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Abstract: The modern Western society lifestyle is characterized by a hyperenergetic, high sugar
containing food intake. Sugar intake increased dramatically during the last few decades, due to the
excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests
that high fructose intake when combined with overeating and adiposity promotes adverse metabolic
health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly,
elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the
adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been
associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the
11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH.
In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting
the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between
overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their
metabolic effects on the progression of the metabolic syndrome.
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1. Introduction

Our ancestors obtained their food from hunting and gathering, but the transition to modern
Western society lifestyle with its tremendous technological advances in food processing led to extensive
changes in food intake and composition. The Western-style diet, also called the meat-sweet diet is
characterized by high intakes of processed foods rich in saturated fat, trans-fatty acids, proteins from
red meat, and sodium, as well as an excessive consumption of sugar [1]. In line with this transition,
obesity has emerged as a major global health problem in the last few decades [2]. Epidemiologic studies
pointed out that overweight and obesity are important risk factors of type II diabetes mellitus
(T2DM) and cardiovascular disease (CVD) [3–6]. The involvement of adiposity—predominantly
splanchnic obesity—in the development of the metabolic syndrome (MetS) has been well established [7].
Metabolic and endocrine factors, like hormones and para/autocrine mediators, have been shown to
stimulate adipocyte proliferation and differentiation [8]. When the adipose tissue reaches a critical
mass and/or hypoxia occurs, a cellular signaling response triggers a switch from oxidative metabolism
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to anaerobic glycolysis and increases the secretion of a number of inflammation-related adipokines
accompanied with cell damage [9]. On the other hand, this inflammatory response is also a key
factor for modulating insulin sensitivity in adipose tissue and the development of obesity-associated
diseases [10]. The chronic low-grade inflammation is a characteristic of obesity, whereby adipose tissue
releases many inflammatory mediators, including TNF-α, IL-1β, and IL-6, and plasma concentrations
of these secreted pro-inflammatory cytokines were found to be elevated in obese individuals [11].

The rate of dietary fructose consumption, mostly in combination with glucose, continued to rise
worldwide over the last fifty years [12,13], and numerous human and animal studies demonstrated a
link to the rising prevalence of obesity, T2DM, and MetS [14–17]. Fructose, which is found in fruits,
became a major component of the modern diet by robust intake of sucrose (table sugar, consisting
of one molecule of glucose and one molecule of fructose and subjected to cleavage in the intestinal
tract) and synthetic high fructose corn syrup (HFCS, consisting of a mixture of glucose and fructose
with a ratio close to one) [18] that is currently added to beverages and foods. Compared with glucose,
fructose has a lower glycemic index, does not generate an insulin response, but has a slightly higher
sweetening power. Furthermore, fructose is a potent lipogenic and adipogenic nutrient. For example,
fructose rich diet intake increased the adipogenic potential on adipocyte precursor cells (APCs) and
hence accelerated adipocyte hypertrophy [19].

Besides dietary fructose, an increased intracellular glucocorticoid production, especially in adipose
tissue, has also been suggested to contribute to the pathogenesis of the MetS [20–22], and evidence was
provided for a possible link between fructose and glucocorticoid activation [23–25]. The circulating
and locally produced glucocorticoids have a crucial role in modulating adipocyte function as well as
proliferation/differentiation [26,27]. The intracellular active glucocorticoids (cortisol and corticosterone
are the major glucocorticoids in humans and rodents, respectively) are generated from their inert
forms (cortisone and 11-dehydrocorticosterone) by the 11-oxoreductase activity of 11β-hydroxysteroid
dehydrogenase type 1 (11β-HSD1) [28,29], a luminally oriented enzyme of the endoplasmic reticulum
(ER) membrane [30,31], which is abundantly expressed in liver and adipose tissue [32–34].

In the adipocyte, fructose metabolism results in the generation of precursors of fatty acid synthesis
and induces NADPH-generating enzymes. Recent observations indicated that fructose increases the
expression of its transporter GLUT5 in the adipocyte plasma membrane and of 11β-HSD1 [35], thereby
further enhancing the capability to generate active glucocorticoids in adipose tissue [25].

The purpose of the present work was to highlight the multifaceted connections between fructose
metabolism and the production of active glucocorticoids in the adipose tissue and its impact on the
development and progression of MetS.

