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SUMMARY

PBRM1 is the second most commonly mutated gene
after VHL in clear cell renal cell carcinoma (ccRCC).
However, the biological consequences of PBRM1
mutations for kidney tumorigenesis are unknown.
Here, we find that kidney-specific deletion of Vhl
and Pbrm1, but not either gene alone, results in
bilateral, multifocal, transplantable clear cell kidney
cancers. PBRM1 loss amplified the transcriptional
outputsofHIF1andSTAT3 incurredbyVhldeficiency.
Analysis of mouse and human ccRCC revealed
convergence on mTOR activation, representing the
third driver event after genetic inactivation of VHL
and PBRM1. Our study reports a physiological
preclinical ccRCC mouse model that recapitulates
somatic mutations in human ccRCC and provides
mechanistic and therapeutic insights into PBRM1
mutated subtypes of human ccRCC.

INTRODUCTION

The estimated new kidney cancer cases diagnosed in the world

and the United Sates every year are �300,000 and �63,000,

respectively (Fitzmaurice et al., 2015; Siegel et al., 2016). Clear

cell renal cell carcinoma (ccRCC) is the most common subtype

(75%) (Hsieh et al., 2017b) and is lethal when metastasized

(Rini et al., 2009). TheVonHippel-Lindau (VHL) tumor suppressor

gene is the most frequently mutated gene in ccRCC (Gnarra

et al., 1994; Linehan et al., 1995) and its complete loss consti-

tutes an early, truncal oncogenic driver event. VHL is the sub-

strate recognition of an E3 ligase that labels hypoxia-inducible

factor (HIF) 1a and 2a with ubiquitin for degradation (Kaelin,

2007; Majmundar et al., 2010; Masson and Ratcliffe, 2014; Se-

menza, 2013). Thus, human ccRCC is highly vascular due to un-

controlled activation of HIFa targets that regulate angiogenesis.

Thereby, anti-vascular endothelial growth factor (VEGF)/

vascular endothelial growth factor receptor (VEGFR) agents are

effective, first-line treatment for metastatic ccRCC (mRCC)

(Rini et al., 2009; Voss et al., 2013).

VHL inactivation was the only known oncogenic driver

in ccRCC (Gnarra et al., 1994) until recent large-scale cancer

genomic projects uncovered prevalent mutations including

PBRM1/BAF180 (29%–41%), SETD2 (8%–12%), BAP1 (6%–

10%), and KDM5C (4%–7%) (Cancer Genome Atlas Research

Network, 2013; Hakimi et al., 2013a; Peña-Llopis et al.,

2012; Sato et al., 2013; Varela et al., 2011). Remarkably, these

genes encode chromatin and epigenetic regulatory proteins,

and most mutations are predicted to result in functional loss,

favoring their roles as tumor suppressors (Hakimi et al.,

2013b). PBRM1, the second most commonly mutated gene in

all stages of ccRCC (Hsieh et al., 2017a), encodes BRG1-asso-

ciated factor (BAF) 180, the defining subunit of the �2 million

dalton (MDa) polybromo BAF (PBAF) SWI/SNF complex (Varela

et al., 2011). The SWI/SNF chromatin remodeling complexes

are macromolecular machineries, which utilize ATP to mobilize
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nucleosome and thereby modulate chromatin structure (Biegel

et al., 2014; Clapier and Cairns, 2009). They regulate critical

cellular processes, including cell-cycle, cell fate, cell death,

metabolism, and DNA repair (Hargreaves and Crabtree, 2011).

Interestingly, pan-cancer genomics have uncovered epigenetic

regulators including SWI/SNF proteins as amajor class of cancer

genes (Dawson and Kouzarides, 2012). Mutations of individual

SWI/SNF subunits have been detected in �20% of human can-

cers and they displayed preferential enrichment of mutations

among cancer types (Helming et al., 2014; Kadoch et al., 2013;

Marquez et al., 2015). For example, PBRM1 is most highly

mutated in ccRCC, SMARCB1 (BAF47) in pediatric rhabdoid

tumors and ARID1A (BAF250A) in ovarian clear cell carcinoma

(Biegel et al., 2014), implicating underlying tissue tropism for

disarming specific tumor suppressor gene (TSG) during tumori-

genesis (Wei and Hsieh, 2015).

The knowledge of PBRM1 in mammalian biology is limited.

Mice with straight knockout of Pbrm1 resulted in embryonic

lethality at embryonic day 11.5 due to heart defects (Huang

et al., 2008; Wang et al., 2004), whereas mice with T lympho-

cyte-specific knockout of Pbrm1 exhibited normal thymus and

peripheral T cell development (Wurster et al., 2012). In vitro

studies demonstrated that PBRM1 activated p21 upon irradia-

tion in breast cancer cell lines (Xia et al., 2008) and participated

in p53-induced replicative senescence in fibroblasts (Burrows

et al., 2010), and PBRM1 knockdown enhanced proliferation

and migration of kidney cancer cell lines (Varela et al., 2011).

However, the in vivo tumor suppressor function of PBRM1 has

not been established, and how PBRM1 loss-of-function pro-

motes tumorigenesis remains unclear.

The long latency (>30 years) for VHL germline-mutated pa-

tients to develop ccRCC (Fisher et al., 2014; Kaelin, 2007) and

the inability of Vhl deficiency to induce ccRCC in mice (Kapitsi-

nou and Haase, 2008) suggest that additional genetic/epigenetic

events are probably needed for the development of ccRCC (Wei

and Hsieh, 2015). PBRM1 loss-of-function is one of the most

likely candidates given its high mutation frequency (�40%) in

humanccRCC (Hsiehet al., 2017a).Here,wecreatedkidney-spe-

cific deletion of Pbrm1 and/or Vhl mice to study the tumor sup-

pressor role of PBRM1 and sought to establish a physiological

mouse kidney cancer model that recapitulates human ccRCC.

