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Sacubitril/valsartan (LCZ696) is the first angiotensin receptor neprilysin inhibitor approved to reduce cardiovascular
mortality and hospitalization in patients with heart failurewith reduced ejection fraction. As neprilysin (NEP) is one
of several enzymes known to degrade amyloid-β (Aβ), there is a theoretical risk of Aβ accumulation following long-
term NEP inhibition. The primary objective of this study was to evaluate the potential effects of sacubitril/valsartan
on central nervous system clearance of Aβ isoforms in cynomolgus monkeys using the sensitive Stable Isotope
Labeling Kinetics (SILK™)-Aβmethodology.
The in vitro selectivity of valsartan, sacubitril, and its activemetabolite sacubitrilatwas established; sacubitrilat did not
inhibit other human Aβ-degradingmetalloproteases. In a 2-week study, sacubitril/valsartan (50mg/kg/day) or vehi-
clewas orally administered to female cynomolgusmonkeys in conjunctionwith SILK™-Aβ. Despite lowcerebrospinal
fluid (CSF) andbrain penetration, CSF exposure to sacubitrilwas sufficient to inhibitNEP and resulted in an increase in
the eliminationhalf-life of Aβ1-42 (65.3%; p=0.026), Aβ1-40 (35.2%; p=0.04) andAβtotal (29.8%; p=0.04) acute-
ly; this returned to normal as expected with repeated dosing for 15 days. CSF concentrations of newly generated Aβ
(AUC(0–24 h)) indicated elevations in the more aggregable form Aβ1-42 on day 1 (20.4%; p = 0.039) and day 15
(34.7%; p = 0.0003) and in shorter forms Aβ1-40 (23.4%; p = 0.009), Aβ1-38 (64.1%; p = 0.0001) and Aβtotal
(50.45%; p = 0.00002) on day 15. However, there were no elevations in any Aβ isoforms in the brains of these
monkeys on day 16. In a second study cynomolgus monkeys were administered sacubitril/valsartan (300 mg/kg)
or vehicle control for 39weeks; nomicroscopic brain changes or Aβ deposition, as assessed by immunohistochemical
staining, were present. Further clinical studies are planned to address the relevance of these findings.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Sacubitril/valsartan (previously LCZ696) is the first angiotensin re-
ceptor neprilysin inhibitor (ARNI) approved by the US FDA and Europe-
an Medicines Agency shown to reduce cardiovascular mortality and
heart failure hospitalizations by 20% (McMurray et al., 2014). Following
oral administration, sacubitril/valsartan delivers systemic exposure to
valsartan, an angiotensin receptor blocker (ARB) and sacubitril (also
known as AHU377), an inactive prodrug which is subsequently metab-
olized by esterases to the active neprilysin (NEP) inhibitor sacubitrilat
(also known as LBQ657) (Gu et al., 2010; Flarakos et al., 2016). This
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results in simultaneous enhancement of the effects of biologically-active
beneficial natriuretic peptides (NPs) via inhibition of their degradation
by NEP and blockade of the detrimental effects of angiotensin II via
ARB. Based on its unique mode of action, sacubitril/valsartan exhibits
beneficial effects on cardiac, renal, and vascular function,whichmayun-
derlie the improved mortality and morbidity observed in patients with
heart failure and reduced ejection fraction in the PARADIGM-HF trial
(McMurray, 2015; Gori and Senni, 2016).

NEP cleaves a number of physiologically relevant substrates, including
NPs (atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP),
and to a lesser degree B-type natriuretic peptide (BNP)), enkephalins,
tachykinins, chemotactic peptide, and adrenomedullin (Mangiafico et
al., 2013; McMurray, 2015; Volpe et al., 2016). In mammals, NEP is
expressed in several organs, including the kidney, lung, and brain, with
the renal proximal tubule displaying the highest levels (Mangiafico et
al., 2013).

In the brain, NEP is one of several enzymes involved in the degrada-
tion of amyloid-β (Aβ). Aβ is a peptide generated in the brain through
sequential cleavage of amyloid precursor protein (APP) by β- and γ-
secretases (Haass et al., 2012). The role of NEP in Aβ degradation is
based on both in vitro and in vivo studies (Howell et al., 1995; Takaki
et al., 2000; Iwata et al., 2000). In addition to NEP, there are several
other Aβ degrading proteases, including NEP-2, insulin degrading en-
zyme (IDE), endothelin converting enzyme (ECE) and angiotensin-
converting enzyme (ACE) (reviewed by Saido and Leissring, 2012). In
addition to proteolytic degradation, Aβ is also cleared from the central
nervous system (CNS) by non-enzymatic processes, including cell-me-
diated clearance and passive and active transport into the cerebrospinal
fluid (CSF) and blood stream however, the relative contribution of each
of these clearance pathways, including proteolytic degradation by NEP,
has yet to be elucidated (Saido and Leissring, 2012). The amyloid
cascade hypothesis posits that abnormal production and clearance of
Aβ contributes to the formation of amyloid plaques, commonly found
in the brains of patients with dementia due to Alzheimer's disease
(AD) (Karran et al., 2011). Aggregation prone Aβ subtypes (Aβ1-42
and Aβ1-40) are found in senile plaques of the brains of patients with
Alzheimer's disease (Glenner et al., 1984; Iwatsubo et al., 1994;
Iwatsubo et al., 1995). However the exact role of Aβ in the subsequent
pathophysiology of AD is still the subject of some debate (Sorrentino
et al., 2014).

