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Decreased body mass index in 
the preclinical stage of autosomal 
dominant Alzheimer’s disease
Stephan Müller1, Oliver Preische1,2, Hamid R. Sohrabi   3,4, Susanne Gräber2,5, Mathias 
Jucker2,6, Janko Dietzsch5, John M. Ringman7, Ralph N. Martins3,4, Eric McDade8, Peter R. 
Schofield   9,10, Bernardino Ghetti   11, Martin Rossor12, Neill R. Graff-Radford13, Johannes 
Levin14, Douglas Galasko15, Kimberly A. Quaid16, Stephen Salloway17, Chengjie Xiong18, 
Tammie Benzinger19, Virginia Buckles19, Colin L. Masters20, Reisa Sperling21, Randall J. 
Bateman19, John C. Morris19 & Christoph Laske2,5

The relationship between body-mass index (BMI) and Alzheimer´s disease (AD) has been extensively 
investigated. However, BMI alterations in preclinical individuals with autosomal dominant AD (ADAD) 
have not yet been investigated. We analyzed cross-sectional data from 230 asymptomatic members 
of families with ADAD participating in the Dominantly Inherited Alzheimer Network (DIAN) study 
including 120 preclinical mutation carriers (MCs) and 110 asymptomatic non-carriers (NCs). Differences 
in BMI and their relation with cerebral amyloid load and episodic memory as a function of estimated 
years to symptom onset (EYO) were analyzed. Preclinical MCs showed significantly lower BMIs 
compared to NCs, starting 11.2 years before expected symptom onset. However, the BMI curves begun 
to diverge already at 17.8 years before expected symptom onset. Lower BMI in preclinical MCs was 
significantly associated with less years before estimated symptom onset, higher global Aβ brain burden, 
and with lower delayed total recall scores in the logical memory test. The study provides cross-sectional 
evidence that weight loss starts one to two decades before expected symptom onset of ADAD. Our 
findings point toward a link between the pathophysiology of ADAD and disturbance of weight control 
mechanisms. Longitudinal follow-up studies are warranted to investigate BMI changes over time.
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The relationship between weight or body mass index (BMI) and late-onset Alzheimer’s disease (AD) has been 
extensively investigated. According to previous studies, the association between BMI and risk for future develop-
ment of AD seems to depend on the time point of BMI assessment. While higher BMI in midlife has been shown 
to be a risk factor for future development of AD, higher BMI in late-life is associated with a reduced AD risk1–3. In 
contrast, low BMI and accelerated weight loss in later life have been associated with increased risk of AD4–8. Up to 
now, it is still unclear at what time point BMI decreases during the preclinical stage of AD.

To address these research questions, we examined cross-sectional data of asymptomatic autosomal-dominant 
AD (ADAD) family members participating in the Dominantly Inherited Alzheimer Network (DIAN)9. DIAN is a 
multi-center, international project studying a large cohort of individuals, aged 18 years and over, who are carriers 
of an AD-causing mutation (MCs) and their non-carrier (NCs) family members (http://www.dian-info.org). All 
participants have undertaken regular assessments at baseline and follow-up sessions including blood and cere-
brospinal fluid (CSF) collection as well as clinical, neuropsychological and neuroimaging examinations. DIAN 
procedures, overall approach and structures have been previously described in more details9, 10.

MCs of ADAD develop the disease at a younger age due to mutations in amyloid precursor protein (APP) or 
presenilin genes (PSEN1, PSEN2) and usually in the absence of vascular and metabolic risk factors11. Thus, the 
study of MCs compared to NCs allows detecting preclinical BMI differences caused by AD-related neurodegen-
erative processes and not confounded by additional age-related factors. Furthermore, study of ADAD allows 
examining BMI across the whole spectrum of the disease beginning more than 20 years prior to the estimated 
symptom onset. In the present study we were interested (1) to examine the relationship between BMI and esti-
mated years to expected symptom onset in preclinical ADAD and (2) whether BMI was associated with cognitive 
and imaging data in preclinical ADAD.

Materials and Methods
Participants.  In this study, cross-sectional baseline data of 230 participants from the DIAN study were ana-
lyzed including 110 asymptomatic NCs (first-degree relatives of MCs) and 120 preclinical MCs consisting of 88 
PSEN1 carriers, 14 PSEN2 carriers, and 18 APP carriers.

Further demographic information is provided in Table 1. Experimental protocols described in the present study 
have been approved by the Ethik-Kommission an der Medizinischen Fakultät der Eberhard-Karls-Universität 
und am Universitätsklinikum Tübingen. All other aspects of the study have been approved by the institutional 
review boards (IRB) for each of the participating sites in the DIAN. All methods were performed in accordance 
with the relevant guidelines and regulations. All participants provided written, informed consent.