RESULTS

Genetic Deletion of Pbrm1 in Mouse Kidney Results in
Hydronephrosis
As Pbrm1 (BAF180) deletion in mice incurred embryonic lethality

(Wang et al., 2004), we deleted the conditional Pbrm1F allele

(Wurster et al., 2012) in the mouse kidney using a transgenic

Cre recombinase line Ksp-Cre (Shao et al., 2002) that has been

widely utilized to model kidney cancer in mice (Adam et al.,

2011; Baba et al., 2008; Chen et al., 2008; Igarashi, 2004). The

expression of Cre from the Ksp-Cre is driven by the kidney-spe-

cific Cadherin 16 promoter, which begins expression at embry-

onic day 14.5 in epithelial cells of the developing kidney and

genitourinary tract and continues to be expressed in tubular

epithelial cells in adults. Pbrm1F/FKsp-Cremice were born at ex-

pected Mendelian ratio. To monitor if Pbrm1 loss results in any

gross kidney abnormality, serial abdominal MRI was performed

on a large cohort of mice. Obstructive hydronephrosis, enlarged

kidneys containing fluid-filled renal pelvis, and non-neoplastic

masses at the ureteropelvic junction or proximal ureter were de-

tected in some Pbrm1F/FKsp-Cre mice (Figures 1A and S1A).

Among 53 Pbrm1F/FKsp-Cre and 27 Pbrm1+/+Ksp-Cre (denoted

as WT thereafter) mice examined, 18 (34%) Pbrm1F/FKsp-Cre

while 0 WT mice developed hydronephrosis (Figure 1B).

Observed hydronephrosis exhibited a preponderance of female

over male and left over right (Figures 1C and 1D) and could be

detected by MRI as early as 6 months of age (Figure S1B). At

necropsy, the volume of hydronephrotic Pbrm1F/FKsp-Cre kid-

neys was at two to five times that of normal appearing kidneys

(Figure 1E), whereas the creatinine of aged Pbrm1F/FKsp-Cre

and WT mice was comparable (Figure 1F).

Genetic Deletion of Vhl and Pbrm1 in Mouse Kidney
Results in Polycystic Kidney Disease and Increased
Mortality
As neither Vhl nor Pbrm1 deletion alone caused kidney tumors,

VhlF/FPbrm1F/FKsp-Cre mice were generated to investigate the

genetic interaction between Vhl and Pbrm1 deficiency in kidney

cancer pathogenesis. The survival of 325 mice (36 WT, 30 VhlF/F

Ksp-Cre, 129 Pbrm1F/FKsp-Cre, and 130 VhlF/FPbrm1F/FKsp-

Cre) was monitored, which revealed a markedly increased mor-

tality in VhlF/FPbrm1F/FKsp-Cremice and a moderately increased

mortality in VhlF/FKsp-Cremice (Figure 2A). Remarkably, abdom-

inal MRI detected diffuse polycystic kidney disease (PKD) in

30% (17/56) of 6- to 9-month-old and in 67% (14/21) of 10- to

14-month-old VhlF/FPbrm1F/FKsp-Cremice, whereas only 1 of 14

aged VhlF/FKsp-Cre mice (12- to 16-month-old) developed PKD

with a few scattered cysts (Figures 2B, 2C, and S2). To investigate

cystic changes, weperformed histological analysis on the kidneys

of VhlF/FPbrm1F/FKsp-Cre mice at different ages (3–13 months).

Both tubularandglomerularcystswerepresent inyoungmice (Fig-

ure S3). Of note, scattered cystic anomalies of kidneys have been

described in hereditary VHL patients and are implicated as pre-

neoplastic lesions (Mandriota et al., 2002; Neumann and Zbar,

1997; Walther et al., 1995). Consistent with a prior report, mild hy-

dronephrosiswas alsoobserved inVhlF/FKsp-Cremice (Figure2D)

(Frew et al., 2008). Elevated serum creatinine was observed in the

majority of aged VhlF/FPbrm1F/FKsp-Cre mice (Figure 2E), which

could be accountable for their early demise.

VhlF/FPbrm1F/FKsp-Cre Mice Develop Multifocal, Clear
Cell Kidney Cancer
Serial MRI examination of kidney in VhlF/FPbrm1F/FKsp-Cremice

recognized patterns of imaging changes from normal through

progressive cystic abnormality to increasedmultifocal nodularity

with decreased cystic appearance (Figures S2 and S3). Gross

examination of 58 kidneys (29 mice, 8- to 17-month-old) at

necropsy showed diffusely cystic changes in 58.33% (21/36)

of VhlF/FPbrm1F/FKsp-Cre kidneys and none in VhlF/FKsp-Cre

(n = 8), Pbrm1F/FKsp-Cre (n = 10), and WT (n = 4) kidneys (Table

S1). Histologic examination revealed sheets of tumor cells inter-

spersed within a highly vascularized stroma in 33.33% (12/36)

VhlF/FPbrm1F/FKsp-Cre kidneys, whereas no tumors were noted

in 22 kidneys of the other genotypes (Table S1). Notably, all the
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tumors were observed in VhlF/FPbrm1F/FKsp-Cre mice after

10months of age with a 50% tumor incidence (12/24). The tumor

cells displayed central features of human ccRCC, including

clear cytoplasm and positive membranous staining of carbonic

anhydrase IX (CA-IX), a target of HIF1 (Mandriota et al., 2002;

Semenza, 2013) (Figure 3A). Consistent with the known aberrant

HIF1 activation in the absence of VHL, weak, sporadic CA-IX

staining was detected in VhlF/FKsp-Cre, but not in Pbrm1F/F

Ksp-Cre or WT kidneys (Figure 3A). To compare these mouse

tumorswith humanRCCs, we performed gene expression profile

analysis of these mouse tumors in comparison to human TCGA

clear cell RCC (KIRC) and chromophobe RCC (KICH) kidney

cancers and demonstrated that VhlF/FPbrm1F/FKsp-Cre tumors

resemble KIRC but not KICH (Figure 3B). Data suggest that

human clear cell RCC arises from proximal tubule (Chen

et al., 2016). Accordingly, we investigated the cell type origin of

VhlF/FPbrm1F/FKsp-Cre mouse tumors. Staining for lotus tetra-

gonolobus lectin (LTL) that marks proximal convoluted tubule

and for Tamm-Horsfall protein (THP) that marks distal convo-

luted tubule was performed. Consistent with human ccRCC orig-

inating from proximal tubule, our VhlF/FPbrm1F/FKsp-Cre mouse

tumors were stained positive for LTL but not THP (Figure 3C).

