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Plasma Membrane Association by N-
Acylation Governs PKG Function in
Toxoplasma gondii

Kevin M. Brown, Shaojun Long, L. David Sibley
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA

ABSTRACT Cyclic GMP (cGMP)-dependent protein kinase (protein kinase G [PKG]) is
essential for microneme secretion, motility, invasion, and egress in apicomplexan
parasites, However, the separate roles of two isoforms of the kinase that are ex-
pressed by some apicomplexans remain uncertain. Despite having identical regula-
tory and catalytic domains, PKGI is plasma membrane associated whereas PKGII is cy-
tosolic in Toxoplasma gondii. To determine whether these isoforms are functionally
distinct or redundant, we developed an auxin-inducible degron (AID) tagging system
for conditional protein depletion in T. gondii. By combining AID regulation with ge-
nome editing strategies, we determined that PKGI is necessary and fully sufficient for
PKG-dependent cellular processes. Conversely, PKGII is functionally insufficient and
dispensable in the presence of PKGI. The difference in functionality mapped to the
first 15 residues of PKGI, containing a myristoylated Gly residue at position 2 that is
critical for membrane association and PKG function. Collectively, we have identified
a novel requirement for cGMP signaling at the plasma membrane and developed a
new system for examining essential proteins in T. gondii.

IMPORTANCE Toxoplasma gondii is an obligate intracellular apicomplexan parasite
and important clinical and veterinary pathogen that causes toxoplasmosis. Since api-
complexans can only propagate within host cells, efficient invasion is critically im-
portant for their life cycles. Previous studies using chemical genetics demonstrated
that cyclic GMP signaling through protein kinase G (PKG)-controlled invasion by api-
complexan parasites. However, these studies did not resolve functional differences
between two compartmentalized isoforms of the kinase. Here we developed a con-
ditional protein regulation tool to interrogate PKG isoforms in T. gondii. We found
that the cytosolic PKG isoform was largely insufficient and dispensable. In contrast,
the plasma membrane-associated isoform was necessary and fully sufficient for PKG
function. Our studies identify the plasma membrane as a key location for PKG activ-
ity and provide a broadly applicable system for examining essential proteins in
T. gondii.

Apicomplexa is a large phylum of protozoan parasites that includes several agents of
infectious diseases in humans and animals (1). Most apicomplexans replicate

exclusively within host cells but also require motile extracellular forms for active
transmission between host cells (2). Egress, extracellular migration, and invasion require
gliding motility in Toxoplasma gondii, a substrate-based form of motility that is unique
to members of the phylum Apicomplexa (3). To initiate motility, microneme vesicles
release membrane-spanning adhesins onto the parasite’s apical surface, where they can
bind to extracellular substrates (e.g., host cells, matrix) (4). Next, the cytosolic tails of
adhesins engage the actomyosin motor through an adapter called the glideosome-
associated connector (5). Rearward motoring of immobilized adhesins by the motor to
the posterior pole propels the parasite forward across tissues or into cells (2). Motility
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in T. gondii is paramount to successful invasion and egress; therefore, microneme
secretion must be tightly regulated.

Microneme secretion is controlled by two key signaling pathways, calcium (Ca2�)
and cyclic GMP (cGMP), which direct calcium-dependent protein kinases (CDPKs) (6)
and protein kinase G (PKG) (7, 8), respectively, to transduce their respective signals
through substrate phosphorylation. Phosphoproteomic studies have identified sub-
strates for CDPK1 in T. gondii (9) and PKG in Plasmodium spp. (10, 11), yet it is still
unclear which phosphorylation events are required for the control of microneme
secretion. Interestingly, Ca2� and cGMP may cooperate but also regulate specific steps
in microneme secretion. In T. gondii, serum albumin stimulates PKG-dependent mi-
croneme secretion by elevating cGMP but not Ca2� (12). However, compounds that
elevate Ca2� also stimulate microneme secretion (13–15) but only when they receive a
second signal such as serum albumin (12). Moreover, elevated calcium cannot over-
come PKG inhibition (7), suggesting that PKG may control a final step in this process
and act as the master regulator.

Apicomplexan parasites encode a single PKG gene (16) that is refractory to deletion
in T. gondii (17). Selective inhibition of apicomplexan PKG kinase activity is lethal
(16–19), supporting an essential role. Despite having a single gene, several genera of
tissue cyst-forming coccidian parasites, including Toxoplasma, Hammondia, Neospora,
and Eimeria species, express two isoforms of PKG that localize to the plasma membrane
(PKGI) and cytosol (PKGII), respectively (16, 17, 19). In T. gondii, PKGI (residues 1 to 994)
harbors an N-terminal dual-acylation motif that promotes stable association with the
plasma membrane, whereas PKGII (residues 103 to 994), which is initiated from a
second downstream methionine, lacks this motif and remains cytosolic (19). PKG can
only be deleted in T. gondii in the presence of a second copy of the gene, including
those that encode nonacylated mutant proteins (17), although this result might be due
to overexpression. Thus, whether PKGI and PKGII are functionally distinct or redundant
is currently unknown.