This study is the first reported use of SILK™-Aβ technology to assess
changes in CSF Aβ associated with inhibition of Aβ clearance pathways
by a neprilysin inhibitor. The cynomolgus monkey was selected as an
appropriate preclinical model to assess the risk for changes in Aβ clear-
ance and brain deposition based on 1) the complete homology of APP in
cynomolgus monkeys and humans, and 2) shared similarity in progres-
sive cerebral deposition of Aβ protein during normal aging not found in
other species (Podlisny et al., 1991). Here, we report two separate stud-
ies carried out in this model investigating effects of sacubitril/valsartan
on CSF Aβ clearance, Aβ concentrations in CSF, brain and plasma as well
as Aβ brain deposition. The 2-week SILK™-Aβ studywas an investigative
study to evaluate the effect of sacubitril/valsartan treatment on Aβ
concentrations and clearance in serial samples of CSF using the SILK™
technique. The SILK™-Aβmethodology has been previously used inmon-
keys to assess changes in CSFAβ associatedpathways of Aβproductionby
γ-secretase inhibition (Cook et al., 2010). This techniquewas selected be-
cause it provides themost reliable estimate of the clearance of newly gen-
erated Aβ peptides from the CSF compartment given constraints in CSF
sampling volume and study sample size (Cook et al., 2010). The second
study in cynomolgus monkeys treated for 39 weeks with sacubitril/
valsartan assessed brain Aβ plaque formation by immunohistochemistry;
this study is the longest duration nonclinical safety study in non-rodents
required by ICH guidance (ICH M3 R2) (2009) to support human clinical
trials marketing authorization among the regions of European Union,
Japan and the United States. Localization of NEP in the cynomolgus
monkey brain was also assessed by immunostaining using samples

from untreated animals. Finally, a separate set of experiments was
performed to determine the in vitro potency and protease selectivity
profile of sacubitril, sacubitrilat, and valsartan.

2. Materials and methods

2.1. In vitro potency and protease selectivity profile of compounds used

The in vitro potency and protease activity of sacubitril/valsartan
analytes were assessed using fluorescence-based lifetime (FLT) assays
as previously described for kallikrein 7 (Doering et al., 2009).

Recombinant human NEP enzyme was expressed in insect cells and
purified to a final concentration of 5 pM. Sacubitril, sacubitrilat or
valsartan were added at concentrations ranging from 0.0003 nM to
100 μM for 60 min at room temperature in 10 mM sodium phosphate
buffer, pH 7.4, containing 150 mM NaCl and 0.05% (v/v) CHAPS. A sim-
ilar protocol was followed for recombinant human NEP-2 with a final
enzyme concentration of 3 pM.

Recombinant human endothelin-converting enzyme-1 (ECE-1) and
recombinant human endothelin-converting enzyme-2 (ECE-2)were pur-
chased from R&D Systems (Minneapolis, MN) with a final concentration
of 0.3 pM and 2 pM, respectively. ECE-1 and ECE-2 were pre-incubated
with sacubitril, sacubitrilat or valsartan at various concentrations for
60min at room temperature in 50mM Tris-HCl buffer, pH 7.4 containing
150 mM NaCl and 0.05% (w/v) CHAPS, and 50 mM MES-HCl buffer,
pH 5.75, containing 125 mM NaCl and 0.05% (w/v) CHAPS, respectively.

Recombinant human angiotensin-converting enzyme-1 (ACE-1,
expressed in insect cells and purified at a final concentration of
3.0 pM) was pre-incubated with sacubitril, sacubitrilat or valsartan at
various concentrations for 60 min at room temperature in 10 mM sodi-
um phosphate buffer, pH 7.4 containing 150 mMNaCl and 0.05% (w/v)
CHAPS.

For NEP, NEP-2, ECE-1, ECE-2, and ACE-1, the enzymatic reaction
was started by the addition of a synthetic peptide substrate
Cys(PT14)-Arg-Arg-Leu-Trp-OH (Product number BS-# 9288.1,
Biosyntan, Berlin, Germany) to produce a final concentration of 0.7 μM
(0.8 μM for ACE-1). Substrate hydrolysis led to an increase in the
fluorescence lifetime (FLT) of PT14 measured by means of a FLT reader
as previously described (Doering et al., 2009). The effect of each com-
pound on the enzymatic activity was determined after 60 min incuba-
tion at room temperature. FLT measurements were conducted on an
Ultra Evolution fluorescence lifetime reader (TECAN, Maennedorf,
Switzerland) with an excitation light source of 405 nm wavelength
and an emission wavelength of 450 nm through a bandpass filter and
analyzed using instrument control software. The IC50 values, corre-
sponding to the inhibitor concentration showing 50% reduction of the
FLT values measured in absence of an inhibitor, were calculated from
the plot of percentage of inhibition vs. inhibitor concentration using
non-linear regression analysis software.

Recombinant human insulin-degrading enzyme (IDE, R&D Systems,
final concentration 0.2 nM) was pre-incubated with sacubitril,
sacubitrilat or valsartan at various concentrations for 60 min at room
temperature in 50 mM Tris/HCl buffer at pH 7.4, containing 1 M NaCl
and 0.05% (w/v) CHAPS. The enzymatic reaction was started by the
addition of a synthetic peptide substrate Mca Arg-Pro-Pro-Gly-Phe-
Ser-Ala-Phe-Lys(Dnp)-OH (R&D Systems Europe Ltd., Abingdon, United
Kingdom) to produce a final concentration of 2 μM. Substrate hydrolysis
led to an increase in fluorescence intensity measured by a monochro-
mator-based fluorescence-reader at wavelengths of 320 nm and
405 nm taken for fluorescence excitation and emission acquisition, re-
spectively. The effect of the compound on the enzymatic activity was
determined after a 60-min incubation at room temperature. The IC50

values, corresponding to the inhibitor concentration showing 50% re-
duction of the fluorescence intensity values measured in the absence
of an inhibitor, were calculated as described above.
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2.2. Study drug and formulation

Sacubitril/valsartan was administered in 0.5% (w/v) sodium
carboxymethylcellulose, aqueous solution by either oral (2-week SILK
™-Aβ study) or nasal gavage (39-week study).

2.3. Animals and housing

All primate experiments in the studies were reviewed and approved
by the Institutional Animal Care and Use Committees of either Novartis,
East Hanover, NJ or Charles River Laboratories, Inc. (Reno, NV or Mon-
treal, Quebec, Canada) and conformed to the Guide for the Use and
Care of Laboratory Animals (National Research Council of the National
Academies, Institute for Laboratory Animal Research, 2011).

2.4. 2-week SILK™-Aβ study in cisterna magna ported monkey model

The studywas conducted at the facility of Charles River Laboratories,
Inc., Montreal, Quebec, Canada.

