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Abstract. — We study the subspace of the exterior algebra of a simple complex Lie algebra

linearly spanned by the copies of the little adjoint representation or, in the case of the Lie algebra
of traceless matrices, by the copies of the n-th symmetric power of the defining representation. As

main result we prove that this subspace is a free module over the subalgebra of the exterior algebra
generated by all primitive invariants except the one of highest degree.

Key words: Exterior algebra, invariants, little adjoint representation, small representation.

2010 Mathematics Subject Classification: 17B20.

1. Introduction

Let g be a simple Lie algebra (over C) of rank r. In [3], the isotypic component
A ¼ Homgðg;5 gÞ of the adjoint representation in the exterior algebra of g has
been studied. Recall that the invariant algebra ð5 gÞg is an exterior algebra
5ðP1; . . . ;PrÞ over primitive generators Pi of degree 2mi þ 1, where the integers
mi (with m1 a � � �amr) are the exponents of g. The main result of [3] states that
A is a free algebra of rank 2r over the algebra 5ðP1; . . . ;Pr�1Þ. The purpose of
this short paper is to single out other instances of this special behavior. We prove
that the space HomgðL;5 gÞ is a free algebra of dimension twice the dimension
of the 0-weight space of L in the following remarkable cases:

(1) L is the little adjoint representation LðysÞ, i.e. the g-module with highest
weight the highest short root of g;

(2) g is of type An�1 and L ¼ SnðVÞ is the n-th symmetric power of the defining
representation V . Clearly, also its dual representation shares this property.

In order to build up free generators in the little adjoint case we are going to use a
result of Broer [2]. Once we have the correct candidates, the proof of the state-
ment will follow by slight modifications of the machinery developed in [3] for
the adjoint representation. The case of SnðVÞ is dealt with by using classical in-
variant theory.

The adjoint representation, the little adjoint representation, SnðVÞ and its
dual are examples of small representations (see Section 2). For a small represen-
tation, and in fact only for a small representation, one has (see [9]) that its multi-
plicity in 5 g equals 2r times the dimension of its zero weight space, a fact that



we are going to use below. It is natural to ask whether covariants of small mod-
ules have the nice behavior described above. It is easy to provide counterexam-
ples. In this respect, using a result of Stembridge, we are able to show that in
type A the adjoint representation, SnðVÞ and SnðVÞ� are the only small modules
whose covariants are freely generated over 5ðP1; . . . ;Pr�1Þ. Computer compu-
tations show that no other example arises among small modules for any Lie al-
gebra of rank at most 5.

The analysis of covariants of the little adjoint representation when g is of
classical type has been also performed in [4] using classical invariant theory.

2. The little adjoint module

Let g be a simple Lie algebra (over C) of rank r. Fix a Cartan subalgebra h in g.
Let D be the corresponding root system, W the Weyl group, Dþ a positive system
and P the corresponding simple system. Let Dl , Ds denote the sets of long and
short roots, respectively; set also Dþ

s ¼ DsBDþ, Dþ
l ¼ Dl BDþ, Ps ¼ DsBP,

Pl ¼ Dl BP, rs ¼ jPsj, rl ¼ jPl j. Let ð� ; �Þ denote the Killing form. If a a h�, we
let ha be the unique element of h such that ðha; hÞ ¼ aðhÞ for all h a h. We use this
form ð� ; �Þ to identify g and g� when convenient.

Assume that g is not simply laced. Let ys be the highest (w.r.t. D
þ) short root.

The irreducible g-module LðysÞ of highest weight ys is called the little adjoint
representation.

We are interested in the study of

LA :¼ HomgðLðysÞ;5 gÞ:

LA is the space of g-equivariant maps from LðysÞ to the space of multilinear
alternating functions on g. Clearly LA is a (left or right) module over ð5 gÞg.

If L is a g-module, we denote by L0 its zero weight subspace. We shall prove
the following:

Theorem 2.1. LA is freely generated over 5ðP1; . . . ;Pr�1Þ by 2 dimLðysÞ0
generators, which can be explicitly described.

As an application, we can recover the following result of Bazlov [1].

Corollary 2.2. The Poincaré polynomial GMysðqÞ, describing the dimension of
LA in each degree, is given by

GMysðqÞ ¼ ð1þ q�1Þ
Yr�1

i¼1

ð1þ q2miþ1Þqmrþ1�2ðrs�1Þrl 1� q4rl rs

1� q4rl
:ð2:1Þ

As explained in the Introduction, our main tools are a result of Broer on
covariants of small modules and the machinery developed in [3] to prove the
analogue of Theorem 2.1 for the adjoint representation.
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Let us describe Broer’s result. Recall that a finite dimensional g-module L is
called small if twice a root is not a weight of L.