T. gondii is equipped with excellent genetic tools, including clustered regularly
interspaced short palindromic repeat (CRISPR)/Cas9 genome editing (20, 21). A recent
genome-wide CRISPR study performed with T. gondii demonstrated that 40% of the
8,158 genes surveyed have a fitness defect in vitro, with perhaps only 10% of these
being essential (PKG included), and identified ~200 hypothetical fitness-conferring
genes conserved only in apicomplexans (22). Since the vast majority of these genes
have yet to be studied and are likely to be refractory to deletion, conditional genetic
technologies are imperative for functional studies. To facilitate the study of essential
genes, we adapted the auxin-inducible degron (AID) system that has been shown to
degrade proteins of interest in other eukaryotes (23). We utilized a mini-AID (mAID)
tagging system for conditional protein depletion that enabled us to resolve functional
differences between PKG isoforms in T. gondii. This study also highlights a broadly
applicable tool for functional analysis of essential proteins in T. gondii.

RESULTS
Generation of an AID system for conditional protein depletion in T. gondii. To

rapidly deplete PKG isoforms in T. gondii, we developed an auxin-based system for
conditional and specific protein depletion (Fig. 1A). We stably expressed a codon-
optimized TIR1-3FLAG construct in a T. gondii RH line that lacks Ku80 (ku80KO) (Fig. 1B).
To validate this system, we introduced a yellow fluorescent protein (YFP)-mAID-3HA
reporter into TIR1-3FLAG parasites to selectively target this protein for proteasomal
degradation (Fig. 1B and C). Addition of auxin promoted rapid depletion of YFP-mAID-
3HA, but not the control protein SAG1, within 15 min of treatment (Fig. 1D, top).
Pretreatment of parasites with a proteasome inhibitor promoted YFP-mAID-3HA stabi-
lization, confirming the role of the proteasome in YFP-mAID-3HA knockdown (Fig. 1D,
middle). Efficient knockdown of YFP-mAID-3HA was independently confirmed and
quantified by immunofluorescence (IF) microscopy (Fig. 1E and F).
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To adapt the degradation system for biologically important targets, we developed
an efficient tagging strategy to incorporate the auxin degron into essential genes.
CDPK1 was selected because it was previously determined to be essential with a
transcriptional knockdown system (6). Using a recently described system for efficient
CRIPSR/Cas9-mediated gene editing (20), we generated a tagged CDPK1-mAID-3HA
gene in TIR1-3FLAG parasites (see Fig. S1A and B in the supplemental material).
CDPK1-mAID-3HA was fully responsive to auxin treatment on the basis of IF microscopy
(see Fig. S1C). Auxin-induced depletion of CDPK1-mAID-3HA, but not the control
protein aldolase, occurred within minutes of treatment, as shown by Western blotting
(see Fig. S1D and E). Degradation of CDPK1-mAID-3HA blocked plaque formation, a
measure of the complete lytic cycle, on host cell monolayers (see Fig. S1F), validating
the mAID system for the study of essential proteins in T. gondii.

Conditional depletion of the PKGI and PKGII isoforms confirms their essential-
ity in T. gondii. To study the function of the PKG isoforms in T. gondii, we utilized the
mAID system to tag the endogenous locus. Addition of this fusion to the C terminus
resulted in the production of both isoforms fused to mAID-3HA (Fig. 2A and B). Previous
work has established that PKGI possesses an N-terminal dual-acylation motif that
targets it to the plasma membrane, whereas PKGII, lacking this motif, remains cytosolic
(19). Consistent with this finding, the combined PKG isoform localizations were evident
at both the plasma membrane and the cytoplasm (Fig. 2C). Additionally, both mAID-

FIG 1 Generation of an AID system in T. gondii. (A) Schematic representation of T. gondii engineered to coexpress the auxin receptor
TIR1 from Oryza sativa and YFP fused to mAID from Arabidopsis thaliana. (B) Coexpression of TIR1-3FLAG (red) and YFP-mAID-3HA
(green) in T. gondii determined by IF microscopy. Aldolase (magenta) and Hoechst dye (blue) highlight the cytosol and nuclei,
respectively. Scale bars, 2 �m. (C) Schematic representation of conditional YFP-mAID-3HA depletion. Ub, ubiquitin; SCF, Skp-1, Cullin,
F-box (TIR1)-containing complex. (D) Western blot assay of lysed YFP-mAID-3HA parasites, probed with antibodies recognizing HA and
SAG1. Parasites were treated with 500 �M IAA or the vehicle (EtOH) for up to 240 min in the presence of 50 �M MG132 or the vehicle
(DMSO). Data are from a single experiment of two or more experiments with the same outcome. (E) Coexpression of YFP-mAID-3HA
(green) and TIR1-3FLAG (red) following treatment with 500 �M IAA or the vehicle (EtOH) for 4 h determined by IF microscopy with
the antibodies indicated. Scale bars, 5 �m. (F) Ratiometric quantification of YFP-mAID-3HA to TIR1-3FLAG IF microscopy per vacuole.
Mean values of individual vacuoles (EtOH, n � 24; IAA, n � 23) from two experiments � the standard deviation, ****, P � 0.0001
(unpaired two-tailed Student t test).
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3HA-tagged PKG isoforms were detectable in parasite lysates by Western blotting and
both were depleted by auxin treatment for 4 h (Fig. 2D). Depletion of PKGI,II-mAID-3HA
completely blocked plaque formation on host monolayers (Fig. 2E and F) but did not
affect parasite replication (Fig. S2), suggesting a role in motility.