2.4.1. Cisterna magna ported cynomolgus monkey model
Thirty-six female cynomolgus monkeys of Chinese origin, aged be-

tween 2 and 4 years, were utilized in the 2-week SILK™-Aβ study for
evaluating the effects of sacubitril/valsartan on CNS drug exposure
and levels and clearance of Aβ in CSF and plasma. Animals were ran-
domly assigned to either vehicle control or sacubitril/valsartan treat-
ment groups to control bias. Randomization was by stratification using
body weight as the parameter.

In-life technicians were not blinded to treatment group assignment;
however, apart from assignment to vehicle control or sacubitril/valsartan
treatment groups, all animals were treated as equally as possible.

Female monkeys were selected based on availability and general
compliance with the surgical methodology. Surgically implanted
cisterna magna catheter and port systems were employed for the serial
collection of uncontaminated CSF samples as previously described
(Cook et al., 2010). Thesemonkeyswere also implantedwith a standard
femoral vein silicone-based catheter systemwith the tip of the catheter
approximately at the level of the vena cava for vascular infusion of
13C6-leucine. All animals were continuously infused with 0.9% sodium
chloride injection, USP, at a rate of 2.0 mL/h until initiation of treatment
and in between SILK™ infusions.

2.4.2. 13C6-leucine infusion and treatment initiation
In preparation for each 13C6-leucine infusion and SILK™-Aβ sampling,

cynomolgus monkeys were restricted to a low leucine diet of vegetables
and fruits as previously described (Cook et al., 2010). Intravenous infusion
of 13C6-leucine was started at 8 pm and continued for 12 h. For Aβ analy-
sis, CSF was collected at 4, 12, 16, 20, 24, 28, 32 and 36 h after the start of
13C6-leucine infusion. Analysis of labeled to unlabeled (12C6) leucine in
proteins was measured by the tracer-to-tracee ratio (TTR) method
(Bateman et al., 2009). Free leucine analysis in plasma samples (collected
pre-infusion (0min), as well as 6min and 2, 4, 8, 12, 14 and 24 h after in-
fusion) was conducted by Metabolic Solutions Inc. (Nashua, NH) using a
validated gas chromatography/mass spectrometry (GC/MS) protocol.

The cisterna magna ported female cynomolgus monkeys received
either vehicle control or 50 mg/kg/day sacubitril/valsartan treatment
by oral gavage for up to 16 days, with SILK™-Aβ analyses occurring on
days 1 and 15 of dosing; and tissue collections for assessment of Aβ con-
centrations in brain, CSF and plasma occurring at necropsy (2 hour post
dose on day 16). The dose of 50 mg/kg/day was chosen as it results in
plasma AUC(0–24 h) and Cmax sacubitrilat exposure similar to the clinical
exposure delivered by a 400 mg QD dose of sacubitril/valsartan in
healthy volunteers. The first dose of sacubitril/valsartan was adminis-
tered 12 h after the initiation of 13C6-leucine infusion (Fig. 1). The final
sample size was n = 17 for the control group and n = 15 for the
sacubitril/valsartan treatment group due to the loss of port patency in

individual animals and was independent of, and occurred prior to,
sacubitril/valsartan administration.

2.4.3. Pooling strategy for Aβ analysis
Plasma samples were analyzed for labeled and unlabeled free leucine

as ameasure andquality control for the leucine infusion. Due to the small-
er size of the cynomolgus monkeys on the study, and in consideration of
animal welfare, it was possible to collect only 200–225 μL of CSF per sam-
pling timepoint during the study. Therefore, pooling of samples was nec-
essary in order to provide sufficient sample volume for the assay. CSF
samples from 3 animals were pooled in rank order based on individual
leucine exposure (i.e. lowest to highest free plasma leucine levels) andan-
alyzed for labeled and unlabeled Aβ1-37, 1-38, 1-40, 1-42, and Aβtotal
(Table S1). This pooling strategywas selected based onmodeling indicat-
ing this approach would provide the most accurate measure of the mean
and result in an overestimate rather than underestimate of the actual
standard deviation, relative to non-pooled samples. SILK™-Aβ samples
were labeled as belonging to animals from one of two cohorts. Analysts
at C2N Diagnostics were unaware of the treatment status of the two co-
horts, and analysis of samples at C2N Diagnostics was performed blinded
to the treatment group of the pooled animal samples.

2.4.4. Aβ immunoassay and immunoprecipitation/liquid chromatography-
mass spectrometry

The TTR and concentration of Aβwasmeasured using a combination
of immunoprecipitation and mass spectrometry (IP/MS). This method
allowed the detection of newly synthesized (labeled) Aβ peptides as
well as Aβtotal (labeled and unlabeled) peptides (Table S1). The abso-
lute quantitation of Aβ (Aβ1-38, Aβ1-40 and Aβ1-42) in plasma sam-
ples from days 1 and 15 and in brain, CSF and plasma samples from
2 hour post dose on day 16was determined bymultiplex immunoassay
(MesoScale Diagnostics Rodent/Human (4G8)Aβ 3-plexUltra-Sensitive
Kit (MesoScale Diagnostics, Rockville, MD)).

2.4.5. Calculation of elimination half-life and newly generated Aβ.
Newly generated Aβ was calculated as previously described as the

product of the percentage of labeled Aβ (LC-MS results) and the Aβtotal
concentration (LC-MS results) (Bateman et al., 2009). All statistical
calculations were performed with GraphPad 5.04. A two-tailed
Student's t-test was used for comparisons between treatment groups.

Elimination half-life was calculated using the following formula:
eT½= ln(2) / k, where the elimination constant (k) is equal to the neg-
ative slope of the natural log transformed newly generated Aβ

Fig. 1. 2-week SILK™-Aβ study: Stable Isotope Labeling Kinetics (SILK™) study design.
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concentration during the clearance portion of the metabolic study. For
Aβ1-40, Aβ1-38, and Aβtotal we included hours 16-32 for the log trans-
formation, but for Aβ1-42 the log transformation including the 32 hour
time point was not possible since the concentrations measured at this
time point were too close to the lower limit of quantitation (LLOQ).