Clinical assessments.  Participants underwent clinical assessment of cognitive status using the Clinical 
Dementia Rating (CDR) global score scale. Only participants with no relevant clinical symptoms of cognitive 
impairment were included (i.e. CDR = 0)12.

Body mass index (BMI, [kg/m2]) for each participant at baseline visit was calculated from the height and 
weight and categorized as underweight (<18.5 kg/m2), normal (≥18.5 to <25.0 kg/m2), pre-obese (≥25.0 to 
<30.0 kg/m2), or obese (≥30.0 kg/m2) according to the World Health Organization (WHO) criteria13.

Presence or absence of vascular comorbidities (i.e. stroke, diabetes, hypertension, and hypercholesterolemia) 
was assessed at baseline by clinical interview. Estimated years from expected symptom onset (EYO) were cal-
culated as the age of the participant at baseline assessment minus the age of their parent at symptom onset as 
previously described11. For example, if the participant’s age was 37 years, and the parent’s age at onset was 45 
years, then the estimated years from expected symptom onset would be −8. As all participants of the DIAN study 
are members of affected ADAD families, the construct of EYO can be applied to both MCs and NCs, resulting in 
age-matched cases and controls. The EYO concept allows the use of cross-sectional data to gain insight into the 
disease trajectory over time and has been validated in the DIAN study as providing a highly accurate estimate of 
AD biomarkers staging and symptom onset11, 14.

All demographic data (age, gender, education, EYO), clinical assessments (CDR, Geriatric Depression Scale 
[GDS]), cognitive measurements (Mini-Mental State Examination [MMSE], logical memory subtest of the 
Wechsler Memory Scale-III), and global cerebral Aβ burden as measured by 11C-Pittsburgh Compound-B (PiB) 
PET were performed as recently described11.

Data analysis.  Between group differences in age, education, global cognition (MMSE), logical memory 
scores (immediate and delayed total word recall), BMI, EYO and global PiB-uptake between MCs und NCs were 
assessed using one-way analyses of variance controlling for participant age, education, gender, and participant 
family (ANCOVA). Continuous variables were examined to assess normality. Levene’s test was used to assess 
homogeneity of variance. The level of statistical significance was set to P < 0.05, two-tailed. In order to avoid alpha 
error accumulation, Bonferroni-correction was conducted (i.e. comparisons for this analysis were performed at 
the P < 0.006 level of significance). The Pearson chi-square test was used to detect group differences in gender and 
BMI categories (i.e. <18.5 kg/m2, ≥18.5 to <25.0 kg/m2, ≥25.0 to <30.0 kg/m2, ≥30.0 kg/m2) distribution and the 
nonparametric Mann-Whitney U test to detect group differences in GDS scores. Fisher’s exact test was used to 
detect incidence differences in vascular comorbidities (stroke, diabetes, hypertension, and hypercholesterolemia).

Relationships within NCs or MCs between BMI and AD-related brain biomarkers (i.e. global cerebral Aβ 
burden), EYO and psychometric parameters (i.e. MMSE and delayed total recall scores of the Wechsler Memory 
Scale-III) were examined using multiple linear regressions controlling for participant age, education and sex.

Relationships within NCs or MCs between BMI and AD-related brain biomarkers (i.e. global cerebral Aβ 
burden), EYO and psychometric parameters (i.e. MMSE and delayed total recall scores of the Wechsler Memory 
Scale-III) were examined using multiple linear regressions controlling for participant age, education and sex and 
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with family cluster as a random effect. The point at which the association between BMI and EYO differs signifi-
cantly between MCs and NCs corresponds to the area where the estimated 95% confidence intervals (CI) for the 
regression lines do not overlap. The intersection points of the lower and upper confidence interval borders were 
calculated by a numerical approximation. In addition, we used this method to detect the point, at which the two 
curves begin to diverge. Statistical analyses were conducted with self-written functions in R15 and the use of its 
packages particular for the visualization ggplot216.

It should be noted that use of scatter plots is not permitted with DIAN data as the data points can be very 
specific to an individual and may allow to identify study participants’ mutation status.

Results
Demographics and clinical parameters in preclinical (CDR = 0) MCs and NCs of the DIAN 
study.  MCs and NCs were comparable regarding age (P = 0.238), gender (P = 0.789), and educational level 
(P = 0.735), showing no significant differences. Also, GDS scores were not significantly different between groups 
(P = 0.248). Although depressive symptoms were reported by both MC and NC individuals, it is not until a GDS 
score of greater or equal 6 indicates clinical relevant mild depression. There were significantly (P = 0.009) more 
obese NCs (i.e. BMI ≥ 30) and more NCs with hypertension compared to MCs (Table 1).