Theorem 2.3 [2, Theorem 1]. Let L be a small g-module. Then HomgðL;SðgÞÞ is
isomorphic by restriction to HomW ðL0;SðhÞÞ as a module for SðhÞW USðgÞg.

It is easy to check (see [9]) that an highest weight module LðlÞ is small if and
only if lF 2h for any dominant root h of g. In particular, both the adjoint and
the little adjoint representations are small. In order to apply Theorem 2.3, we
start with a simple observation. Let H be the subgroup of W generated by the
reflections sa with a long.

Lemma 2.4. H acts trivially on LðysÞ0.

Proof. The weights of LðysÞ are precisely Ds A f0g. It follows that, if a is a long
root, and ea, fa are root vectors in ga, g�a, respectively, then
expðeaÞ expð�faÞ expðeaÞ acts trivially on LðysÞ0. r

Let Ws be the reflection subgroup of W generated by the reflections sa with
a a Ps.

Lemma 2.5.

(1) W ¼ Ws yH so W=H is canonically isomorphic to Ws.
(2) The isomorphism in (1) turns LðysÞ0 into a Ws-module isomorphic to the reflec-

tion representation of Ws.

Proof. The proof of (1) is given in [7], Proposition 2.1. We now prove (2). By
Lemma 2.4, LðysÞ0 is a W=H-module. The isomorphism given in (1) is the one
induced by the embedding of Ws in W . To prove our claim we need to provide
a bijective map SpanðPsÞ ! LðysÞ0 and check that this map intertwines the
action of Ws. We realize LðysÞ0 explicitly as follows: g is the fixed point sub-
algebra of a diagram automorphism s of a larger simple Lie algebra a. Let k
be the order of s (k ¼ 2 or 3). Let x be a primitive k-th root of unity. Then LðysÞ
is the x-eigenspace of s in a. Let h 0 be a s-stable Cartan subalgebra of a contain-
ing h. Since there is no root a of a such that ajh ¼ 0, we have that LðysÞ0 is the
x-eigenspace of sjh 0 . Let P 0 be the set of simple roots of a and P 0

0 the subset
of simple roots fixed by s. Let P 0

c be a connected component of P 0nP 0
0. Then

the map a 7! ajh identifies SpanðP 0
cÞ with SpanðPsÞ. Let p be the orthogonal

projection h 0 ! LðysÞ0. We define a map SpanðPsÞ ! LðysÞ0 by

ajh 7! pðhaÞ ¼
1

k

Xk�1

i¼0

x isk�iðhaÞ:

If a a SpanðP 0
cÞ, then the s iðaÞ are pairwise orthogonal, hence the above formula

implies that the map is injective. Since dimLðysÞ0 ¼
1

k�1 ðrankðaÞ � rankðgÞÞ, it is
easy to check that dim SpanðPsÞ ¼ dimLðysÞ0. It follows that our map is bijective.
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If g a Ps then g ¼ ajh with a a P 0
c. Then eg ¼

Pk�1
i¼0 es iðaÞ and fg ¼

Pk�1
i¼0 fs iðaÞ.

Since the roots in the s-orbit of a are orthogonal, we see that

sg ¼ expðegÞ expð� fgÞ expðegÞ ¼
Yk�1

i¼0

ss iðaÞ;

so the action of sg on h 0 commutes with s. It follows that, if b a SpanðPsÞ and
b ¼ b 0

jh with b 0 a P 0
c, then

sgðbÞ 7! pðhsgðb 0ÞÞ ¼ sgðpðhb 0 ÞÞ: r

By [7], l ¼ ha
P
a ADl

ga is a semisimple equal rank subalgebra of g whose Weyl

group is H. Obviously, the action of H on h is the reflection representation.
Let JH ¼ SðhÞH . Since H is a normal subgroup of W , it is clear that JH is W -
stable.

Proposition 2.6. dimHomW ðLðysÞ0; JH=J 2
HÞ ¼ 1 and dimðJH=J 2

HÞ
W ¼ rl.

Proof. The proof is a case by case check. In each case we will provide an
explicit realization of the reflection representation of Ws in a suitable W -stable
space of basic invariants for H.