FIG 2 Fusion of mAID to PKGI,II in TIR1 parasites allows the simultaneous depletion of PKGI and PKGII isoforms. (A) Strategy for
tagging of PKGI,II with mAID in TIR1-3FLAG parasites and depiction of the two protein isoforms produced from the PKGI,II-mAID-3HA
transcript. (B) DNA electrophoretogram of diagnostic PCRs from genomic DNA showing 3= integration of mAID-3HA into PKGI,II. The
genomic loci acting as templates for PCR1 and PCR2 amplicons are shown in panel A. Lanes: WT (wild type), TIR1-3FLAG parent; Tag,
PKGI,II-mAID-3HA parasites. (C) Coexpression of PKGI-mAID-3HA and PKGII-mAID-3HA (both green) in PKGI,II-mAID-3HA parasites
determined by IF microscopy. GAP45 (red) is a marker for the parasite plasma membrane. Scale bars � 5 �m. (D) Western blot assay
of lysed PKGI,II-mAID-3HA parasites probed with antibodies recognizing HA and aldolase. Parasites were treated with 500 �M IAA
or the vehicle (EtOH) for 4 h prior to lysis. (E, F) Plaque formation by PKGI,II-mAID-3HA parasites treated with 500 �M IAA or the
vehicle (EtOH) for 8 days (E) and mean number of plaques formed per well (mock, n � 6; IAA, n � 6) � the standard deviation (F).
****, P � 0.0001 (unpaired two-tailed Student t test). Panels D to F each show data from a single example from three experiments
with the same outcome.
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Genetic complementation reveals essentiality of PKGI and dispensability of
PKGII. To explore the roles of different isoforms, we inserted the wild-type and
isoform-specific versions of epitope-tagged PKG (Ty or 6Ty) driven by the endogenous
PKG promoter into the UPRT loci of PKGI,II-mAID-3HA parasites (Fig. 3A; Fig. S3A and B)
by an established CRISPR knock-in approach (20). Included in this set of lines was a
wild-type complement (PKGI,II), a complement expressing only PKGI [PKGI(M103A)],
and two lines that only express PKGII [PKGII(M1A), PKGII(Δ1-102)], as well as a mock-
complement line (vector only) (Fig. 3A). Correct localization was confirmed by IF
microscopy (Fig. 3B), where the wild-type strain showed a mixed pattern of peripheral
membrane staining, as well as a residual body with diffuse cytoplasmic staining (Fig. 3B,
bottom, top row). The peripheral membrane staining was preserved in the PKGI

[PKGI(M103A)]-expressing line (Fig. 3B, bottom, second row), while both lines that express
only PKGII showed diffuse cytoplasmic staining (Fig. 3B, bottom, third and fourth rows).
The two PKG isoforms were clearly distinguished by Western blotting on the basis of
differences in molecular weight (Fig. S3C). To examine the roles of the two isoforms in
PKG-dependent processes, we compared PKGI,II-mAID-3HA parental and comple-
mented parasites for microneme secretion, invasion, and egress by using established
assays (Fig. 4A). The efficiency of auxin-induced degradation was crucial for allowing
the depletion of wild-type PKGI,II-AID-3HA during 4 h of treatment with auxin, thereby
revealing the phenotypes of the various complementing forms in these short-term
assays (Fig. 4A).

Auxin-induced PKG depletion specifically blocked microneme secretion induced by
ethanol (EtOH) and serum albumin, while the release of dense granules (GRA7) and

FIG 3 Genetic complementation of strain PKGI,II-mAID-3HA. (A) Schematic of the CRISPR/Cas9 strategy used to insert a second copy of
PKG or mutant isoforms of pkg into the UPRT locus of PKGI,II-mAID-3HA parasites. dhfr-ts*, Pyrr allele. (B) Coexpression of PKGI,II-mAID-3HA
(both green) and PKGI,II-6Ty (red) constructs assessed by IF microscopy. Scale bars � 5 �m.
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surface proteins (SAG1) was unaffected (Fig. 4B, lanes 1 to 2). Importantly, both
wild-type PKGI,II and PKGI-specific constructs fully rescued microneme secretion follow-
ing PKGI,II-mAID-3HA depletion (Fig. 4B, lanes 3 to 6). Interestingly, PKGII-specific
constructs only partially supported microneme secretion following PKGI,II-mAID-3HA