2.4.6. Bioanalytical methods
Blood and CSF sampleswere collected at 0.5, 1, 4, 8, and 24 hour post

dose on days 1 and 15 for analysis of sacubitril, sacubitrilat, and
valsartan. Blood was processed for plasma using K2EDTA (anticoagu-
lant). CSF samples were pooled from the groups of three animals within
each group (three aliquots of equal volume) and diluted 1:1 with blank
(i.e. naive monkey) plasma. In addition, final plasma, CSF, and brain
tissue samples were obtained at the scheduled necropsy on day 16 at
approximately 2 hour post dose. All samples were frozen at or below
−60 °C prior to analysis.

Toxicokinetic parameters were estimated using Watson LIMS. A
non-compartmental approach consistent with the oral route of adminis-
trationwas used for parameter estimation. All parameterswere generated
from the concentrations in plasma and CSF fromdays 1 and 15 unless oth-
erwise stated. Parameterswere estimatedusing sampling times relative to
the start of each dose administration. Plasma samples were processed by
liquid-liquid extraction procedure usingmethyl t-butyl ether, followed by
recovery of the organic portion of the extracts by drying down at 40 °C
under nitrogen and reconstitution in methanol:water:formic acid
(90:10:0.1). Samples were centrifuged and analyzed by LC-MS/MS using
electrospray ionization (plasma sacubitril: precursorm/z 412.4 and prod-
uctm/z 266.3; sacubitrilat: precursor m/z 384.3 and productm/z 266.3;
valsartan: precursor m/z 436.4 and product m/z 291.3) with LLOQ of
10.0 ng/mL for the analytes using 0.025 mL of plasma. CSF samples were
processed similarly as the plasma and measured against 1:1 CSF:plasma
calibration standards. Brain tissue samples were homogenized in lysing
solution to yield 0.2 mg/mL tissue homogenate and processed using pro-
tein precipitation with an acetonitrile/methanol mixture. Measurements
were made against brain tissue homogenate calibration standards and
the nominal concentrations were corrected by tissue mass (e.g., ng/g).
Samples were centrifuged and analyzed by LC-MS/MS using electrospray
ionization. The ionization outputs for CSF and brain homogenates were
precursor m/z 412.3 and product m/z 266.2 for sacubitril, precursor m/z
384.3 and product m/z 266.2 for sacubitrilat, and precursor m/z 436.4
and product m/z 235.1 for valsartan with LLOQ of 0.1 ng/mL using
0.025mL of CSF:plasma and 0.5 ng/mL using 0.030mL of brain tissue ho-
mogenate, respectively, for the sacubitril/valsartan analytes.

2.5. 39-week repeated dose study with sacubitril/valsartan in cynomolgus
monkeys: brain immunostaining for Aβ

A retrospective analysis of Aβ brain immunostainingwas performed
on brains from a 39-week toxicity study conducted at the facility of
Charles River Laboratories, Inc., Reno, NV.

In this study, sacubitril/valsartan was administered to four
groups (4/sex/group) of cynomolgus monkeys at daily doses of 0
(vehicle) 30, 100 and 300 mg/kg/day (dose volume of 5 mL/kg) via
nasal gavage for at least 39 weeks. Additional groups of control and
300 mg/kg/day cynomolgus monkeys (2/sex) were included to
serve as recovery populations. Animals were randomly assigned to
either vehicle control or sacubitril/valsartan treatment groups to
control bias. Randomization was by stratification using body weight
as the parameter. In-life technicians were not blinded to treatment
group assignment; however apart from assignment to vehicle control
or sacubitril/valsartan treatment groups, all animals were treated as
equally as possible.

Monkeys were of Chinese origin and aged between 2 and 4 years
at the start of dosing. Animals were euthanized at the end of the 39-
week dosing period (24 h after final dose) or at the end of a 4-week
recovery period. Histopathology assessments were performed on
routine formalin-fixed paraffin-embedded (FFPE) brain sections
from all animals, and immunohistochemical analyses for Aβ were
performed on control and 300 mg/kg/day main study and recovery
phase animals.

2.6. Immunohistochemistry

Multiple brain regions, including the cerebral cortex, striatum,
thalamus/hypothalamus, ventricular system, limbic system
(including hippocampus), midbrain, cerebellum, pons region
and medulla oblongata from animals receiving control and
high-dose sacubitril/valsartan (39-week study) were evaluated
by immunohistochemistry (IHC). The FFPE brain sections were
stained with hematoxylin/eosin (H/E) and for Aβ using a rabbit
monoclonal antibody (D12B2, Cat#9888, Cell Signaling Technolo-
gy, Danvers, MA) at a 1:1600 dilution. The results were com-
pared with sections from an Aβ1-42-positive human brain
affected with AD, which served as a positive control. In FFPE
AD brain sections, this protocol stained both compact and diffuse
plaques with minimal background of adjacent neuropil. An irrel-
evant rabbit IgG (Cat# 3900 Cell Signaling Technology) control
slide was included for each section tested. Positive and negative
controls served to minimize bias potentially introduced by the
study pathologist, who was not blinded to treatment group
assignments.

For NEP staining, brain sections from three naïve cynomolgus mon-
keys (two females and onemale) of Chinese originwhichwere 4, 5, and
23 years oldwere utilized. Thesemonkeyswere used as vehicle controls
in other experiments and did not show any neurological signs during
the study. FFPE tissues were prepared as previously described (Pardo
et al., 2012) and transverse brain sections cut for IHC assessment.
These sections contained portions of the forebrain, multiple portions
of the cerebrum, caudate putamen area, thalamus (rostral and caudal),
and midbrain including the substantia nigra, pons, cerebellum, and

Table 1
In vitro potencies of sacubitrilat, sacubitril, and valsartan on selected human metalloproteases that degrade Aβ.