CD45 staining did not detect increased lymphocyte infiltrate of

these VhlF/FPbrm1F/FKsp-Cre tumors (Figure 3C). Consistent

with human ccRCC reports, these tumors were positive for

CD31 staining that marks endothelial cells (Figure 3C). We also

performed Oil Red O staining of the fresh frozen section of these

mouse tumors to evaluate lipid content in our the clear cell

mouse tumors (Figure S4). Furthermore, the presence of high

glycogen in these tumors was confirmed by PAS-D staining (Fig-

ure S4). Of note, our VhlF/FPbrm1F/FKsp-Cre mouse tumors did

not directly originate from cystic lesions (Figure S5A). Higher

proliferation index (Ki-67 staining) was observed in these Vhl

and Pbrm1 doubly deficient clear cell kidney tumors whereas

no alteration in cell death was detected by immunohistochem-

istry for cleaved caspase-3 and TUNEL assays (Figures S5B

Figure 1. Pbrm1F/FKsp-Cre Mice Develop Obstructive Hydronephrosis

(A) Representative MRI images of unilateral or bilateral severe hydronephrosis. The non-neoplastic mass at the proximal ureter is marked by arrow.

(B) Incidence of hydronephrosis in WT and Pbrm1F/FKsp-Cremice. Cohorts of animals at 12months of age on average were randomly selected for MRI scanning.

***p < 0.001 (Fischer’s exact).

(C) Incidence of hydronephrosis in the Pbrm1F/FKsp-Cre mice based on gender.

(D) Location distribution of hydronephrosis in Pbrm1F/FKsp-Cre mouse kidneys.

(E) Kidney volume in WT and Pbrm1F/FKsp-Cre mice. *p < 0.05 (Mann-Whitney).

(F) Serum creatinine levels of mice in (E). ns, not statistically significant.
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and S5C). qPCR with reverse transcription (qRT-PCR) demon-

strated greatly reduced Vhl and Pbrm1 expression in VhlF/F

Pbrm1F/FKsp-Cre kidney tumors (Figure S5D). Of note, we did

not detect local tumor invasion into adjacent tissues or distant

metastasis to lungs, livers, bones, and lymph nodes in the exam-

ined tumor-bearing VhlF/FPbrm1F/FKsp-Cre mice.

Figure 2. VhlF/FPbrm1F/FKsp-Cre Mice Develop Polycystic Kidney Disease and Exhibit Premature Mortality

(A) Kaplan-Meier survival curve of WT, VhlF/FKsp-Cre, Pbrm1F/FKsp-Cre, and VhlF/FPbrm1F/FKsp-Cre mice.

(B) Incidence of polycystic kidney disease in WT, VhlF/FKsp-Cre, Pbrm1F/FKsp-Cre, and VhlF/FPbrm1F/FKsp-Cre. Age and number of animals in each group are

specified.

(C) Representative MRI and gross images of kidneys of the indicated genotypes.

(D) Kidney volumes of WT, VhlF/FKsp-Cre, and VhlF/FPbrm1F/FKsp-Cre mice. Numbers of kidneys measured in each group (n) are indicated. **p = 0.0096; ***p <

0.0001 (Mann-Whitney).

(E) Serum creatinine levels in WT, VhlF/FKsp-Cre, and VhlF/FPbrm1F/FKsp-Cre mice (the same as Figure 1D). ***p < 0.001 (Mann-Whitney).
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Vhl and Pbrm1 Doubly Deficient Clear Cell Kidney
Tumors Are Transplantable
To assess the tumor initiating capacity of the de novo Vhl and

Pbrm1 doubly deficient kidney tumors, we transplanted 12 tumor

fragments from two VhlF/FPbrm1F/FKsp-Cre kidneys into the sub-

renal capsules of 12 kidneys of 6 immunocompromised NOD/

SCID/IL2Rgnull (NSG) mice. All the recipient kidneys, except for

the one animal that died prematurely of known cause, showed

large visible kidney tumors upon dissection at 10–12months after

transplantation (Figure 4A). In two of the transplanted cases, we

also observed tumor invasion into organs such as liver (Figure 4B).

Figure 3. VhlF/FPbrm1F/FKsp-Cre Mice

Develop Multifocal CA-IX Positive Clear

Cell Kidney Cancers

(A) Representative gross images (column 1),

histopathological images (column 2), and immu-

nohistochemistry of CA-IX (columns 3 and 4)

of WT, VhlF/FKsp-Cre, Pbrm1F/FKsp-Cre, and

VhlF/FPbrm1F/FKsp-Cre kidneys. Tumor and cyst

are indicated by white and black arrows, respec-

tively. T, tumor; N, adjacent normal. Scale bars are

at 50 mm, 100 mm, or 200 mm as indicated.

(B) Heatmap of inter-sample correlations (red,

positive) between mRNA profiles of TCGA human

RCC tumors (columns, TCGAKIRC andKICH data)

and VhlF/FPbrm1F/FKsp-Cre mouse kidney tumors

(rows).