Type Cr. In this case l is the product of r copies of A1, so H ¼ ðZ=2ZÞr. Let
Dþ
l ¼ fb1; . . . ; brg. Clearly JH=J

2
H USpanðh2b1 ; . . . ; h

2
br
Þ. It is easy to check that

WsUSr and its action on h is given by the permutation representation on the
basis fhbig. It follows that JH=J

2
H is the sum of the reflection representation of

Sr and a 1-dimensional invariant space.
Type Br. In this case l is of type Dr, so JH ¼ C½ p0; p1; . . . ; pr�1�, where pi is

a basic invariant for Br of degree 2i if i ¼ 1; 2; . . . ; r� 1 and p0 ¼
Q

a ADþ
s
ha.

Since Ws has order 2, generated by the reflection sa w.r.t. the unique short simple
root a, we see that Cp0 a¤ords the reflection representation of Ws and that
ðJH=J 2

HÞ
W USpanðp1; . . . ; pr�1Þ.

Type G2. In this case l is of type A2, so there are basic invariants p1, p2 for
H in degree 2 and 3 respectively. We can choose p1 to be the basic invariant of
degree 2 for W . In this case WsUZ=2Z. Since JH BS3ðhÞ ¼ Cp2 we see that Cp2
is Ws-stable. Since p2 is not W -invariant, we see that Ws acts on Cp2 by its reflec-
tion representation.

Type F4. In this case l is of type D4 and WsUS3. Let h1, f1, f2, h2 be basic
invariants for H of degree 2; 4; 4; 6 respectively. The basic invariants for W
occur in degrees 2; 6; 8; 12. We can choose h1, h2 to be basic invariants for
W . We claim that the action of Ws on Spanð f1; f2Þ is given by its reflection
representation. Indeed, since Spanð f1; f2Þ cannot contain invariants for Ws, the
only other possibility is that Ws acts on f1, f2 by the sign representation. If
this were the case, we would have that dimS8ðhÞW b 5. But we know that
dimS8ðhÞW ¼ 3. r
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Proof of Theorem 2.1. Choose q a HomW ðLðysÞ0; JHÞ so that q induces the
embedding of LðysÞ0 in JH=J

2
H provided by Proposition 2.6. We can choose q to

be homogeneous and we let n0 be the degree of q. We can write

JH=J
2
H ¼ qðLðysÞ0Þa ðJH=J 2

HÞ
W

as a W -module. Using the fact that JH ¼ SðJH=J 2
HÞ and Lemma 2.4, we can

write

HomW ðLðysÞ0;SðhÞÞ ¼ HomW ðLðysÞ0; JHÞð2:2Þ
¼ SððJH=J 2

HÞ
W Þn HomWs

ðLðysÞ0;SðqðLðysÞ0ÞÞÞ:

Since the action of Ws on LðysÞ0 is the reflection representation and Ws is a
reflection group of type A, it is known (see [5]) that HomWs

ðLðysÞ0;SðLðysÞ0ÞÞ is
freely generated over SðLðysÞ0Þ

Ws by rs homogeneous generators g1; . . . ; grs in de-
grees 1; 2; . . . ; rs. It follows from (2.2) that qðgiÞ (i ¼ 1; . . . ; rs) are free generators
for HomW ðLðysÞ0;SðhÞÞ over SðhÞ

W in degrees n0; 2n0; . . . ; rsn0.
Theorem 2.3 now provides free generators F1; . . . ;Frs for HomgðLðysÞ;SðgÞÞ

over SðgÞg in degrees n0; 2n0; . . . ; rsn0. Let d : 5
i
g ! 5iþ1

g be the Koszul di¤er-
ential. Let s : SðgÞ ! 5 g be the map extending dj51 g : g ! 52

g to SðgÞ. Since
s is a g-equivariant map, composing with s defines a map HomgðL;SðgÞÞ !
HomgðL;5 gÞ. Set fi ¼ s � Fi and ui ¼ q � fi. Here q ¼ td.