FIG 4 Functional analysis of PKG isoforms. (A) Flow chart showing the experimental design used to test selected PKG-dependent cellular
processes. (B) Western blot assay of parasite ESA fractions probed with antibodies recognizing MIC2 (microneme secretion), GRA7 (dense
granule secretion), and SAG1 (surface protein shedding). Parasites were treated with 500 �M IAA or the vehicle (EtOH) for 4 h to deplete
PKGI,II-mAID-3HA and then stimulated with BSA-EtOH or buffer alone prior to ESA collection. (C) Invasion of HFF monolayers following
treatment with 500 �M IAA or the vehicle (EtOH) for 4 h to deplete PKGI,II-mAID-3HA. Invasion efficiency was calculated as the percentage
of the total number of parasites that invaded each host cell in the IAA and mock treatments. Shown are mean values from three
experiments each consisting of five replicates per sample and 16 image fields per replicate � the standard error of the mean. Adjusted
P values: *, �0.05; **, �0.01; ***, �0.001; ****, �0.0001; ns, not significant (one-way analysis of variance with Tukey’s multiple-comparison
test). (D) Egress from HFF monolayers as determined by IF microscopy. Parasites were grown in HFFs for 20 h and treated with 500 �M
IAA or the vehicle (EtOH) for 4 h to deplete PKGI,II-mAID-3HA and then treated with 4 �M calcium ionophore A23187 for 5 min or left
untreated. The micrographs at the top illustrate the difference in intact vacuoles. SAG1 (green) parasites remain tightly clustered and are
surrounded by the vacuolar membrane, detected with GRA7 (red), versus those that have egressed and where the parasites are scattered
outside the vacuole (marked egress). Scale bars � 10 �m. Mean numbers (from two experiments) of intact vacuoles per field as a
percentage of the mock treatment for each strain � the standard error of the mean are shown. In each experiment, 10 fields per treatment
per strain were analyzed. Adjusted P value: ****, �0.0001; ns, not significant (two-way analysis of variance with Tukey’s multiple-
comparison test). WT, wild type. (E) Plaque formation by parasites treated with 500 �M IAA or the vehicle (EtOH) for 8 days. Shown is the
mean number of plaques formed per well (EtOH, n � 6; IAA, n � 6) � the standard deviation from a single experiment of three
experiments with the same outcome. ****, P � 0.0001 (multiple unpaired two-tailed Student t test).
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depletion (Fig. 4B, lanes 7 to 10), suggesting that microneme-dependent processes
would also be affected. Similarly, depletion of PKGI,II-mAID-3HA caused an ~75%
reduction in invasion efficiency (Fig. 4C). Complementation with wild-type PKGI,II

and PKGI-specific constructs fully rescued invasion, whereas only partial rescue was
obtained with PKGII-specific constructs (Fig. 4C). Likewise, wild-type PKGI,II and
PKGI-specific constructs, but not PKGII-specific constructs, fully supported calcium
ionophore-induced egress from host cell monolayers following PKG-mAID-3HA deple-
tion (Fig. 4D). Given the partial sufficiency of PKGII to function in microneme secretion
and related processes, we asked whether PKGII alone could support parasite growth
and fitness over the course of several days. Although PKGII-complemented lines could
partially support microneme secretion, invasion, and egress, they were insufficient at
supporting plaque formation (Fig. 4E). Conversely, parasites complemented with wild-
type PKGI,II or PKGI-specific constructs were fully capable of forming plaques on human
foreskin fibroblast (HFF) monolayers upon PKGI,II-mAID-3HA depletion (Fig. 4E).

To confirm that PKGII is dispensable, we developed a markerless genome editing
strategy to introduce an M103A mutation into the endogenous PKG-mAID-3HA gene,
thereby preventing PKGII translation (Fig. S4A). We cotransfected parasites with a
Cas9-green fluorescent protein (GFP)/guide RNA plasmid that cuts 6 bp upstream from
the M103 codon and a Cas9-shielded homology donor amplicon corresponding to exon
3 (252 bp) containing the M103A mutation. Following transfection, parasites transiently
expressing Cas9-GFP were sorted with a fluorescence-activated cell sorter (FACS)
(Fig. S4B) and expanded on host cell monolayers (Fig. S4C). We hypothesized that
parasites that expressed Cas9 would only survive a double-stranded break in PKG if it
were repaired with the donor M103A template. Single clones were isolated from the
FACS-sorted population by limiting dilution, and a 1-kb fragment surrounding the PKG
M103 allele was amplified by PCR and sequenced by the Sanger method. The M103A
and shielding mutations were evident in a transfected clone but not the parental line,
confirming successful markerless editing (Fig. S4D). We confirmed loss of PKGII at the
protein level by Western blotting, demonstrating that this line only expresses PKGI

(Fig. 5A). To rule out compensatory mutations during genome editing, we depleted
PKGI (Fig. 5B) and found that parasites were incapable of growth (Fig. 5C and D). Taken
together, these data reveal that PKGII is dispensable, while PKGI is essential, for growth
on host cell monolayers.