(C) Representative images of immunofluorescence

of LTL (column 1) and immunohistochemistry of

THP (column 2), CD45 (column 3), and CD31 (col-

umn 4) in VhlF/FPbrm1F/FKsp-Cre tumors and

adjacent non-tumor tissues.

Furthermore, tumors that developed in

the transplanted NSG mouse could be

further successfully propagated into a

NSG mouse (Figure 4A). Together, these

data demonstrated the malignant poten-

tial of VhlF/FPbrm1F/FKsp-Cre kidney tu-

mors. Histology of these tumor allografts

showed the same histological features,

positive CA-IX staining as donor tumors,

and genotypes (Figure 4). Importantly,

this stepwise, morphological progression

observed in VhlF/FPbrm1F/FKsp-Cre kid-

neys from normal appearance through

cystic changes (�6 months) to ccRCC for-

mation (�10months)offeredanopportunity

to temporally dissect the mechanisms by

which PBRM1 loss cooperates with VHL

loss to initiate the development of ccRCC.

Gene Expression Profiling of WT,
Vhl-Deficient, Pbrm1-Deficient,
or Vhl and Pbrm1 Doubly Deficient
Mouse Renal Cortices Identifies
Distinct Clusters
To determine why double deficiency of

Vhl and Pbrm1, but not single deficiency

of either gene, resulted in ccRCC, we performed gene expres-

sion profiling of RNA isolated from renal cortices of 12-week-

old WT, VhlF/FKsp-Cre, Pbrm1F/FKsp-Cre, and VhlF/FPbrm1F/F

Ksp-Cre mice. Kidneys from 12-week-old mice were chosen

to avoid potentially confounding transcriptional changes sec-

ondary to cystic anomalies that normally manifest after 6 months

of age. Of note, none of the 12-week-old mouse kidneys dis-

played discernible macroscopic or microscopic cystic abnor-

malities at necropsy regardless of genotypes. Genes differ-

entially expressed in at least one genotype were identified

(Table S2A) and subjected to unsupervised hierarchical
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clustering analysis, which revealed three distinct clusters (Fig-

ure 5A). Cluster I showed enrichment of genes that were upre-

gulated in Vhl-deficient renal cortices and further upregulated

in Vhl and Pbrm1 doubly deficient renal cortices. In contrast,

cluster III showed enrichment of genes that were downregu-

lated in Vhl and Pbrm1 doubly deficient renal cortices. Each

cluster was then analyzed and visualized using ClueGO (Bindea

et al., 2009) to interrogate functionally grouped gene ontology

and pathway networks (Figure 5B; Table S2B). Pathways

over-represented that are highly pertinent to known ccRCC

pathogenesis were HIF1 and JAK-STAT pathway genes in clus-

ter I and oxidative phosphorylation (OXPHOS) genes in cluster

III (Figure 5B), whereas no pathway was significantly enriched

in cluster II.

Figure 4. VhlF/FPbrm1F/FKsp-Cre Mice Tu-

mors Are Transplantable and Invasive

(A) Representative gross images (column 1),

histopathological images (column 2), and immu-

nohistochemistry of CA-IX (column 3) of donor

VhlF/FPbrm1F/FKsp-Cre kidney tumors (row 1),

primary allograft kidney tumors (row 2), and sec-

ondary allograft kidney tumors (row 3).

(B) Representative histopathological image (top)

and immunohistochemistry of CA-IX (bottom) of

the transplanted invasive tumors.

(C) PCR genotyping of WT kidney and donor and

allograft VhlF/FPbrm1F/FKsp-Cre tumors.

PBRM1 Loss Amplifies the
Transcriptional Outputs of HIF1 and
STAT3 Incurred by VHL Loss
HIF1a is stabilized upon VHL loss and

plays a central role in the pathogenesis

of ccRCC. It was reported that HIF1

induces PKM2 to activate STAT3, which

in turn induces HIF1a expression (Dema-

ria and Poli, 2012; Luo and Semenza,

2012). Furthermore, it is known that

HIF1 and STAT3 cooperate to activate

the expression of HIF1 targets including

genes involved in angiogenesis (Jung

et al., 2005). Consequently, the intricate

interplay between HIF1 and STAT3 estab-

lishes a feed-forward amplification loop

to maximize target gene expression.

Our discovery that HIF1 and JAK-STAT

pathway genes were enriched in Vhl-defi-

cient renal cortices and further enriched in

Vhl and Pbrm1 doubly deficient renal

cortices raises a hypothesis in which

PBRM1 prevents the amplification of the

HIF1 and STAT3 transcriptional outputs

that are initiated upon VHL loss.

To test this, we identified HIF1 and

STAT3 motifs from differentially ex-

pressed genes to determine the strength

of regulation of the targets by indi-

vidual transcription factor binding motifs

(TFBMs). RNA expression data were analyzed using Integrated

System for Motif Activity Response Analysis (ISMARA) (Balwierz

et al., 2014), which produced an output denoting the inferred

activity of HIF1 and STAT3 motifs in every sample. An increase

in the HIF1 (p = 0.08) and STAT3 (p = 0.017) motif activities

was detected when comparing VhlF/FKsp-Cre to WT kidneys,

and a marked increase in both HIF1 (p = 0.00076) and STAT3

(p = 0.00018) outputs was identified when comparing VhlF/F

Pbrm1F/FKsp-Cre to WT kidneys. In contrast, no changes in

HIF1 (p = 0.49) or STAT3 (p = 0.98) motif activity were observed

when comparing Pbrm1F/FKsp-Cre to WT kidneys. Remarkably,

the effects of Pbrm1 deletion on HIF1 and STAT3 targets mani-

fested only under the premise of Vhl loss, resulting in a further

increase of the HIF1 (p = 0.035) and STAT3 (p = 0.0022) motif

2898 Cell Reports 18, 2893–2906, March 21, 2017



Figure 5. PBRM1 Loss Amplifies the Transcriptional Outputs of HIF1 and STAT3 Incurred by VHL Loss

(A) Heatmap of genes with significantly different expression in the renal cortices of WT, VhlF/FKsp-Cre, Pbrm1F/FKsp-Cre, and VhlF/FPbrm1F/FKsp-Cre mice at

12 weeks of age. Unsupervised hierarchical agglomerative clustering identified three distinct clusters using Pearson correlation and average linkage as similarity

measures for pairs of genes and pairs of inchoate clusters, respectively.