Mean BMI and number of preclinical (CDR = 0) MCs and NCs divided in 5-year time segments from −25 to 
0 EYO are displayed in Table 2.

Cognitive and imaging parameters of preclinical (CDR = 0) participants of the DIAN 
study.  MCs with CDR = 0 showed significantly higher global cerebral Aβ burden (P < 0.0001) and reduced 
delayed total recall (P = 0.003) in the logical memory test as compared to NCs. However, memory scores were 
within normal ranges in both groups. Immediate total recall scores in the logical memory test and MMSE scores 
did not differ between preclinical (CDR = 0) MCs and NCs (Table 1).

Association between BMI, cognition, and imaging parameters in preclinical (CDR = 0) MCs 
and NCs.  In MCs, we found a significant correlation (R = 0.349; P = 0.001) of BMI with EYO (i.e. the lower 
BMI the closer the years expected to symptom onset) whereas in NC individuals a negative association between 
BMI and EYO (i.e. BMI slightly increases the closer the years expected to symptom onset) could be detected 
(R = −0.195; P = 0.037; Table 3). The point at which BMI differs significantly between MCs and NCs was found 
at 11.2 years (P = 0.012) before expected symptom onset (Fig. 1). Additionally, the two curves begun to diverge at 
17.8 years before the expected symptom onset.

No significant correlations were observed in MCs between BMI and MMSE (R = −0.014; P = 0.895) and 
age (R = −0.175; P = 0.101; Table 3). However, lower BMI was associated with higher amyloid pathology in the 

NCs (N = 110) MCs (N = 120) P-value

Age 36.7 (7.9) 35.3 (8.0) 0.238a

Gender (M/F) no. 49/72 64/88 0.789b

Education (years) 13.2 (0.4) 13.4 (0.6) 0.735a

GDS 1.3 (1.8) 1.6 (1.9) 0.248c

EYO −11.8 (7.1) −11.5 (6.7) 0.759a

BMI, kg/m2 30.1 (5.9) 26.5 (5.2) 0.0001a

BMI < 18.5 (%) 1.1 2.1 0.984b

BMI ≥ 18.5 to <25.0 (%) 24.7 34.0 0.165b

BMI ≥ 25.0 to <30.0 (%) 30.3 38.1 0.263b

BMI ≥ 30 (%) 43.8 25.8 0.009b

Stroke (%) 1.1 0 0.443d

Diabetes (%) 2.2 0 0.195d

Hypertension (%) 16.9 5.4 0.010d

Hypercholesterolemia (%) 11.2 15.2 0.533d

MMSE score 29.1 (1.5) 29.1 (1.4) 0.695a

LogMem I 15.01 (4.2) 13.8 (4.8) 0.037a

LogMem II 13.9 (4.4) 12.03 (5.3) 0.003a

Global PIB-uptake 1.03 (0.1) 1.7 (0.8) <0.0001a

Table 1.  Baseline demographics, body mass index, clinical, cognitive, biochemical and imaging parameters 
in preclinical (CDR = 0) mutation carriers (MCs) and non-carriers (NCs). Note: Displayed are means and 
standard deviations (SD); MCs = mutation carriers; NCs = non mutation carriers; aANCOVA comparisons 
at Bonferroni adjusted p < 0.006 level of significance; bPearson chi-square test; cMann-Whitney U test; 
dFisher’s exact test; CDR = Clinical Dementia Rating scale; M = male; F = female; GDS = Geriatric Depression 
Scale; BMI = body mass index; no. = number; % = percentage; EYO = estimated years to symptom onset; 
MMSE = Mini-Mental State Examination; LogMem I = Logical Memory test, immediate recall; LogMem 
II = Logical Memory test, delayed recall; Global PIB-uptake = global cerebral Aβ burden as measured by 
11C-Pittsburgh Compound-B PET.



www.nature.com/scientificreports/

4Scientific Reports | 7: 1225  | DOI:10.1038/s41598-017-01327-w

brain (R = −0.269; P = 0.032) and lower memory performance (i.e. delayed total recall in the logical memory 
test (R = 0.253; P = 0.017). As expected, there was a significant correlation in MC participants between EYO and 
delayed recall of the logical memory test (R = 0.345; P < 0.0001) (i.e. the closer the years expected to symptom 
onset the more memory impairment).