Metalloprotease Abbreviation
In vitro IC50 - μM (ng/mL)

Sacubitrilat Sacubitril Valsartan

Neprilysin (neutral endopeptidase) NEP 0.0023 ± 0.0004 (0.811 ± 0.141) 16.7 ± 2.3 (6870 ± 946) N100 (43550)
Neprilysin-2 (neutral endopeptidase-2) NEP-2 84.7 ± 2.8 (32,474 ± 1074) N100 (41150) N100
Insulin-degrading enzyme IDE N100 (N38340) N100 N100
Endothelin-converting enzyme-1 ECE1 N100 N100 N100
Endothelin-converting enzyme-2 ECE2 5.5 ± 0.6 (2109 ± 230) N100 N100
Angiotensin-converting enzyme-1 ACE-1 N100 N100 N100

Other metalloproteases that degrade Aβ such as membrane metallo-endopeptidase-like protein (MMEL), matrix metalloproteinases (MMP2, MMP9, MMP14), cluster of differentiation
(also known as extracellular matrix metalloproteinase inducer, CD147), serine proteases (e.g. plasmin), aspartyl proteases (e.g. cathepsin D), and cysteine proteases (e.g. cathepsin B)
were not evaluated. Figures are represented as mean ± standard deviation.
Molecular weight (MW) of sacubitrilat is 383.4; MW of sacubitril is 411.4; MW of valsartan is 435.5.
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multiple portions of the medulla oblongata. Anti-NEP (CD10) rabbit
monoclonal antibody (clone SP67) (Ventana Medical Systems Inc.,
Tuscon, AZ) was used at 0.3 μg/mL.

Briefly, sections were cut at 5 μm and analyzed by the Ventana
Systems Discovery XT (Ventana Medical Systems Inc., Tucson,
AZ). IHC protocol was optimized by antigen retrieval, a primary
antibody incubation with the concentrations indicated above,
horseradish peroxidase (HRP) enzymatic amplification (OmniMap
anti-RbHRP secondary antibodies for 4 min, and detection with
Ventana Medical Systems). Stained slides were scanned with an
Aperio slide scanner (Leica Biosystems, Vista, CA) at 20×
magnification.

The NEP immunohistochemical analysis was scored by a patholo-
gist (C. S.) on a semi-quantitative scale (0 to 4+, where 0 indicates
no evidence of staining) by measuring the intensity and distribution
of specific staining.

3. Results

3.1. In vitro potency and protease selectivity profile of sacubitril,
sacubitrilat, and valsartan

Following administration, sacubitril/valsartan dissociates into the
inactive prodrug sacubitril, which is further metabolized to active NEP
inhibitor sacubitrilat, and ARB valsartan. Sacubitrilat was selective for
NEP. Sacubitril, sacubitrilat, and valsartan at physiologically relevant
concentrations did not inhibit other metalloproteases that degrade Aβ
in vitro, including ACE-1 (Table 1).

3.2. 2-week SILK™-Aβ study in cynomolgus monkeys

Daily oral administration of sacubitril/valsartan to female cynomol-
gus monkeys for 16 consecutive days at 50 mg/kg/day was well

Fig. 2.2-week SILK™-Aβ study:mean concentration-time plots of valsartan (A), sacubitril (B), and sacubitrilat (C) in femalemonkeyplasma and CSF following administration of sacubitril/
valsartan 50 mg/kg/day.
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tolerated. No treatment-related changes were observed on clinical
signs, body weight, food intake, body temperature, or macroscopic ob-
servations at necropsy.

All animals showed quantifiable amounts of valsartan, sacubitril, and
sacubitrilat in both plasma and CSF (Fig. 2), with CSF concentrations of
sacubitrilat exceeding the in vitro IC50 for human NEP inhibition
(2.3 nM) (Table 2). Concentrations of valsartan, sacubitril, and
sacubitrilat observed in the CSF and brain were low (≤0.0044
CSF:plasma ratio; ≤0.0326 brain tissue:plasma ratio) when compared
to the plasma concentrations at 2 hour post dose on day 16 (Table 2),
consistent with the high plasma protein binding of sacubitril (93% pro-
tein bound) and valsartan (95.8% protein bound) in non-human
primates.

Stable isotope kinetic assessments showed that the elimination half-
life of newly synthesized Aβwas significantly increased in the 50mg/kg
sacubitril/valsartan dosing group relative to controls on day 1 for Aβ1-
42 (65.3%; p = 0.026), Aβ1-40 (35.2%; p = 0.04) and Aβtotal (29.8%;
p = 0.04), but normalized by day 15 (Fig. 3).

The concentration of newly generated Aβ (AUC(0–24 h)) was acutely
increased compared to vehicle control for Aβ 1-42 on day 1 (20.4%; p=
0.039) and on day 15 (34.7%; p = 0.0003). Elevations were also noted
after repeated daily dosing (day 15) for newly synthesized shorter
forms including Aβ1-40 (23.4%; p = 0.009), Aβ1-38 (64.1%; p =
0.0001) and for newly synthesized Aβtotal (50.45%; p = 0.00002)
(Fig. 4 and Fig. 5). Similar trends were noted for total (labeled + unla-
beled) CSF Aβ on day 15 (Fig. S1).

Plasma levels of Aβ1-40 and Aβ1-42 showed trends (by multiplex
immunoassay) for increases in sacubitril/valsartan-treated animals at
both 2 and 12 hour post-dose on days 1 and 15, with maximum in-
creases observed at 12 hour post dose on day 15 (48.8% increase for
Aβ1-42 and 38.7% increase for Aβ1-40, relative to concurrent controls)
(Fig. 6A). Similar trendswere observed for 2 hour post dose day 16 sam-
ples collected at necropsy (data not shown).

Brain levels of Aβ1-42 or Aβ1-40 (cerebral cortical or hippocampal)
in sacubitril/valsartan-treated animals were not changed relative to
controls at 2 hour post dose on day 16 (Fig. 6B). There were no statisti-
cally significant increases in the CSF levels of Aβ1-42 or Aβ1-40 in sam-
ples collected at 2 hour post dose on day 16, as assessed by a multiplex
immunoassay (Fig. 6C).

3.3. 39-week study in cynomolgusmonkeyswith brain Aβ-immunostaining

Brain immunostaining for Aβ using an antibody which recognizes
multiple isoforms of the protein (including Aβ1-37, Aβ1-38, Aβ1-40,
and Aβ1-42) showed no evidence of sacubitril/valsartan-related in-
creases in Aβ deposition or Aβ plaque formation following 39 weeks
of dosing at 300 mg/kg/day (Fig. 7).