(B) Clusters I and III were tested for pathway enrichment and presented using ClueGO.

(C) Inferred HIF and STAT motif activities across the indicated genotypes. *p = 0.035; **p = 0.0022 (one-sided t test).

(D) The mRNA levels of the indicated genes from the indicated genotypes were assessed by qRT-PCR. Data were normalized against GAPDH (mean ± SD, n = 3

independent experiments). *p < 0.05; **p < 0.005 (Student’s t test).

Cell Reports 18, 2893–2906, March 21, 2017 2899



activities when comparing VhlF/FPbrm1F/FKsp-Cre to VhlF/FKsp-

Cre kidneys (Figure 5C). To further validate these findings, we

performed qRT-PCR analyses on Hif1a, Stat3, and representa-

tive HIF1 target genes (Pdk1 and Egln3) as well as STAT3 target

genes (Socs3, Il4r, and Il6r) (Figures 5D and S6A–S6D), which

demonstrated consistent results among different gene expres-

sion assays. Of note, we did not see any transcriptional upregu-

lation of HIF2a. In summary, our data suggest that PBRM1, a

SWI/SNF complex protein, could function like a transcriptional

resistor to prevent uncontrolled self-perpetuating amplification

of the HIF1 and STAT3 transcriptional outputs incurred by Vhl

deficiency. To further interrogate this working hypothesis, qRT-

PCR was performed on NIH 3T3 cells with knockout of Vhl,

Pbrm1, or both using CRISPR-Cas9. Indeed, the loss of

PBRM1 further enhances HIF1 and the STAT3 signaling that

was primed upon the loss of VHL (Figure S6G).

The Expression of OXPHOS Genes Is Markedly
Downregulated in Vhl and Pbrm1 Doubly Deficient
Mouse Kidneys
In contrast to cluster I that encompasses upregulated genes in

the VhlF/FPbrm1F/FKsp-Cre kidneys, cluster III mainly consists

of significantly downregulated genes (Figure 5A) within which

most enriched are OXPHOS genes (Figure 5B). The significant

downregulation of nuclear-encoded OXPHOS genes was further

confirmed by qRT-PCR of genes involved in different electron-

transport chain complexes, including Ndufa2 (complex I), Sdhd

(complex II), Cox5a (complex IV), and Atp4a (complex V) (Figures

5D, S6E, and S6F). HOMER analysis was performed to deter-

mine if specific transcription factors might have directly medi-

ated such repression. However, we did not detect enrichment

of any pertinent TFBMs within the cluster III genes. It has been

shown that HIF1 inhibits mitochondrial biogenesis and respira-

tion through downregulation of PGC1b transcription in RCC4,

a VHL-deficient human kidney cancer cell line (Zhang et al.,

2007). However, neither gene expression profiling nor qRT-

PCR detected significant downregulation of Pgc1b in VhlF/F

Pbrm1F/FKsp-Cre kidneys (Figure S6F). TCGA pan-kidney can-

cer analysis on common human kidney cancer types, including

KIRC (kidney renal clear), KIRP (kidney renal papillary), and

KICH (kidney chromophobe), demonstrated a significant down-

regulation of OXPHOS genes in ccRCC, but not in papillary RCC

(pRCC) or chromophobe RCC (chRCC) (Chen et al., 2016).

Vhl and Pbrm1 Doubly Deficient Clear Cell Kidney
Tumors Display Hyperactive mTORC1 Signaling
The observation that clear cell kidney tumors occurred in VhlF/F

Pbrm1F/FKsp-Cre mice after a long latency period suggests the

involvement of additional genetic and/or epigenetic events. To

investigate whether transcriptional aberrations might be respon-

sible, RNA sequencing (RNA-seq) was performed on VhlF/F

Pbrm1F/FKsp-Cre kidney tumors and age-matched WT renal

cortices. The complex pathological changes observed in the

aged VhlF/FPbrm1F/FKsp-Cre mouse kidneys precluded the

isolation of adjacent normal renal cortices for comparison.

Differentially expressed genes were identified (Table S3)

and subjected to unsupervised hierarchical clustering anal-

ysis, which identified two clusters denoting tumors and normal

controls (Figure 6A). These genes were analyzed and visualized

with ClueGO to interrogate functionally grouped gene ontology

and pathway networks (Figure 6B; Table S4). Gene Set Enrich-

ment Analysis (GSEA) revealed upregulation of HIF1 and

STAT3 pathways and downregulation of OXPHOS pathway in

VhlF/FPbrm1F/FKsp-Cre tumors (Figure 6C), consistent with the

findings observed in the 12-week-old VhlF/FPbrm1F/FKsp-Cre

renal cortices (Figure 5B). Significantly, dysregulation of the

mTOR signaling pathway was shown in the Vhl and Pbrm1

doubly deficient tumors but not in the 12-week-old VhlF/F

Pbrm1F/FKsp-Cre renal cortices (Figures 5B, 6B, and 6C;

Table S4). To validate RNA-sequencing findings, qRT-PCR

focused on the HIF1 and mTOR pathway genes was performed

(Figures 6E and 6F), which demonstrated consistent findings

among gene expression analysis platforms. We also performed

immunohistochemistry on VhlF/FPbrm1F/FKsp-Cre mouse tu-

mors to assess HIF1 and mTOR signaling. A significant nuclear

accumulation of HIF1, a weak nuclear accumulation of HIF2,

and an expression of GLUT1, an HIF target, were detected in

these tumors (Figure S7A). Furthermore, increased phosphoryla-

tion of 4E-BP1 and S6K, two well-established mTORC1 sub-

strates, were detected in VhlF/FPbrm1F/FKsp-Cre tumors but

not adjacent normal-looking kidney tissues (Figures 6D and

S7B). In contrast, the phosphorylation of ERK was not increased

in the Vhl and Pbrm1 doubly deficient kidney tumors (Figure 6D).