Plasma membrane association is critical for PKG function in T. gondii. The
observation that PKGII was unable to fully complement microneme secretion and

FIG 5 PKGII is dispensable in the presence of PKGI. (A) Western blot assay of parasite lysates probed with
antibodies recognizing HA (green) and aldolase (red). (B) Coexpression of PKGI,II-mAID-3HA (both green)
and GAP45 (red) in parasites assessed by IF microscopy. Scale bars � 5 �m. (C, D) Plaque formation by
parasites treated with 500 �M IAA or the vehicle (EtOH) for 8 days (C) and mean number of plaques
formed per well (mock, n � 6; IAA, n � 6) � the standard deviation (D). ****, P � 0.0001 (unpaired
two-tailed Student t test). Panels B to D show data from single experiments of sets of three
experiments with the same outcome. The micrograph rows in panel B correspond to the adjacent
schematic in panel A.
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sustain parasite growth was intriguing, given that the isoform-specific complementa-
tion constructs showed similar levels of protein expression (Fig. S3C). Other than
expression, the only known difference between the PKGI and PKGII isoforms is the
presence of an N-terminal extension that contains a dual myristoylation and palmitoyl-
ation motif that is required for the plasma membrane association of PKGI (19). We
hypothesized that in T. gondii, PKG activity at the plasma membrane is critically
important for PKG function and parasite fitness. To test this hypothesis, we first needed
to define the PKGI motif that could direct a soluble protein to the plasma membrane.
We generated an mNeon-6Ty fusion with the first 15 amino acids (aa) of PKGI that was
able to direct this fluorescent reporter to the plasma membrane (Fig. S5A to C). Plasma
membrane association is likely to require glycine myristoylation at position 2 of PKGI

since a G2A mutant version of this peptide fused to mNeon-6Ty remained cytosolic
(Fig. S5A to C). Likewise, we found that the first 15 aa of PKGI were sufficient to redirect
PKGII from the cytosol to the plasma membrane (Fig. 6A and B, top and middle). To rule
out any unforeseen PKGI-specific functions that may be present in the 15-aa peptide,
we also directed PKGII to the plasma membrane with a similar N-terminal acylated
peptide from CDPK3 (24) (Fig. 6A and B, bottom). The expression levels and localization
of the ectopic PKGII constructs were independent of the endogenous copy of PKGI,II

(Fig. 6C). Using these tools, we asked whether PKGII directed to the plasma membrane
by N-terminal PKGI aa 1 to 15 or CDPK3 aa 1 to 15 fusions was sufficient to support
parasite growth and fitness following PKGI,II-mAID-3HA depletion in a plaque formation
assay. We observed that parasites complemented with a cytosolic PKGII construct could
not form plaques on host cell monolayers following auxin-induced PKGI,II-mAID-3HA
depletion (Fig. 6D and E, left column). Surprisingly, parasites complemented with
plasma membrane-associated PKGII constructs were fully capable of forming plaques
when PKGI,II-mAID-3HA was degraded by growth in auxin (Fig. 6D and E, middle and
right columns). Therefore, we conclude that in T. gondii, PKG localization to the plasma
membrane, but not the cytosol, is essential for proper PKG function and parasite
viability.

DISCUSSION

Chemical genetic studies have demonstrated that PKG activity is required for the
lytic life cycles of T. gondii and other apicomplexan parasites (16–19, 25). However,
technical limitations of these methods have precluded the assignment of specific
functions to membrane and soluble forms of PKG in parasites that express two
isoforms. To define the functional contributions of each PKG isoform, we developed an
AID tagging system that allowed rapid and robust conditional protein depletion in
T. gondii. Simultaneous knockdown of both PKG isoforms was lethal, confirming their
essentiality. Using a highly efficient CRISPR/Cas9 system for genome editing, combined
with the AID degradation system, we found that plasma membrane-associated PKGI

was necessary and sufficient, whereas cytosolic PKGII was largely insufficient and
dispensable. Importantly, we were able to impart sufficiency to cytosolic PKGII by
artificially directing it to the plasma membrane with N-terminal PKGI or CDPK3 peptide
fusions. The combination of CRISPR/Cas9-mediated editing with mAID conditional
protein regulation provides a powerful system for interrogation of the roles of essential
proteins, including closely related isoforms of PKG.

Much of what is known about PKG function in apicomplexans was inferred from the
effects of the PKG inhibitors, including the trisubstituted pyrrole inhibitor (compound
1) (16) and the imidazopyridine inhibitor (compound 2) (26). PKG was validated as a
target by using gatekeeper mutants that were resistant to compound 1 and 2 inhibition
(27). However, both compounds 1 and 2 have activity on other kinases, including
CDPK1, which controls functions similar to those of PKG (26). Additional PKG-
independent effects of compound 1 include induction of tissue cyst development in
T. gondii (28, 29). Furthermore, gatekeeper sensitization alone may lead to artificial
results due to functional compensation, as was recently described for a gatekeeper
mutant form of CDPK1 in P. falciparum (30). Thus, although PKG appears to be an
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essential gene in T. gondii, systems that allow careful dissection of the roles of two
different isoforms have been lacking.