There were no sacubitril/valsartan-relatedmicroscopic brain chang-
es, increases in brain or cerebral vascular Aβ content, or plaque forma-
tion after 39 weeks of dosing as assessed by H/E and Aβ
immunostaining. The 300 mg/kg dose resulted in a mean AUC(0–24 h)

sacubitrilat exposure of 614,000 ng ∗ h/mL and mean Cmax exposure of
143,500 ng/mL, which is approximately 4-fold (AUC(0,τ)) and 10-fold
(Cmax)the exposure associated with the 400 mg QD dose used in the
healthy volunteer study (Langenickel et al., 2016). If one considers the
recommended clinical dose (200 mg BID) for treating patients with
heart failure, exposure is approximately 2-fold (AUC(0–24 h)), and 9-
fold (Cmax) the exposure associated with this dose (AUC(0−12 h) of
151,611 ng∗h/mL and Cmax of 16,531 ng/mL).

3.4. Immunolocalization of NEP in cynomolgus monkey brain

The distribution and staining intensity of NEP was similar across all
three animals (age ranging from 4 to 23 years).

NEP was predominantly localized in basal ganglia (caudate nucleus,
putamen, and globus pallidus) with intense immunostaining within
neuropil (perineuronal) and axon bundle (Fig. 8, Table S2). There was
moderate NEP expression in some thalamic, pontine, cerebellar, and
medullary nuclei. However, weak immunostaining was noted in hippo-
campus and cerebral cortex within neuropil and in glial cells. Notably,
the choroid plexus did not show NEP immunoreactivity.

Immunolocalization of NEP in cynomolgus monkey brain was com-
parable with the human brain, with the exception of the choroid plexus
(Table S3). The lack of NEP expression in the choroid plexus of cynomol-
gus monkeys contradicts published reports on human brain samples,
wherein the human choroid plexus was shown to contain NEP, albeit
using different methodology with potentially different sensitivities
(e.g., immunoradiometric vs. IHC; specificity of antibodies - polyclonal
vs. monoclonal antibodies) (Matsas et al., 1985).

4. Discussion

Sacubitril/valsartan has been shown to reduce cardiovascular mor-
tality and morbidity by 20% in patients with reduced ejection fraction
heart failure compared with the ACE inhibitor enalapril (McMurray et
al., 2014). As NEP is one of several enzymes involved in the degradation
of Aβ, there is a theoretical risk of accumulation of Aβ in the brain fol-
lowing inhibition of the enzyme by sacubitrilat. However, the role of
Aβ clearance in the pathophysiology of AD is not well defined, with
genes associated with the disease primarily involved in the production
of the Aβ protein (Karran et al., 2011). Clinical data from the landmark
PARADIGM-HF trial found no signal for cognitive impairment in over
4100 patients treated with sacubitril/valsartan for a median of
27 months. In the present studies, the non-human primate serves as
an appropriate preclinical model to investigate the pharmacological ef-
fects of both short- and long-termadministration of sacubitril/valsartan,
attempting to replicate the human condition of Aβ production and
clearance (Podlisny et al., 1991).

In vitro testing revealed that sacubitril and its active metabolite
sacubitrilat are selective for human NEP and did not inhibit other
metalloproteases known to degrade Aβ, such as ACE-1. Preclinical stud-
ies focused on the short-term effects of sacubitril/valsartan administra-
tion on the clearance of Aβ from the CSF of cynomolgus monkeys, as
well as concentrations of Aβ in the CSF, brain and plasma. Another
study evaluated the long-term effects of the drug on Aβ deposition in
the brain of cynomolgus monkeys treated for 39 weeks.

Table 2
Concentration of sacubitrilat, sacubitril andvalsartan in theplasma, brain and CSF at end of
dosing and at necropsy (50 mg/kg/day dose).

Analyte

Valsartan Sacubitril Sacubitrilat

Day 15 exposures
Plasma (n = 17)
AUC(0–24 h) 6920 ± 2530 21,500 ± 8660 83,200 ± 25,100
Cmax 2000 ± 1100 10,000 ± 6380 34,400 ± 12,600

CSF (n = 6a)
AUC(0–24 h) 7.42 ± 3.18 36.5 ± 20.6 128 ± 41.1
Cmax 0.862 ± 0.331 11.0 ± 6.98 19.8 ± 9.52

CSF:plasma
AUC(0–24 h) 0.00107 0.00170 0.00154
Cmax 0.000431 0.0011 0.000576

2 h post dose, day 16
Plasma (n = 9) (ng/mL) 1130 ± 1180 1730 ± 1850 14,900 ± 9260
Brain (n = 9) (ng/g)
Cerebral cortex 20.7 ± 12.7 37.1 ± 40.3 147 ± 117
Hippocampus 36.9 ± 69.1 34.9 ± 32.0 114 ± 86.8

Brain:plasma
Cerebral cortex 0.0183 0.0214 0.00986
Hippocampus 0.0326 0.0202 0.00763

CSF (n = 9) (ng/mL) 0.574 ± 0.670 7.61 ± 9.23 20.7 ± 11.8
CSF:plasma 0.000508 0.00440 0.00139

Units are: AUC(0–24 h): ng ∗ h/mL; Cmax: ng/mL.
a n = 6 pools, with 2 or 3 animals/pool with the exception of one sample which rep-

resents analyses from a single animal. All data are represented ± standard deviation.
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Administration of sacubitril/valsartan to female non-human pri-
mates at a dose of 50 mg/kg resulted in clinically relevant exposure to
sacubitrilat in plasma and CSF that was similar to that observed in
healthy volunteers receiving a 400 mg once daily dose of sacubitril/
valsartan. The Cmax of sacubitrilat CSF exposure (19.8 ng/mL) on day
15 in cynomolgus monkeys was approximately equal to the Cmax CSF
exposure (19.2 ng/mL) in sacubitril/valsartan-treated healthy volun-
teers administered 400 mg sacubitril/valsartan QD (Langenickel et al.,
2016). Plasma exposure to sacubitrilat in these animals was similar to
[approximately 0.6-fold (AUC(0–24 h)) and 2.4-fold (Cmax)] the steady
state exposure in the healthy volunteers (Langenickel et al., 2016). De-
spite very low CSF and brain penetration of valsartan, sacubitril, and
sacubitrilat (≤0.0044 CSF:plasma ratio; ≤0.0326 brain tissue:plasma
ratio), concentrations of sacubitrilatwere sufficient to inhibit neprilysin.