In NCs no significant correlations between BMI, age (R = 0.211; P = 0.024), global cerebral Aβ burden 
(R = −0.093; P = 0.434), MMSE (R = −0.004; P = 0.969), and delayed total recall in the logical memory test 
(R = 0.091; P = 0.397; Table 3) could be observed.

Discussion
The current study, for the first time, examined the relationship between BMI, clinical and cognitive as well as 
brain imaging markers of AD in asymptomatic MCs and NCs of families with ADAD. All participants included 
in the present study showed no relevant signs of cognitive impairment that interfere with activities of daily living 
as indicated by a CDR score of zero.

The main findings were as follows: (1) Preclinical MCs showed weight loss starting one to two decades before 
expected symptom onset of ADAD; (2) In preclinical MCs, BMI was significantly correlated with EYO, whereas 
in NCs a negative association between BMI and EYO could be observed. Thus, while MCs show the lower BMI 
the closer estimated symptom onset NCs showed evidence for an increase with older age.

Previous studies examining the association between BMI and AD risk have all been performed in elderly peo-
ple who were cognitively normal or already presented signs of MCI or mild AD4, 17–19. In these studies, decreas-
ing body weight has been found to be associated with rapid cognitive decline, AD-like changes in the CSF, and 
increased risk of developing dementia in elderly individuals2, 4, 6, 17, 18, 20. From these studies it has been suggested 
that BMI alterations may reflect a systemic response to AD-related neuropathology. In addition, some reports 
suggest that mild weight loss in the elderly may be a downstream effect of normal aging processes associated with 
reduced metabolic demands, appetite, and diminishing physical stature and height19, 21. Thus, it is still unclear to 
what extent BMI alterations in AD can be attributed to vascular and metabolic comorbidities frequently present 
in elderly populations and to what extend to “pure” AD.

To address these research questions and to circumvent some of the limitations faced by previous studies, we 
examined cross-sectional BMI in demographically well-balanced asymptomatic members of families with ADAD. 
This study allowed us to examine BMI in individuals beginning more than 20 years prior to the EYO and in the 
absence of clinically relevant impairment in cognitive and functional performance (i.e. CDR = 0) or confounding 
health effects of aging. We found a significantly lower BMI in MCs compared with NCs in the preclinical stage 
of ADAD which is consistent with findings of decreased BMI in the preclinical stage of sporadic AD6, 20, 22, 23.  
It should be noted that in the present study, the mean BMI in preclinical MCs and NCs was in the pre-obese range 
(BMI 25.0–29.9). As expected, NCs showed a significantly higher rate of hypertension which may be due to their 

BMI at EYO/no of MCs or NCs NCs (N = 110) MCs (N = 120)

−25.0 to −20.1/no 28.6 (25.1–32.2)/15 28.4 (25.6–31.1)/16

−20.0 to −15.1/no 29.4 (26.7–32.1)/24 26.4 (23.7–29.0)/22

−15.0 to −10.1/no 31.7 (28.8–35.1)/25 25.4 (23.2–27.6)/29

−10.0 to −5.1/no 31.9 (28.3–35.6)/24 26.5 (24.7–28.3)/28

−5.0 to 0.0/no 31.1 (26.4–33.7)/22 25.9 (23.7–28.1)/25

Table 2.  Mean body mass index (BMI) and number of preclinical (CDR = 0) mutation carriers (MCs) and non-
mutation carriers (NCs) in 5-year time segments from −25 to 0 years of estimated symptom onset (EYO). Note: 
Displayed are means and 95% confidence intervals (in parentheses) of body mass index (BMI) and the number 
of MCs and NCs in 5-year time segments starting from −25 to 0 years of EYO; CDR = Clinical Dementia Rating 
scale.

Outcome β Coefficient (95% CI) p value

MC

EYO −0.263 (−0.552 to −0.026) 0.001

MMSE −0.012 (−0.057 to 0.034) 0.895

Global PIB-uptake −0.031 (−0.068 to 0.006) 0.032

LogMem II 1.724 (0.456 to 2.992) 0.017

NC

EYO 0.271 (−0.052 to 0.593) 0.037

MMSE 0.012 (−0.030 to 0.055) 0.969

Global PIB-uptake −0.001 (−0.003 to 0.002) 0.0434

LogMem II 0.402 (−0.725 to 1.528) 0.397

Table 3.  Association between body mass index (BMI) and cognition, and imaging parameters in preclinical 
(CDR = 0) mutation carriers (MCs) and non-mutation carriers (NCs). Note: Results are for linear regression. 
BMI was the predictor, adjusted for participant age, education and gender. Log Mem II = Logical Memory test, 
delayed recall; Global PIB-uptake = global cerebral Aβ burden as measured by 11C-Pittsburgh Compound-B 
PET.
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higher BMI24. However, the divergence in BMI development between MCs and NCs starting one to two decades 
before symptom onset in the present study is hardly driven by the greater prevalence of obesity (BMI > 30.0) 
among the NCs alone. It is possibly due to a combination of lower mean BMI in the MC group and increased 
mean BMI in NCs. However, within-person longitudinal data are warranted to validate this assumption.

