechanisms of Ifitm3-mediated re-
striction of alphaviruses is warranted as well as effects of gene
polymorphisms, which could contribute to relative disease sus-
ceptibility in humans. Indeed, a common human allelic IFITM3
variant, rs12252-C, encodes a 21-amino-acid deletion of the
N-terminal part of the protein that appears to be associated
with susceptibility to IAV infection (19-21). It remains to be
determined whether this or other polymorphisms in the IFITM3
gene can be linked to more severe or persistent alphavirus infec-
tion.
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