We report the first application of SILK™-Aβ methodology to assess
potential effects associated with inhibition of a CNS Aβ clearance path-
way following oral administration of a neprilysin inhibitor. In a 2-week
study, administration of sacubitril/valsartan resulted in acute decreases
in CSF clearance rates of the more aggregable peptide Aβ1-42 as well as
the shorter formAβ1-40 and total Aβ as evidenced by an increase in the

elimination half-life; however, clearance rates had normalized by day
15. Although CSF concentrations of Aβ1-42, as well as the shorter iso-
forms Aβ1-40, Aβ1-38 and total Aβwere still increased at day 15, no el-
evations in brain Aβ1-40, Aβ1-42 or Aβ1-38 were detected 2 hour post
dose on day 16 and no brain amyloid depositionwas detected in the 39-
week study. Young cynomolgus monkeys were utilized in this study
rather than older monkeys due to the need to collect serial CSF samples
from cisterna magna ported animals over an extended period. Perhaps
of greater importance, younger animals were selected to reduce con-
founding effects of a decrease in CSF Aβ that accompanies age and hip-
pocampal atrophy (Darusman et al., 2014). Thus, the interpretation of
changes in CSF Aβ associated with pharmacologic inhibition of clear-
ance of Aβ in the CNS by neprilysin could be more precisely defined.

In the chronic study, cynomolgus monkeys were treated with high
doses of sacubitril/valsartan (300mg/kg/day) for 39weeks that resulted
in higher sacubitrilat exposure as compared to 200mg BID clinical dose
in humans (AUC(0–24 h) exposure approximately 2-fold and Cmax expo-
sure approximately 9-fold); however, these animals displayed no
sacubitril/valsartan-related microscopic brain changes or Aβ deposition
(as assessed by immunostaining using an antibody that cross-reacts

Fig. 3. 2-week SILK™-Aβ study: elimination half-life for newly generated Aβ isoforms in CSF. The p-values shownwere derived from a t-test comparison of vehicle and sacubitril/valsartan
groups.
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with several isoforms including Aβ1-37, Aβ1-38, Aβ1-40, and Aβ1-42).
These data are consistentwith the absence of elevation in brain concen-
trations of Aβ1-40 andAβ1-42 in the 2-week SILK™-Aβ study. Although
it is reassuring that there was no evidence of Aβ plaque formation by
immunohistochemistry after 39-weeks of treatment with sacubitril/
valsartan, it is acknowledged that we cannot rule out the potential for
Aβ deposition and plaque formation following longer term treatment.

The relationship between CSF and brain levels of Aβ is currently not
well understood but a recent study in humans determined that direct

transport of Aβ across the blood-brain barrier may account for 25–50%
of Aβ clearance (Roberts et al., 2014). The reasons why sacubitril/
valsartan-associated Aβ increases occurred in CSF but not in the brain
are not clear. One possible explanation for this disparity may include
that Aβ pools in the brain and CSF are differentially affected by NEP in-
hibition. The elimination half-life of Aβ isoforms was significantly
slowed on day 1, but not altered on day 15. Normalization of the elimi-
nation half-life by day 15 is expected and reflects Aβ clearance reaching
a steady-state in the CSF with a larger pool size, thus not affecting a

Fig. 4. 2-week SILK™-Aβ study: concentration of newly generated Aβ in the CSF Data shown are averages by group and day± standard deviation (error bars). Leucine infusion (0−12 h)
and drug administration (12 h and 24 h gavage (GV)) are marked below the Aβ1-42 data plot.
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relative clearance rate. Upregulation of Aβ clearance from the brain tis-
sue by alternative pathways, or maintained clearance of Aβ through the
CSF by active or passive transport, are possibilities following longer-
term exposure.

In contrast to a study in healthy human volunteers, where elevations
of Aβ1-38, but not Aβ1-40 and Aβ1-42, were observed in the CSF fol-
lowing sacubitril/valsartan treatment (Langenickel et al., 2016), we re-
port elevations in the more aggregable form Aβ1-42, in the shorter
forms Aβ1-40, Aβ1-38, as well as Aβtotal in the CSF of cynomolgus
monkeys at day 15. This may reflect species-specific differences in the
clearance of Aβ or assay-specific differences in the methods used
(multiplexed immunoassay vs. SILK™ method, respectively). Indeed,
there were no statistically significant increases in CSF levels of Aβ1-42
or Aβ1-40 in the samples collected at 2 hour post dose on day 16, as
assessed by a multiplex immunoassay (Fig. 6C); however, large inter-
animal variability in CSF levels may also have confounded the interpre-
tation of detectable changes in these single timepoint evaluations, given
the relatively small-sized sample set. Given that CSF concentrations of
Aβ1-40 and Aβ1-42were unaltered in healthy volunteers administered
sacubitril/valsartan (400mgQD for 2weeks), thismay suggest a limited
contribution of NEP to the Aβ degrading capacity and/or a possible up-
regulation of redundant pathways for Aβ clearance in humans, which
may differ in non-human primates.

Across species, there is weak to no expression of NEP in the regions
associated with Aβ plaque formation, namely the cerebral cortex and
hippocampus (Matsas et al., 1985; Matsas et al., 1986; Pollard et al.,

1987; Bourne et al., 1989; Gaudoux et al., 1993; Akiyama et al., 2001;
Takeuchi et al., 2008; Chambers et al., 2010), potentially reinforcing
the importance of other Aβ clearance pathways in these areas; immu-
nostaining for Aβ in the cynomolgusmonkey brain showed no evidence
of Aβ accumulation in these regions. The brain regions with the highest
NEP expression included the basal ganglia (caudate nucleus, putamen
and globus pallidus) and some thalamic, pontine, cerebellar, andmedul-
lary nuclei. While soluble Aβ levels were not assessed in these brain re-
gions, immunostaining for Aβ in the primate model showed no
evidence of Aβ accumulation in these regions.