We claim that fi, ui are free generators for HomgðLðysÞ;5 gÞ over
5ðP1; . . . ;Pr�1Þ. From now on, we may proceed as in [3]. Let us sketch the
main steps. By [9, Corollary 4.2], we have that dimLA ¼ 2r dimLðysÞ0, hence
it su‰ces to prove that fi, ui are linearly independent over 5ðP1; . . . ;Pr�1Þ.
Writing a linear combination of fi, ui with coe‰cients in 5ðP1; . . . ;Pr�1Þ and
applying d one readily reduces to prove that the fi are independent. Identify
HomgðLðysÞ;5 gÞ with ð5 gnLðysÞÞg and fix a symmetric invariant bilinear
form 3� ; �4 on LðysÞ. For a; b a 5 g, x; y a LðysÞ we set

eðan x; bn yÞ ¼ 3x; y4abb:

If instead a; b a SðgÞ, then we set

ðan x; bn yÞ ¼ 3x; y4ab:

Now, as in [3, Lemma 2.6], the claim about the independence of the fi boils
down to showing that

eð fi; urs�iþ1Þ ¼ ciPr; ci A 0:ð2:3Þ

Let d : SðgÞ ! SðgÞn g be the usual di¤erential on functions and m : 5 gn g !
5 g the multiplication map. Define t : SðgÞ ! 5 g setting m � ðsn 1Þ � d. The
argument given in [3] to prove formula (2.21) therein shows that, up to a nonzero
constant,

eð fi; urs�iþ1Þ ¼ tððFi;Frs�iþ1ÞÞ:
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Now observe that, by inspection, we have

n0 ¼
mrþ1
2 if rs ¼ 1;

mrþ1
2 � ðrs � 1Þrl ¼ 2rl if rs > 1:

(
ð2:4Þ

This implies that 2n0i þ 2n0ðrs � i þ 1Þ � 1 ¼ 2n0ðrs þ 1Þ � 1 ¼ 2mr þ 1.
Recall that the range of the map t, when restricted to SðgÞg, is, by e.g. [6, The-

orem 64], the space of primitive elements in 5 g, so it is enough to check that
tððFi;Frs�iþ1ÞÞA 0. This is equivalent to checking that, if Jþ is the ideal in SðgÞg
of elements of positive degree, then ðFi;Frs�iþ1Þ B ðJþÞ2. As in Lemma 2.8 in [3],
we see that the restriction of ðFi;Frs�iþ1Þ to h is ðqðgiÞ; qðgrs�iþ1ÞÞ. In the proof of

Proposition 2.6, we identified JH=J
2
H with fðx1; . . . ; xrsþ1Þ a Crsþ1 j

P
i xi ¼ 0g in

such a way that the action of Ws on JH=J
2
H intertwines with the standard action

of the symmetric group Srsþ1 on the latter space. With this identification, the gen-
erators gi can be chosen to correspond precisely to the di¤erentials of normalized

Newton polynomials c½iþ1� :¼
1

i þ 1

Xrsþ1

k¼1

xiþ1
k . We can conclude using the formula

ðdc½k�; dc½g�Þ ¼
Xrsþ1

i¼1

x
kþg�2
i ¼ ðk þ g� 2Þc½kþg�2�

(see [3]). r

Proof of Corollary 2.2. The proof of Theorem 2.1 shows that

GMysðqÞ ¼ ð1þ q�1Þ
Yr�1

i¼1

ð1þ q2miþ1Þq2n0ð1þ q2n0 þ � � � þ q2ðrs�1Þn0Þ:

Now formula (2.1) follows from (2.4). r

3. The module SnðVÞ

In this section, V is a n-dimensional complex vector space and g ¼ slðVÞ. We
sometimes assume to have chosen a trivialization 5n

V UC, although for a for-
mal step it is better not to think in this form.

We are interested in studying the isotypic component of type SnðVÞ (resp.
SnðV �Þ) in 5 g�, or the g-invariants of SnðV �Þn5 g�, (resp. SnðVÞn5 g�).
As we will see in the next Section, SnðVÞ is a small representation, hence we can
use [9, Corollary 4.2] to deduce that

dimððSnðV �Þn5 g�ÞgÞ ¼ dimððSnðVÞn5 g�ÞgÞ ¼ 2n�1:ð3:1Þ

We think of 5i
g� as the space of multilinear alternating functions in i vari-

ables from g to C and of 5i
g� n5n

V as the space of multilinear alternating
functions in i variables from g to 5n

V (similarly for 5n
V �).
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Recall that the primitive generators of the ring of invariants ð5 g�Þg are the
functions Ti defined by

Ti :¼ trðSt2iþ1ðA1;A2; . . . ;A2i;A2iþ1ÞÞ;

where Stnðx1; . . . ; xnÞ ¼
P

s ASn
esxsð1Þ . . . xsðnÞ is the standard polynomial.