It is noteworthy that Ddit4 or Redd1, a transcriptional target of

HIF1 (Brugarolas et al., 2004), was significantly upregulated in

Vhl and Pbrm1 doubly deficient kidney tumors (Figure 6E).

REDD1 is known to suppress mTORC1 activity by releasing

TSC2 from its inhibitor 14-3-3 (Brugarolas et al., 2004; DeYoung

et al., 2008). Several lines of clinical evidence support the impor-

tance of mTORC1 activation in the pathobiology of human

ccRCC, including the known therapeutic benefit of administering

mTORC1 inhibitors in treating metastatic ccRCC (Voss et al.,

2014; Wei and Hsieh, 2015) and the observed prevalent

mTORC1 pathway activation in human ccRCC (Linehan et al.,

2010; Robb et al., 2007). Induction of REDD1 by HIF1 may acti-

vate a tumor suppressor checkpoint that restrains the oncogenic

potential of HIF1. Hence, activation of mTORC1 activity through

additional genetic/epigenetic events may be required for the

initiation of ccRCC in Vhl and Pbrm1 doubly deficient renal

epithelial cells. In fact, significant downregulation of Tsc1 and

Tsc2 was demonstrated in Vhl and Pbrm1 doubly deficient

kidney tumors (Figure 6F), which would activate mTORC1

even when REDD1 was upregulated. In summary, the emergent

mTORC1 activation detected in the Vhl and Pbrm1 doubly defi-

cient ccRCC may represent a prerequisite oncogenic driver

event in the pathogenesis of ccRCC once kidney epithelial cells

lost VHL and PBRM1.

Analyses of Mouse and Human ccRCC Reveal
Convergence on the mTOR Pathway Activation
Contrary to the inability of Vhl deficiency to initiate ccRCC in

mice, the Hif1a-M3 transgenic model (Hif1a-M3 TRACK) where

kidney-specific overexpression of a non-degradable as well

as transcriptionally active mutant HIF1a-M3 (P402A, F564A,

N803A) resulted in renal cysts and small clear cell tumors in

aged (14–22 months) mice (Fu et al., 2011, 2015). Of note,
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Figure 6. Vhl and Pbrm1 Doubly Deficient Clear Cell Kidney Tumors Display Hyperactive mTORC1 Signaling

(A) Heatmap of genes with significantly different expression in age-matchedWT kidneys (n = 4) and VhlF/FPbrm1F/FKsp-Cre tumors (n = 5) based on unsupervised

hierarchical agglomerative clustering.

(B) The genes that were significantly, differentially expressed in VhlF/FPbrm1F/FKsp-Cre T/N (false discovery rate [FDR] <0.05) were tested for enrichment and

represented using ClueGO.

(C) GSEA plots of the ranked list of differentially expressed genes in VhlF/FPbrm1F/FKsp-Cre kidney tumors (T) and WT normal kidneys (N) generated using three

gene sets: curated HIF targets, KEGG JAK STAT signaling pathway, KEGG oxidative phosphorylation pathway, and KEGG mTOR Pathway enrichment.

(D) Immunohistochemistry of phosphorylated-4E-BP1 (p4E-BP1) at threonine 37/46 (column 1), phosphorylated S6K (pS6K) at serine 240/244 (column 2), and

phosphorylated ERK1/2 (pERK) at threonine 202/tyrosine 204 in VhlF/FPbrm1F/FKsp-Cre tumors. T, tumor; N, adjacent normal. Scale bars are at 100 mmor 200 mm

as indicated.

(E and F) The mRNA levels of Ddit4 (E, top left), Ldha (E, top right), Hk2 (E, bottom left), Glut1 (E, bottom right), Tsc1 (F, left), and Tsc2 (F, right) in VhlF/F

Pbrm1F/FKsp-Cre tumors (n = 6) and WT kidneys (n = 4) were assessed by qRT-PCR. Data were normalized against GAPDH (mean ± SD). *p < 0.05; **p < 0.005;

***p < 0.0005 (Student’s t test).
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oxygen-dependent hydroxylation of P402 and F564 of HIF1a

by prolyl hydroxylase domain enzymes (PHDs) and of N803 by

factor inhibiting HIF (FIH) enhances the HIF-VHL interaction,

leading to its degradation (Keith et al., 2011; Masson and Rat-

cliffe, 2014). Furthermore, hydroxylation of N803 by FIH also

disrupts the interaction between HIF and transcription coac-

tivator p300/CBP, thereby inhibiting HIF1-mediated transcrip-

tion (Masson and Ratcliffe, 2014). Although VHL loss leads to

the stabilization of HIF1a and HIF2a, oxygen-dependent and

FIH1-mediated asparaginyl hydroxylation of HIFs prevents the

recruitment of p300/CBP, which helps explain why Vhl defi-

ciency alone is insufficient for kidney tumor initiation.

To further determine whether mTORC1 activation might be

a mechanistically preferred node after the hyperactivation of

HIF1 during the pathogenesis of ccRCC, we resorted to the

transcriptomic data of the Hif1a-M3 TRACK mouse model.