The exact causes of lower BMI in the preclinical stage of ADAD are still unknown. Lower BMI in MCs cannot 
be simply explained as a consequence of dementia syndrome since our study participants were in the preclinical 
stage of AD with no relevant clinical symptoms of cognitive deterioration. Therefore, low BMI is not expected to 
be resulting from cognitive impairment. Other possible explanations could be reduced appetite/food intake due 
to decreased olfactory perception in the early phases of AD making the food less appealing and AD-related brain 
changes resulting in disturbed food intake and energy homeostasis22, 25–27. Recent findings in a transgenic mouse 
model of AD suggest that energy deficiency due to AD pathology-associated hypermetabolism causes weight 
alterations28. Alternatively, BMI changes might be driven by Aβ accumulation affecting hypothalamic leptin sig-
naling early in the disease process that leads to weight loss and pathologically low leptin state that progressively 
worsens as the amyloid burden increases28–30. In the present study, lower BMI was associated with higher amyloid 
load in the brain in MC group. This result is in line with previous studies demonstrating an association between 
BMI and amyloid pathology in the brain and CSF in patients with sporadic AD or in apolipoprotein E (APOE) ε4 
alleles carriers as well as in cognitively normal and MCI individuals, suggesting systemic changes in the earliest 
phases of the disease20, 31. The distribution of AD pathology is widespread and accumulates in both cortical and 
subcortical regions of the brains, which are involved in the maintenance of body composition through effects on 
appetite or feeding control20, 22, 25, 32. Taken together, our findings support the hypothesis that the deposition of AD 
pathology may contribute to the reduction in body weight prior to the onset of clinical dementia.

Another focus of interest is the association between BMI and cognitive functions. Previous research indicates 
that both low and high BMI scores have been associated with poorer cognitive functions33. In the present study, 
BMI in preclinical MCs was associated with decreased cognitive performance that was still within normal ranges. 
The fact that a measurable difference in memory function could be determined between the MC and NC subjects 
indicates some - if slight - degree of cognitive difference, even years before clinical dementia.

A limitation of this study was that we analyzed cross-sectional baseline data of the DIAN study, with limited 
predictive power concerning the EYO as opposed to individual longitudinal data. Thus, larger group sizes with 
longitudinal data are required to accurately ascertain an estimate of the number of years prior to symptom onset 
when BMI differences emerge between MCs and NCs. However, no sufficient longitudinal data are as yet available 
to inform on the trajectory of BMI change during preclinical ADAD and as such, our findings should be treated 
with caution. It should also be noted that results in the early onset group may not be generalizable to those with 
late onset or sporadic AD, given the potential interaction of mid-life factors, prevalence of co-pathologies, or 
even substantial different neuropathological mechanisms on weight regulation, as well as the survival effect in the 
older cohort. Furthermore, although BMI is often used to estimate overweight and obesity, other measures such 
as waste circumference can provide more accurate measures of body fatness because some individuals having a 
normal BMI may already have high levels of abdominal obesity, which is considered pro-inflammatory and a risk 
factor for AD34, 35.

Figure 1.  Cross sectional data (LOESS regression analysis and the estimates and their 95% confidence limits 
were drawn) of body-mass index (BMI) in preclinical (CDR = 0) mutation carriers (MCs) and non-mutation 
carriers (NCs) in relation to the estimated years to onset (EYO). A significant difference in BMI between 
MCs and NCs is detected in the area where the estimated 95% confidence intervals for the regression lines 
don’t overlap (−11.2 years). The intersection points of the lower and upper confidence interval borders were 
calculated by a numerical approximation. This method was also used to detect the point, at which the two 
curves begun to diverge (−17.8 years). The use of scatter plots is not permitted with DIAN data as the data 
points can be very specific to an individual and may allow to identify its mutation status.
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In conclusion, the study provides evidence that weight loss starts one to two decades before expected symp-
tom onset of ADAD. Our findings point toward a link between the pathophysiology of ADAD and disturbance 
of weight control mechanisms. Longitudinal follow-up studies are needed to investigate BMI changes over time.
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