Our studies demonstrate that NEP was not expressed in the choroid
plexus of cynomolgus monkeys; this is in contrast to demonstrated ex-
pression of NEP in the human choroid plexus (Matsas et al., 1985). The
significance of this apparent species difference with regards to Aβ is un-
clear. However, the absence of NEP expression in the primate choroid
plexuswould suggest that elevations of CSF Aβ are not related to inhibi-
tion of NEP in the choroid plexus. It is of interest to note that the epithe-
lial cells of the choroid plexus form the blood-CSF barrier and mediate
both secretion of proteins and processes that clear substances from
the CSF and blood. Choroid plexus dysfunction has been associated
with impaired Aβ clearance (Gonzalez-Marrero et al., 2015).

The relative contribution of different proteases, including NEP, to Aβ
metabolism in different species has not been entirely elucidated
(Carson and Turner, 2002); nevertheless, NEP appears to play a role in
Aβ degradation in rodents and primates (Nalivaeva et al., 2014). In ad-
dition to redundant proteolytic clearance pathways, Aβ is also cleared

Fig. 5. 2-week SILK™-Aβ study: AUC for the newly generated Aβ for the various Aβ isoforms in CSF. Similar results were noted for the total labeled and unlabeled Aβ isoforms in the CSF
(See Fig. S1). The p-values shown were derived from a t-test comparison of vehicle and sacubitril/valsartan groups.
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Fig. 6.2-week SILK™-Aβ study: concentration of Aβ1-40 andAβ1-42 inplasma at 0, 2 and 12 hour post dose on day 1 andday 15 (A); concentration of Aβ1-40 andAβ1-42 in the (B) cortex
and hippocampus and (C) CSF at necropsy (day 16, 2 hour post dose).
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from the CNS by non-enzymatic processes, including cell mediated
clearance and passive and active transport (Wang et al., 2006;
Leissring, 2008; Saido and Leissring, 2012; Tarasoff-Conway et al.,
2015). There are also no human genetic data suggesting that alteration
in enzymes that remove Aβ are involved in the development of AD. In a
meta-analysis of genome wide association studies totaling 74,064 indi-
viduals, neither NEP nor other enzymes implicated in Aβ enzymatic
clearance were associated with late-onset AD (Lambert et al., 2013).
Furthermore, persons with a complete loss of NEP protein have not
been reported to display overt early onset impairment of cognitive func-
tion, although no brain imaging studies or specific cognitive tests were
reportedly carried out (Debiec et al., 2004).

Treatment with ARNI, sacubitril/valsartan, resulted in an over-
whelming benefit of sacubitril/valsartan on morbidity and mortality in
patients with heart failure with reduced ejection fraction (McMurray
et al., 2014) leading to early study termination due to efficacy and expe-
dited review and approval by the US Food and Drug Administration and

the EuropeanMedicines Agency. The theoretical mechanistic concern of
NEP inhibition impacting Aβmetabolism is being further characterized
in ongoing and planned clinical studies.

Study limitations

Limitations of this study included the age and health status of animals
used, given that young (2–4-year old) healthy cynomolgus monkeys are
not representative of the older heart failure population that will be pre-
scribed sacubitril/valsartan. Furthermore, spontaneous Aβ plaque forma-
tion has not been observed in cynomolgus monkeys under the age of
15 years and non-human primates do not display dementia and neurode-
generative changes present in human AD which develop over decades of
life (Heuer et al., 2012). Although Aβ depositionwas evaluated in animals
chronically treated for 39 weeks (i.e. the maximum nonclinical study du-
ration required by ICH guidance (ICH M3(R2) to support human clinical
trials and marketing authorization) at dose levels providing sacubitrilat

E 0.5x F 0.5x

Fig. 7. 39-week study: localization of Aβ in cynomolgus monkey brain. Immunohistochemistry utilizing rabbit monoclonal antibody D12B2 was performed on control (A and C) and
sacubitril/valsartan-treated (B and D) animals and did not detect Aβ (left insert positive control brain, right insert irrelevant antibody negative control). Lower magnification views of
transverse sections of brain containing cerebral cortex and midbrain were shown in A and B. Representative images from hippocampus are shown in C and D. Standard H/E stained
sections were also evaluated from control (E) and sacubitril/valsartan treated (F) animals (left insert positive control brain stained with H/E).
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exposure that exceeded clinical exposures, it is acknowledged that this pe-
riod of timemay still not be sufficient to detect the full effects of long-term
chronic treatment with sacubitril/valsartan on plaque deposition.

In the 2-week SILK™-Aβ study, differences were observed in the
elimination half-life between day 1 and day 15 and may be expected
based on the day 1 non-steady state condition and the day 15 steady
state condition. As a result, only the stable label clearance phasewas im-
pacted byNEP inhibition on day 1whereas both the synthesis phase and
clearance phases were impacted by NEP inhibition on day 15. The CSF
pooling strategy employed to provide sufficient sample volume for
assaying both Aβ concentration and drug concentration was also not
equivalent for pharmacokinetic and Aβ assessments and so pharmaco-
kinetic/pharmacodynamic comparisons between animals could not be
conducted.

5. Conclusion

In conclusion, these data show sacubitril/valsartan acutely impaired
the clearance of Aβ isoforms from the CNS of cynomolgus monkeys, but
clearance normalized by day 15 as expected due to steady state kinetics.
Aβ levels in the hippocampus and cerebral cortex of sacubitril/
valsartan-treated animals were similar to controls 2 hour post dose on
day 16 and concentrations of sacubitrilat in the brain were low. These
data potentially indicate that compensatory mechanisms may be in
place to restore Aβ clearance with chronic NEP inhibition. The relation-
ship between Aβ concentrations in the CSF and brain are not well under-
stood. Brain immunostaining of primates treated for 39 weeks revealed
no evidence of Aβ deposition. In view of the absence of Aβ accumulation

in the brain, the clinical relevance of acutely-impaired clearance of Aβ
from the CSF by NEP inhibition is unclear. Further clinical studies
assessing cognitive function in patients with heart failure are ongoing.
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