Indeed, GSEA revealed upregulation of the mTOR signaling

pathway (Figure 7A). As expected, upregulation of HIF1 and

JAK/STAT signaling pathways and downregulation of the

OXPHOS pathway were also seen in the Hif1a-M3 TRACK

mouse model (Figure 7A). We further compared the transcrip-

tomics of the VhlF/FPbrm1F/FKsp-Cre tumors to those of the

Hif1a-M3 TRACK mouse model (Figure 7B). Within the 2,430

differentially expressed genes shared between these two

models, enrichment in the mTOR and HIF1 pathways was

evident (Figures 7B and 7C; Table S5). The shared mTOR

pathway aberration between these two different mouse ccRCC

models supports the convergence on mTORC1 activation once

HIF1 becomes hyperactive (Figures 7A–7C).

To determine whether this observation could be extended into

human ccRCC bearing both VHL and PBRM1mutations, we first

compiled differentially expressed genes in human VHL- and

PBRM1-mutated ccRCC from the TCGA-KIRC dataset. Consis-

tent with the findings observed in mouse ccRCC, GSEA of these

differentially expressed genes revealed upregulation of HIF1,

JAK/STAT3, and mTOR pathways and the downregulation of

OXPHOS pathway (Figure 7D). Next, we compared the differen-

tially expressed genes identified in human VHL- and PBRM1-

mutated ccRCC to those shared between the two mouse

models, which resulted in the identification of 1,772 genes that

were shared among these three ccRCC models (Figure 7B).

Within this shared gene set, HIF1 and mTOR pathway genes

were statistically enriched again (Figure 7E; Table S6). Taken

together, our study favors a scenario in which a sequence

of at least three distinct genetic/epigenetic events including

the loss of VHL, the loss of PBRM1, and the subsequent activa-

tion of mTORC1 are required for the development of ccRCC

(Figure 7F).

DISCUSSION

VHL is the most commonly mutated gene in human ccRCC and

its mutation serves as the initial driver event in the pathogenesis

of ccRCC (Linehan et al., 1995). However, genetic deletion of Vhl

in mice is insufficient to initiate kidney tumors (Haase et al.,

2001; Kapitsinou and Haase, 2008), favoring the involvement

of additional genetic/epigenetic events. Such events remained

elusive till the discovery of additional 3p21 tumor suppressor

genes commonly mutated in human ccRCC, i.e., PBRM1,

SETD2, and BAP1 (Hakimi et al., 2013b). Although PBRM1 is

the second most commonly mutated gene in human ccRCC,

whether and how PBRM1 loss contributes to the pathogenesis

of ccRCC are unknown. Through tissue-specific deletion of

both Vhl and Pbrm1 (VhlF/FPbrm1F/FKsp-Cre), we created a clear

cell kidney cancer mouse model that recapitulates histopatho-

logical and molecular features of human ccRCC and elucidated

how PBRM1 functions as a tumor suppressor in ccRCC.

The VhlF/FPbrm1F/FKsp-Cre mice developed preneoplastic

polycystic kidney lesions at �6 months and multifocal ccRCC

at �10 months, suggesting that loss of Vhl and Pbrm1 in kidney

predisposes to ccRCC. The human pan-cancer genomics iden-

tified SWI/SNF complexes as commonly mutated genes (�20%)

across cancer types with preferential enrichment of individual

mutations in specific cancer types (Helming et al., 2014; Kadoch

et al., 2013; Marquez et al., 2015), which presents challenges

and opportunities in broadening our knowledge on how chro-

matin remodeling ATPase complexes function as tumor sup-

pressors. Among the SWI/SNF complexes, SMARCB1 (BAF47)

is the best-characterized tumor suppressor that regulates cell

cycle and antagonizes PRC2 complex (Helming et al., 2014).

Expression profiling of 12-week-old VhlF/FPbrm1F/FKsp-Cre

renal cortices revealed the tumor suppressor role of PBRM1 in

preventing the self-perpetuating over-amplification of the HIF1

pathway through limiting the intricate feed-forward interplay

between HIF1 and STAT3 upon VHL loss (Demaria and Poli,

2012; Jung et al., 2005; Luo and Semenza, 2012). The unex-

pected tumor suppressor function of PBRM1 is analogous to

an electrical resistor in preventing power overdrive, in which

PBRM1 restrains the HIF1 and STAT3 transcription outputs

from over-amplification upon the loss of VHL (Figure 7F).

The observation that clear cell kidney tumors occurred

in VhlF/FPbrm1F/FKsp-Cre mice after a long latency period

Figure 7. Analyses of Mouse and Human ccRCC Reveal Convergence on the mTOR Pathway Activation
(A) GSEA plots of the ranked list of differentially expressed genes in Hif1a-M3 TRACK mouse tumors (T) and normal (N) generated using four gene sets: curated

HIF targets, KEGG JAK STAT signaling pathway, KEGG oxidative phosphorylation pathway, and KEGG mTOR Pathway.

(B) Venn diagram of differentially expressed genes in VhlF/FPbrm1F/FKsp-Cre tumors (T) versus WT normal (N) (T/N), Hif1a-M3 TRACK T/N samples, and human

VHLmtPBRM1mt ccRCC tumors versus normal.

(C) The differentially expressed genes at the intersect of VhlF/FPbrm1F/FKsp-Cre T/N and Hif1a-M3 TRACK T/N were tested for enrichment and presented using

ClueGO.

(D) GSEAplots of the ranked list of differentially expressed genes in human VHLmtPBRM1mt ccRCC tumors versus normal kidneys generated using four gene sets:

curated HIF targets, KEGG JAK STAT signaling pathway, KEGG oxidative phosphorylation pathway, and KEGG mTOR Pathway.

(E) The shared differentially expressed genes in VhlF/FPbrm1F/FKsp-Cre T/N, Hif1a-M3 TRACK T/N, and TCGA-KIRC VHLmtPBRM1mt T/N were tested for

enrichment and presented using ClueGO.