We introduce equivariant maps

F : SnðVÞ ! 5
n

g� n 5
n

V ; C : SnðVÞ ! 5
n�1

g� n 5
n

V

by assigning homogeneous polynomial maps (cf. [8, §5, 2.3])

v 7! FðvÞ a 5
n

g� n 5
n

V ; v 7! CðvÞ a 5
n�1

g� n 5
n

V

defined, for v a V , as

FðvÞðA1; . . . ;AnÞ :¼ A1vbA2vb� � �bAn�1vbAnv;

CðvÞðA1; . . . ;An�1Þ :¼ A1vbA2vb� � �bAn�1vbv:

A similar formula holds for maps F� : SnðV �Þ ! 5
n

g� n 5
n

V �, C� : SnðV �Þ !
5
n�1

g� n 5
n

V �: when g a V � we set

F�ðgÞðA1; . . . ;AnÞ :¼ At
1gbAt

2gb� � �bAt
n�1gbAt

ng;

C�ðgÞðA1; . . . ;An�1Þ :¼ At
1gbAt

2gb� � �bAt
n�1gbg:

We use the same symbols F, C to denote the corresponding elements in
ðSnðV �Þn5 g�Þg. Notice that we have an equivariant pairing SnðVÞ � SnðV �Þ
! C, which gives, by duality, a canonical map I : C ! SnðVÞnSnðV �Þ, and
which induces an equivariant pairing

ð� ; �Þ : Hom
�
SnðVÞ;5 g� n 5

n

V
�
�Hom

�
SnðV �Þ;5 g� n 5

n

V �
�

! 5 g� n 5
n

V n 5
n

V � ¼ 5 g�

in the following way. We let 3�j�4 denote the natural pairing between V and V �.
We extend this pairing to define the canonical trivialization 5n

V n5n
V � ! C

by setting

3v1bv2b� � �bvn j g1bg2b� � �bgn4 ¼ detð3vi j gj4Þ:ð3:2Þ

The pairing ða; bÞ is then defined by computing in 1 the composition

C �!I SnðVÞnSnðV �Þ �!anb
5
i

g� n 5
n

V n 5
j

g� n 5
n

V �

�!m 5
iþ j

g� n 5
n

V n 5
n

V � �!h 5
iþ j

g�:
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Here m is exterior multiplication and the isomorphism h is given by the canonical
trivialization (3.2).

Restricting to invariants we have finally a pairing

Hom
�
SnðV �Þ;5 g� n 5

n

V �
�g

�Hom
�
SnðVÞ;5 g� n 5

n

V
�g

! ð5 g�Þg:

We want to compute ðC;F�Þ, so we want to understand the composed map

C ���!I S nðVÞnSnðV �Þ ���!CnF�

5
n�1

g� n 5
n

V n 5
n

g� n 5
n

V �

���!h 5
n�1

g� n 5
n

g�:

For this we can polarize, getting the following commutative diagram

C ���!I S nðVÞnSnðV �Þ ���!CnF �

5
n�1

g� n 5
n

V n 5
n

g� n 5
n

V � ���!h 5
n�1

g� n 5
n

g�

1

???y p

???y 1

???y i

???y
C ���!I Vnn n ðV �Þnn ���!cnf �

5
n�1

g� n 5
n

V n 5
n

g� n 5
n

V � ���!p ðgn2n�1Þ�

:

The map pðvn n gnÞ :¼ vnn n gnn is polarization, the map i is the embedding of
multilinear functions alternating in two blocks of variables into multilinear func-
tions, the map p is the (external) multiplication of multilinear functions composed
with the canonical trivialization. The polarized maps f and c are given by

cðv1; . . . ; vnÞðA1; . . . ;An�1Þ

:¼ ðn!Þ�1
X
s ASn

A1vsð1ÞbA2vsð2Þb� � �bAn�1vsðn�1ÞbvsðnÞ;

f�ðg1; . . . ; gnÞðB1; . . . ;BnÞ

:¼ ðn!Þ�1
X
t ASn

Bt
1gtð1ÞbBt

2gtð2Þb� � �bBt
n�1gtðn�1ÞbBt

ngtðnÞ;

thus

p � ðcn f�Þðv1; . . . ; vn; g1; . . . ; gnÞðA1; . . . ;An�1;B1; . . . ;BnÞ
¼ 3cðv1; . . . ; vnÞðA1; . . . ;An�1Þ j f�ðg1; . . . ; gnÞðB1; . . . ;BnÞ4