Conditional gene regulation is a powerful approach for understanding gene product
function, and several such systems have been implemented in T. gondii (reviewed in
reference 31). Transcriptional systems are relatively slow since they require natural
turnover of existing mRNA and/or protein. Gradual depletion of proteins can lead to
artificial phenotypes or mask genuine phenotypes, as has been demonstrated for the
yeast helicase gene MCM4 (23, 32). In contrast, posttranslational systems allow the rapid

FIG 6 Plasma membrane localization functionally distinguishes PKGI from PKGII. (A) Schematic of the CRISPR/Cas9 strategy
used to insert a second copy of PKG or mutant isoforms of pkg into the UPRT locus of PKGI,II-mAID-3HA parasites. dhfr-ts*, Pyrr

allele. (B) Coexpression of PKGI,II-mAID-3HA (both green) and PKG-6Ty complementation constructs (red) assessed by IF
microscopy. Scale bars � 5 �m. The micrograph rows correspond to the adjacent schematic in panel A. (C) Coexpression of
PKGI,II-mAID-3HA (both green) and PKG-6Ty complementation constructs (red) following 4 h of treatment with 500 �M IAA or
the vehicle (EtOH) assessed by IF microscopy. Scale bars � 5 �m. (D, E) Plaque formation by parasites treated with 500 �M
IAA or the vehicle (EtOH) for 8 days (D) and mean number of plaques formed per well (mock, n � 6; IAA, n � 6) � the standard
deviation from two experiments (E). ****, P � 0.0001; ns, not significant (unpaired two-tailed Student t test). Panels B and C
show data from one of at least two experiments with the same outcome.

Rapid Conditional Protein Depletion in T. gondii ®

May/June 2017 Volume 8 Issue 3 e00375-17 mbio.asm.org 9

 
m

bio.asm
.org

 on M
ay 10, 2017 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


depletion of gene products (proteins) of interest. For instance, ddFKBP is an intrinsically
unstable regulatable protein degron that is stabilized by the compound shield-1 (33).
When used previously in T. gondii, addition of shield-1 fully stabilized a ddFKBP-YFP
reporter within 90 min, whereas removal of shield-1 depleted ddFKBP-YFP to the
background level after 320 min (34), representing a substantial improvement in speed
over other systems. Unfortunately, the ddFKBP knockdown system requires permanent
treatment of shield-1, an expensive compound known to have some toxicity for
apicomplexan parasites (35), prompting us to develop an alternative approach.

Unlike the ddFKBP system, the AID system uses an inexpensive and innocuous plant
hormone (auxin/indole-3-acetic acid [IAA]) that is applied only when knockdown of an
AID fusion is desired (23). To regulate proteins of interest with the AID system, two
novel genetic components are needed. First, the cell must express an auxin receptor
called transport inhibitor response 1 (TIR1) that combines to form a functional SCF
ubiquitin ligase complex (SCFTIR1) in the presence of auxin (23). Here we expressed a
codon-optimized version of TIR1 in T. gondii, as earlier attempts with the OsTIR1 gene
from rice failed. Second, proteins targeted for depletion must be linked to an AID,
which may be as small as 68 aa (36). Addition of auxin promotes polyubiquitination of
AID-tagged proteins by the SCFTIR1 complex, targeting them for proteasomal degra-
dation. The AID system has previously been used in Plasmodium spp. to examine the
roles of essential proteins (37, 38), prompting us to import the system into T. gondii. In
our experience, the AID system operates an order of magnitude faster than the ddFKBP
system in T. gondii (30 min for AID, as shown here, versus 320 min [34]). Furthermore,
truncated versions of AID function efficiently with only 43 to 68 aa (36, 39), limiting
potential interference caused by bulky fusions. On the basis of these properties, the
mAID system provides an efficient ligand-off protein expression tool in T. gondii that
features unmatched specific protein knockdown speeds with an inexpensive, nontoxic
ligand (auxin/IAA).

We applied the mAID system to PKG to confirm its essentiality and resolve functional
differences between PKG isoforms in T. gondii. We found that plasma membrane-
associated PKGI was necessary and sufficient for wild-type level function, whereas
cytosolic PKGII was largely insufficient and dispensable. PKGII mutants that were
artificially targeted to the plasma membrane were also sufficient, revealing a novel
plasma membrane association requirement for PKG function in this parasite. These
results were unexpected for two reasons. First, most of the PKGs of apicomplexan
parasites with sequenced genomes and gene annotations lack the dual-acylation motif
required for plasma membrane association and are likely cytosolic (40). However, such
cytosolic isoforms of PKG should still have access to the plasma membrane by diffusion
and may transiently fulfill a functional requirement for PKG at this interface. In fact,
PKG-dependent phosphoproteomic studies performed with Plasmodium spp. identified
several potential substrates at the plasma membrane (10, 11). Second, a previous study
of T. gondii showed that endogenous PKG could be deleted in parasites expressing
Eimeria tenella FLAG-PKG, where the FLAG epitope was thought to disrupt the dual-
acylation sequence and promote cytosolic localization, implying that plasma mem-
brane association is not required for PKG function (17). However, since E. tenella
FLAG-PKG was expressed by the T. gondii tubulin promoter (17), it is possible that its
overexpression was responsible for compensating for loss of PKGI at the plasma
membrane. In our studies with the endogenous promoter, we found that PKGII alleles
were not sufficient to rescue function, unless directed to the plasma membrane by an
N-terminal fusion carrying an acylation signal.