(F) Model depicts the chronological sequences of genetic and signaling events during the pathogenesis of Vhl and Pbrm1 doubly deficient ccRCC.
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suggests the involvement of additional signaling aberrations.

Immunohistochemical and transcriptomic analyses demon-

strated that activation of mTORC1 rather than the ERK pathway

is the preferred third event. Ample evidences support the impor-

tance of mTORC1 activation in the pathobiology of human

ccRCC, e.g., mTORC1 pathway activation is prevalent in human

ccRCC (Linehan et al., 2010; Robb et al., 2007) and mTOR inhib-

itors are standard of care in treating metastatic ccRCC (Voss

et al., 2014; Wei and Hsieh, 2015). As REDD1, a key transcrip-

tional target of HIF1, negatively regulates mTORC1 through

activation of TSC1/TSC2 (Brugarolas et al., 2004; DeYoung

et al., 2008), it is foreseeable that mTORC1 activation could

be a bottleneck for tumors originating from a hyperactive HIF1

signaling. Consistent with this working hypothesis, both the

VhlF/FPbrm1F/FKsp-Cre and the published HIF1a-M3 TRACK

mouse models (Fu et al., 2011) developed ccRCC after a long

latency period and showed convergence on mTORC1 activa-

tion (Figure 7F). Moreover, mTORC1 pathway activation was

also observed in human ccRCC carrying mutations of VHL and

PBRM1 (Figure 6E). Of note, multi-regional sequencing of a

hereditary VHL syndrome patient also detected the mutations

of PBRM1 and the convergence of mTORC1 pathway activa-

tion (Fisher et al., 2014). These findings are consistent with

a recurrent oncogenic theme in which many oncogenes, such

as c-MYC, BRAF, and MLL-fusions, activate both oncogenic

signaling and intrinsic tumor-suppressor checkpoints (Liu

et al., 2014; Lowe et al., 2004; Maertens et al., 2013). Therefore,

abrogating the built-in intrinsic tumor suppressor activities of in-

dividual oncogenes is essential for tumorigenesis. It was recently

reported that homozygous deletion of Vhl and Bap1 in mouse

kidney resulted in early lethality (<1 month), and some mice

(within a cohort of 7) carrying homozygous deletion of Vhl and

heterozygous deletion of Bap1 developed tumor micronodules

(0.25–1.8 mm) with unknown tumor incidence, transplantability,

and molecular characteristics (Wang et al., 2014). Notably, com-

plete BAP1 inactivation is observed in human ccRCC (Peña-

Llopis et al., 2012). How heterozygous loss of Bap1 cooperates

with Vhl loss to initiate kidney tumorigenesis in mice remains

intriguing (Wang et al., 2014).

The suppression of OXPHOS genes observed in the VhlF/F

Pbrm1F/FKsp-Cre ccRCC model is consistent with the global

metabolomics reported on ccRCC (Hakimi et al., 2016), which

lends further support for the notion that kidney cancer is a

metabolic disease that manifests with massive metabolic re-

programming (Hakimi et al., 2016; Linehan et al., 2010). Inhibitors

of mTORC1, the key cellular complex integrating nutrient and

growth factor signaling to promote anabolic metabolism, are

standard of care for metastatic ccRCC (Voss and Hsieh, 2016).

However, a wide range of clinical outcomes has been observed.

Interestingly, genomic study of RECORD-3, a large clinical trial

that randomized kidney cancer patients to either VEGFR or

mTORC1 inhibitors, demonstrated that ccRCC with mutant

PBRM1 associates with longer progression free survival (PFS)

on everolimus, an mTORC1 inhibitor, at 12.8 months than

those with wild-type PBRM1 at 5.5 months (Hsieh et al., 2015,

2017a). In parallel, the VhlF/FPbrm1F/FKsp-Cre ccRCC and hu-

man VHL- and PBRM1-mutated ccRCC shared mTORC1

pathway aberration. Both clinical data and this study support a

model in which mTORC1 activation constitutes the preferred

third driver event during ccRCC tumorigenesis immediately after

genetic inactivation of VHL and PBRM1 (Voss and Hsieh, 2016)

(Figure 7F), which serves as an example of preferential pathway

convergent evolution of a given cancer type (Voss and Hsieh,

2016; Wei and Hsieh, 2015) that could have predictive values

for selecting patients of a given cancer genotype with matched

targeted therapies.

EXPERIMENTAL PROCEDURES

More detailed information is available in the Supplemental Experimental

Procedures.

Mice

Baf180F/F mice were obtained from Dr. Wang Zhong (Wurster et al., 2012).

Animal experiments were performed in accordance to the Institutional Animal

Care and Use Committee (IACUC) at MSKCC.

Mouse MRI

Mice MRI scans were carried out on either 200 or 300 MHz Bruker 4.7 T or

7 T Biospec scanners (Bruker Biospin MRI GmbH) equipped with 640 mT/m

ID 115 mm and 300 mT/m ID 200 mm gradients, respectively (Resonance

Research).

RNA Isolation and Microarray Analysis

Total RNA was isolated using TRIzol (Life Technologies) and cleaned up using

QIAGEN column DNase digestion. RNA samples were prepared from

3-month-old Ksp-Cre, VhlF/FKsp-Cre, Pbrm1F/FKsp-Cre, and VhlF/FPbrm1F/F

Ksp-Cre mice. Microarray was performed by Integrated Genomics Operation

(IGO) at MSKCC.

RNA-Seq and Analysis

Total RNAwas process by the IGO using TruSeq RNASample Prep kit accord-

ing to the manufacturer’s recommendation. Gene ontology (GO) analysis of

mouse microarray and RNA-seq data were performed with ClueGO.

Motif Activity Analysis

To analyze activities of transcription factor binding motifs (TFBM) using RNA-

seq data, we used the Integrated System for Motif Activity Response Analysis

(ISMARA).
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