¼ ðn!Þ�2
X

s; t ASn

3Asv jBtg4

where for shortness we have set Asv ¼ A1vsð1ÞbA2vsð2Þb� � �bAn�1vsðn�1ÞbvsðnÞ;
and Btg ¼ Bt

1gtð1ÞbBt
2gtð2Þb� � �bBt

n�1gtðn�1ÞbBt
ngtðnÞ.
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We have also, setting An ¼ 1V ,

3Asv jBtg4 ¼
X
l ASn

el
Yn
h¼1

3AhvsðhÞ jBt
lðhÞgt�lðhÞ4ð3:3Þ

¼
X
l ASn

el
Yn
h¼1

3BlðhÞAhvsðhÞ j gt�lðhÞ4:

Consider 3Asv jBtg4 as a function on Vnn n ðV �Þnn ¼ EndðVÞnn. The image of
the canonical element I in EndðVÞnn is 1nn

V and we want to compute 3Asv jBtg4
on this canonical element.

For this define formally matrix variables Yi ¼ vi n gi. We first compute
3Asv jBtg4 on all elements Y1 nY2 n � � �nYn a EndðVÞnn; then we set all
Yi ¼ 1V in order to perform the desired computation.

More in detail, we proceed as follows. For X1; . . . ;Xn a g, set

Is; t :¼
Yn
h¼1

3XivsðiÞ j gtðiÞ4 ¼
Yn
h¼1

3Xs�1ðiÞvi j gt�s�1ðiÞ4:

In order to explicit this formula set wi ¼ Xs�1ðiÞvi and Zs
i ¼ Xs�1ðiÞ � Yi ¼

Xs�1ðiÞvi n gi ¼ wi n gi. We have

Is; t ¼
Yn
i¼1

3wi j gt�s�1ðiÞ4:

Recall that, if we take matrix variables Wi :¼ wi n gi and a permutation m,
then

Q
i 3wi j gmðiÞ4 is the multilinear invariant of n matrices fmðW1; . . . ;WnÞ :¼Q

trðMjÞ, where the monomials Mj are the products of the Wi over the indices i
appearing in the cycles of m. It follows that we have the formula

fmðWtð1Þ; . . . ;WtðnÞÞ ¼ ftmt�1ðW1; . . . ;WnÞ:ð3:4Þ

Clearly,

Is; t ¼ ft�s�1ðZs
1 ;Z

s
2 ; . . . ;Z

s
n Þ:ð3:5Þ

When we compute this invariant on the canonical element, this is equivalent
to setting all Yi ¼ 1V , hence Zs

i ¼ Xs�1ðiÞ � Yi becomes Xs�1ðiÞ and we get as
evaluation

ft�s�1ðXs�1ð1Þ;Xs�1ð2Þ; . . . ;Xs�1ðnÞÞ ¼ fs�1�tðX1;X2; . . . ;XnÞ:

In the last equality we have used (3.4). Setting Xi ¼ BlðiÞAi we find

3Asv jBtg4ðIÞ ¼
X
l ASn

elfs�1�t�lðBlð1ÞA1;Blð2ÞA2; . . . ;Blðn�1ÞAn�1;BlðnÞÞ;
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so that

p � ðfnc�Þ � Ið1Þð3:6Þ

¼ ðn!Þ�2
X
s; t;l

elfs�1�t�lðBlð1ÞA1;Blð2ÞA2; . . . ;Blðn�1ÞAn�1;BlðnÞÞ

Recall that ðC;F�Þ ¼ ðm � h � ðCnF�Þ � IÞð1Þ. For any vector space U we

identify the space 5
k

U � with the subspace of ðU �Þnk formed by the alter-
nating multilinear functions. Under this embedding, a decomposable element
f1b� � �bfk corresponds to the function

f ðx1; . . . ; xkÞ :¼
X
s ASk

esf1ðxsð1ÞÞ . . . f1ðxsðkÞÞ:

The alternator operator on ðU �Þnn is

Alt : y1 n � � �n yn 7!
1

n!