In addition to T. gondii, several other tissue cyst-forming coccidian parasites, includ-
ing Hammondia, Neospora, and Eimeria species, also carry an additional isoform of PKG
to function at the plasma membrane. The reason why this location is essential in
T. gondii while a soluble form is sufficient in Plasmodium and other genera is uncertain.
However, it is possible that by directing the enzyme to the membrane, the overall
expression level can be reduced, making substrate engagement more specific and
preventing nonproductive phosphorylation of undesirable targets. Consistent with this
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model, evidence that PKG can compensate for other plasma membrane-directed
kinases such as CDPK3 during egress by T. gondii (41) suggests a necessity for tight
control or spatial restriction of PKG activity. It is also unclear why species that retain
both plasma membrane and cytosolic forms retain the latter form, as our functional
studies performed here suggest that the cytosolic form is dispensable. Our findings
may reflect a vestigial function for PKGII or alternatively suggest a role in vivo that has
not been tested in the present study. Collectively, our studies demonstrate the power
of combining CRISPR/Cas9 genome engineering with conditional protein regulation to
determine gene function and essentiality. Our studies identify the plasma membrane as
the central platform for cGMP effector signaling in T. gondii, which should greatly
facilitate the identification of currently unknown substrates of PKG that are required for
microneme secretion.

MATERIALS AND METHODS
Parasite strains and growth conditions. Proposed genetic nomenclature guidelines for T. gondii

genes, plasmids, and transgenic lines are shown in Text S2. Parental T. gondii strain ku80KO (genotype
RHΔhxgprtΔku80 [42]) and transgenic lines and associated plasmids are listed in Table S3. Parasites were
cultivated in HFF monolayers in D3 medium (Dulbecco’s modified Eagle’s medium [Invitrogen] supple-
mented with 3% HyClone fetal bovine serum [GE Healthcare Life Sciences], 10 �g/ml gentamicin, 10 mM
glutamine [Thermo Fisher Scientific]). All strains and host cell lines were determined to be mycoplasma
negative with the e-Myco plus kit (Intron Biotechnology).

Chemicals and antibodies. IAA, MG-132, bovine serum albumin (BSA), A23187, and all other
chemicals were purchased from Sigma-Aldrich unless indicated otherwise. Rat anti-FLAG (BioLegend),
mouse anti-hemagglutinin (HA) (BioLegend), and rabbit anti-HA (Thermo Fisher Scientific) antibodies
were purchased commercially. Mouse anti-Ty (43), rabbit anti-aldolase (44), mouse anti-MIC2 (45), and
rabbit anti-GRA7 (46) antibodies were raised in house. Rabbit anti-GAP45 antibody (47) was provided by
Dominique Soldati-Favre (University of Geneva), and rabbit anti-SAG1 antibody (48) was provided by
John Boothroyd (Stanford University). Goat secondary antibodies conjugated to infrared (IR) and Alexa
Fluor dyes were purchased from LiCor and Thermo Fisher Scientific, respectively.

Plasmid construction. The plasmids and primers used in this study are listed in Tables S1 and S2,
respectively. Detailed plasmid construction information is presented in Text S1. Synthetic DNA fragments
(gBlocks) and primers were purchased from Integrated DNA Technologies, Inc. Reagents from New
England Biolabs Inc. were used for PCR (Q5 polymerase), restriction digestions (various restriction
enzymes), all ligations (T4 DNA ligase, Gibson assembly cloning kit), and mutagenesis (Q5 site-directed
mutagenesis kit) in accordance with the manufacturer’s instructions. Plasmid sequences were confirmed
by Sanger sequencing (Genewiz Inc.).

Generation of transgenic parasites. Freshly harvested parasites were transfected with purified
plasmid or amplicon DNA by electroporation as previously described (49). Transgenic parasites were
selected following DNA transfection by FACS sorting with a FACSAria II (BD Biosciences) on the basis of
Cas9-GFP fluorescence or with an appropriate antibiotic. When needed, the antibiotic (concentration)
used for drug selection was chloramphenicol (20 �M), mycophenolic acid (25 �g/ml) with xanthine
(50 �g/ml), pyrimethamine (3 �M), or 5-fluorodeoxyuracil (10 �M). Stable clones were isolated by
limiting dilution.

Auxin-induced depletion of mAID-tagged proteins. A stock of 500 mM IAA dissolved in 100%
EtOH at 1:1,000 was used to deplete mAID-tagged proteins at a final concentration of 500 �M. Mock
treatment consisted of an equivalent volume of 100% EtOH at a final concentration of 0.0789%, wt/vol.