X
s ASn

esysð1Þ n � � �n ysðkÞ:

The relation between exterior multiplication of alternating functions and of
multilinear functions is given by the following commutative diagram

5
h

U � n 5
k

U � ���!m 5
hþk

U �

i

???y 1
hþk
hð Þ i

???y
ðU �Þnhþk ���!Alt ðU �Þnhþk

which in our setting reads

5
n�1

g� n 5
n

g� ���!m 5
2n�1

g�

i

???y Cn1

???y
ðg�Þn2n�1 ���!Alt

5
2n�1

g�

;

where Cn ¼ ðn�1Þ!n!
ð2n�1Þ! . Thus

ðC;F�Þ ¼ C�1
n Alt � p � ðfnc�Þ � Ið1Þ:ð3:7Þ

We need therefore to apply Alt to the right hand side of (3.6). For shortness set

f ðs; t; lÞ :¼ fs�1�t�lðBlð1ÞA1;Blð2ÞA2; . . . ;Blðn�1ÞAn�1;BlðnÞÞ:

Let us apply the procedure of alternation to a term f ðs; t; lÞ. If s�1 � t � l is
not a full cycle, then Altð f ðs; t; lÞÞ ¼ 0. To check this we need only to find an
odd permutation in S2n�1 that fixes the term f ðs; t; lÞ. Let c1 . . . cs be the cycle
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decomposition of s�1 � t � l. We can assume that c1 ¼ ði1 . . . ikÞ is a cycle that
does not contain lðnÞ. It follows that, if M2; . . . ;Ms are the products of matrices
corresponding to cycles c2; . . . ; cs,

f ðs; t; lÞ ¼ trðBlði1ÞAi1Blði2ÞAi2 . . .BlðikÞAikÞ trðM2Þ . . . trðMsÞ
¼ trðAi1Blði2ÞAi2 . . .BlðikÞAikBlði1ÞÞ trðM2Þ . . . trðMsÞ

and the last equality gives an odd permutation (a cycle of length 2k) in S2n�1 that
fixes f ðs; t; lÞ. If s�1 � t � l is a full cycle ð j1 . . . jnÞ, we can assume that jn ¼ n.
Then

el f ðs; t; lÞ ¼ el trðBlð j1ÞAj1Blð j2ÞAj2 . . .Blð jn�1ÞAjn�1
BlðnÞÞ:

Let m a S2n�1 be defined by mðiÞ ¼ nþ 1 for i ¼ 1; . . . ; n� 1 and mðiÞ ¼ i � nþ 1
for i ¼ n; . . . ; 2n� 1. If o a Sn we can consider o as an element of S2n�1 (fixing

nþ 1; . . . ; 2n� 1). Let n a Sn be defined by nðiÞ ¼ ji. Then ðn � m�1 � l � n � mÞ�1

is the permutation mapping trðBlð j1ÞAj1Blð j2ÞAj2 . . .Blð jn�1ÞAjn�1
BlðnÞÞ to

trðB1A1B2A2 . . .Bn�1An�1BnÞ. Since the sign of ðn � m�1 � l � n � mÞ�1 is el, we see
that, if s�1 � t � l is a full cycle,

Altðel f ðs; t; lÞÞ ¼
1

ð2n� 1Þ! trðSt2n�1ðB1;A1;B2;A2; . . . ;Bn�1;An�1;BnÞÞ:ð3:8Þ

We are now ready to prove the key result of this section.

Theorem 3.1. ðC;F�Þ ¼ ð�1Þ
n
2ð Þ

n! Tn�1.

Proof. Combining (3.6), (3.7), and (3.8) we have

ðC;F�Þ ¼ C

ðn!Þ3ðn� 1Þ!
trðSt2n�1ðB1;A1;B2;A2; . . . ;Bn�1;An�1;BnÞÞ:

where C is the number of triples s, t, l such that s�1 � t � l is a full cycle. There
are ðn!Þ2ðn� 1Þ! such triples. r

Theorem 3.2. HomgðSnðVÞ;5 g� n5n
VÞG ðSnðV �Þn5 g�Þg is a free mod-

ule on the two generators F, C over 5ðT1; . . . ;Tn�2Þ.

Proof. We first prove that C and dC freely generate ðSnðV �Þn5 g�Þg over
5ðT1; . . . ;Tn�2Þ. Using the formula (3.1) it is enough to prove that the two
elements are linearly independent over 5ðT1; . . . ;Tn�2Þ.

Let feig be a basis of weight vectors for V with e1 a highest weight vector. Let
fEijg be the basis of EndðVÞ of elementary matrices and fEijg the dual basis.
Then it is not hard to check that, up to a constant depending on the choice of a
trivialization of 5n

V , we have

Cðe1Þ ¼ E21b � � �bEn1:
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Since ½Ei1;Ej1� ¼ 0 if i; jA 1, we see that qðCðe1ÞÞ ¼ 0. By equivariance, we
obtain that qC ¼ 0. Recall (see [6, (94)]) that the Laplacian dqþ qd equals
1
2

Pdim g
i¼1 yðziÞ2, where fzig is an orthonormal basis of g with respect to the

Killing form and y is the extension of ad to 5 g. It follows that qdC ¼
ðdqþ qdÞC ¼ cC with c a non-zero scalar. We can then argue as in the pre-
vious section and deduce that is enough to prove that an identity abC ¼ 0,
a a 5ðT1; . . . ;Tn�2Þ, implies a ¼ 0. For this, we compute ðabC;F�Þ and have,

by Theorem 3.1, that 0 ¼ ðabC;F�Þ ¼ ð�1Þ
n
2ð Þ

n! abTn�1. Since the relation
abTn�1 ¼ 0 with a a 5ðT1; . . . ;Tn�2Þ implies a ¼ 0, we have proven that C and
dC freely generate ðSnðV �Þn5 g�Þg over 5ðT1; . . . ;Tn�2Þ. This in particular

proves that dimHomgðSnðVÞ;5n
gÞ ¼ 1, thus dC is a multiple of F, hence the

proof is complete. r

4. Small representations in type A

For slðn;CÞ, one can show that an highest weight module V is small if and only
if the highest weight of either V or V � comes from a partition of n. This means
the following: given a partition l1 b � � �b ln of n, the corresponding highest
weight l is 0 if l1 ¼ � � � ¼ ln ¼ 1 or l ¼

Pn�1
i¼1 aioi where o1; . . . ;on�1 are the

fundamental weights and ai is the number of columns of length i of the parti-
tion. For such weights, Stembridge has proved the following formula (cf. [10,
Corollary 6.2]), yielding the graded multiplicities MlðqÞ of the corresponding
modules in 5slðn;CÞ. Display the Young diagram in the English way, label the
boxes as matrix entries and denote by hði; jÞ the hook length of the box ði; jÞ, i.e.
the number of boxes strictly on the right of box ði; jÞ plus the number of boxes

strictly below box ði; jÞ plus one. Set, as usual, ½n�q ¼
1�qn

1�q
and ½n�q! ¼

Qn
i¼1½i�q.

Then

MlðqÞ ¼
½n�q2 !

1þ q

Y
ði; jÞ A l

q2i�1 þ q2j�2

1� q2hði; jÞ
:ð4:1Þ

Notice that, since we are dealing with slðn;CÞ rather than glðn;CÞ, there is an
extra factor 1=ð1þ qÞ in the right hand side of (4.1) w.r.t. the formula displayed
in [10].

Proposition 4.1. If g ¼ slðVÞ and VðlÞ is an irreducible non-trivial representa-
tion of g with l corresponding to a partition of n ¼ dimV, then HomgðVðlÞ;5 gÞ
is free over 5ðP1; . . . ;Pn�2Þ if and only if VðlÞ is either SnðVÞ or the adjoint
representation.

Proof. The fact that the adjoint representation and SnðVÞ have the desired
property has been shown in [3] and in Section 3 above, respectively. Assume
now that l corresponds to a partition of n. We can assume nb 4: if na 3 the
result is trivially verified. If HomgðVðlÞ;5 gÞ is free over 5ðP1; . . . ;Pn�2Þ, the
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polynomial a¤ording its graded multiplicities in 5 g has to be divisible byQn�2
i¼1 ð1þ q2iþ1Þ. Use now formula (4.1). Look at the highest term 1þ q2n�3 in

the graded multiplicities of 5ðP1; . . . ;Pn�2Þ. The only possible simplification

occurs in the term
Q

ði; jÞ A lðq2i�1 þ q2j�2Þ of (4.1). This can happen just in the
following three cases:

(1) i ¼ n, j ¼ 1;
(2) i ¼ n� 1, j ¼ 1;
(3) i ¼ 1, j ¼ n.

The first case gives the partition corresponding to the trivial representation,
which is excluded. In the second case, since we are excluding the case where
ln ¼ 1, the partition is necessarily ð2; 1n�2Þ, corresponding to the adjoint repre-
sentation. In the third case the partition is necessarily ðnÞ, which corresponds
to SnðVÞ. r
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