IF microscopy. Parasite-infected HFF monolayers grown on glass coverslips, 96-well plates, or
coverslip dishes were fixed with 4% formaldehyde, permeabilized with 0.1% Triton X-100, blocked with
5% fetal bovine serum--5% normal goat serum, labeled with primary antibodies, and then washed with
phosphate-buffered saline (PBS). Antibody-labeled proteins were fluorescently labeled with Alexa Fluor-
conjugated secondary goat antibodies. Nuclei were stained with Hoechst 33342 dye. Standard wide-field
images were captured and analyzed with a 63� or 100� oil objective on an Axioskop 2 MOT Plus
wide-field fluorescence microscope (Carl Zeiss, Inc.) running AxioVision LE64 software (Carl Zeiss, Inc.).
High-throughput imaging and analysis were performed with a Cytation 3 (BioTek) multimode plate
imager with a 20� objective running Gen5 software (BioTek). Spinning-disc confocal images of live or
immunolabeled cells were captured and analyzed on an AxioObserver Z1 (Carl Zeiss, Inc.) with a 100�
oil objective running Zen 2 software (Carl Zeiss, Inc.).

Western blotting. Protein samples were diluted 4:1 in 5� Laemmli buffer containing 100 mM
dithiothreitol, boiled for 5 min, separated on 4 to 15% Mini-PROTEAN TGX polyacrylamide gels (Bio-Rad
Laboratories, Inc.) by SDS-PAGE, and transferred to nitrocellulose membranes. The membranes were
blocked with 5% (wt/vol) fat-free milk in PBS and then probed with primary antibodies diluted in
blocking buffer containing 0.1% Tween 20. Membranes were washed with PBS--0.1% Tween 20, and
antibody-labeled antigens were visualized with IR dye-conjugated secondary antibodies on a LiCor
Odyssey imaging system (LI-COR Biosciences).

Plaque formation. Freshly harvested parasites were counted, and 200 or 1,000 parasites were added
to six-well plates of confluent HFF monolayers in D3 medium. Wells were treated with 500 �M IAA to
deplete mAID fusion proteins or the vehicle (EtOH), and plaques were allowed to form for 6 to 8 days,
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depending on the experiment. Plaque formation was assessed by counting the zones of clearance on
EtOH-fixed, crystal violet-stained HFF monolayers.

Parasite growth. Freshly harvested parasites were allowed to invade HFF monolayers grown on glass
coverslips for 1 h to allow invasion, and then cultures were treated with 500 �M IAA to deplete mAID-3HA
fusion proteins or the vehicle (EtOH) and grown for an additional 23 h. Infected monolayers were fixed at 24 h,
and the number of parasites per vacuole was determined by IF microscopy. In each experiment, 20 image
fields containing approximately 10 to 20 vacuoles were analyzed per treatment condition.

Microneme secretion. Parasites grown in HFF monolayers were pretreated with 500 �M IAA to
deplete mAID-3HA fusion proteins or the vehicle (EtOH) for 4 h. Parasites were then syringe released,
3 �m filtered, washed, and resuspended in extracellular (EC) buffer (5 mM KCl, 142 mM NaCl, 1 mM
MgCl2, 1.8 mM CaCl2, 5.6 mM D-glucose, 25 mM HEPES, pH 7.4), and 2 � 107 parasites were stimulated
with 1% (wt/vol) BSA--1% (vol/vol) EtOH (final concentrations) in EC buffer or in EC buffer alone for
10 min at 37°C in the presence or absence of 500 �M IAA. Following stimulation, parasites were chilled
on ice and pelleted at 400 � g for 10 min. Excreted/secreted antigen (ESA) fractions were collected and
centrifuged once more at 800 � g for 10 min. The twice cleared cell-free ESA fractions were subjected
to Western blotting to assess microneme secretion. In each experiment, one replicate per treatment per
strain was analyzed.

Parasite invasion. Parasites grown in HFF monolayers were pretreated with 500 �M IAA to deplete
mAID-3HA fusion proteins or the vehicle (EtOH) for 4 h. Parasites were then harvested, resuspended in
D3, and used to infect HFF monolayers grown in optically clear 96-well plates (Greiner) for 20 min at 37°C
in the presence of 500 �M IAA or the vehicle (EtOH). Invasion was stopped by formaldehyde fixation,
extracellular parasites were exclusively labeled with mouse anti-SAG1--Alexa Fluor 594 conjugate, and
unbound antibody was removed by washing with PBS. The monolayers were then permeabilized with
0.1% Triton X-100, and all parasites were labeled with mouse anti-SAG1--Alexa Fluor 488 conjugate. Host
nuclei were stained with Hoechst 33342 dye. A Cytation 3 multimode plate imager running Gen5
software (BioTek Instruments) was used to image parasites and quantitate the number that invaded each
host cell. In each experiment, five replicates per sample and 16 image fields per replicate were analyzed.

Parasite egress. Freshly harvested parasites were resuspended in D3 and counted, and 5 � 104

parasites were allowed to invade HFF monolayers grown on glass coverslips for 20 h. Parasites were then
pretreated with 500 �M IAA for 4 h to deplete mAID-3HA fusion proteins or the vehicle (EtOH). To stimulate
egress, parasites were treated with 4 �M (final concentration) calcium ionophore A23187 or the vehicle for
5 min at 37°C. Egress was stopped by formaldehyde fixation and evaluated by IF microscopy following
permeabilization, blocking, and immunolabeling with antibodies against the parasite (SAG1) and parasito-
phorous vacuole (GRA7). In each experiment, 10 fields per treatment per strain were analyzed.
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