2. Dietary Fructose and Adiposity

Epidemiological studies have linked dietary fructose consumption, either in the form of sucrose
or HFCS, with an increased rate of co-occurring diseases of the MetS, such as CVD, T2DM, and
non-alcoholic fatty liver disease (NAFLD) [36–39]. A cross-sectional study among adults from the
National Health and Nutrition Examination study (NHANES) 1999–2006 found an association between
the consumption of dietary added sugars, as assessed by 24 h dietary recall, and blood lipid measures,
with significant increases in mean triglyceride (TG) levels and decreases in high-density lipoprotein
(HDL)-cholesterol levels [36]. This study including more than 6000 adults, did not distinguish
between fructose and glucose consumption but investigated associations with total dietary sugar
consumption. Another study, using econometric models of repeated cross-sectional data on diabetes
and nutritional components of food, reported on an association of a high sugar intake with T2DM,
an effect that was modified but not confounded by overweight or obesity and that was not dependent
on a sedentary lifestyle [37]. Furthermore, an analysis of dietary history and paired serum and liver
tissue from patients with NAFLD and gender, age, and body mass index matched controls revealed
a 2–3 fold higher fructose consumption (in the form of HFCS) in NAFLD patients with increased
hepatic fructokinase (ketohexokinase, KHK) and fatty acid synthase expression, indicating elevated
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lipogenesis [38]. Dietary information was prospectively collected. Especially the consumption of sugar
sweetened beverages have been regarded as critical for development of obesity, hypertension, and
T2DM [14,40–43]. Another recent observational clinical study revealed increased visceral adipose
tissue (VAT) using computer tomography in 1003 participants in response to sugar-sweetened
beverages [44]. In this large, prospective cohort study the participants were categorized according to
sugar-sweetened beverage intake frequency (non-consumers; <1 serving/week; <1 serving/day and
daily consumers) and examined the adverse changes in quality and quantity of VAT after a period of
six years. The study concluded that fructose, as the main component, may trigger insulin resistance
and increased fat accumulation in VAT found in consumers of excessive amounts of sugar-sweetened
beverages. However, it remains entirely uncertain whether the fructose or the glucose component
of the sweetener or both are responsible for the metabolic effects associated with sugar-sweetened
beverage consumption. Also, the pathophysiological mechanisms involved in the process contributing
to the increased risk of T2DM and CVD remain to be elucidated.

An earlier clinical study evaluated the relative effects of the consumption of glucose- and
fructose-sweetened beverages in overweight and obese individuals, where these beverages covered 25%
of the total energy requirements for 10 weeks [45]. Although both sweetener beverages exhibited similar
weight gain, the results showed that consumption of fructose-sweetened but not glucose-sweetened
beverages increased de novo lipogenesis, specifically promoting lipid deposition in VAT, stimulating
dyslipidemia, altering lipoprotein remodeling and decreasing insulin sensitivity in overweight/obese
adults [45]. It is still uncertain whether the observed effects of this study are comparable with the
results when pure fructose-sweetened beverages are consumed, or when isocaloric fructose and/or
glucose are combined with different fat diets. A critical issue remains that fructose consumption and
obesity are linked and that so far no clear association between fructose intake and cardiometabolic
disease has been demonstrated conclusively in the absence of overeating and weight gain [40,46–48].
According to another concept, fructose could contribute to obesity by stimulating sterol receptor
element binding protein 1c (SREBP-1c) independently of insulin, which activates genes involved in
de novo lipogenesis [49], generating fatty acids for TG production in the liver. An increase in fasting
plasma TG has been observed upon excessive dietary fructose ingestion in healthy individuals as well
as patients with T2DM [50,51]. Furthermore, increased hepatic lipid levels are associated with increased
very low density lipoprotein (VLDL) synthesis and secretion. An elevation of systemic free fatty acid
and VLDL results in increased lipid uptake in peripheral organs, such as adipose tissue and skeletal
muscle, contributing to the systemic insulin resistance [15]. Additionally, fructose was proposed to
promote leptin resistance, worsening obesity and insulin resistance [52]. Insulin resistance may be
a secondary cause of obesity upon consumption of a hyperenergetic and high fructose-containing
diet [53,54], again pointing to the importance of dissecting the direct impact of fructose and the
consequences of overeating and obesity. Thus, further studies are needed to address the effects of
fructose and sucrose intake under isocaloric dietary regimens and in defined subgroups, including
patients with obesity, T2DM, and CVD.

An obesogenic effect of large doses of fructose was also observed in animal studies. Rats fed a
diet consisting of 60% of energy derived from fructose [55], and rhesus monkeys on a daily fructose
intake of 30% of ingested calories [56] had increased adipose tissue weight and several other features of
MetS [57]. The fructose fed monkeys, besides adiposity, also displayed dyslipidemia, insulin resistance,
and enhanced inflammatory mediators. While existing evidence convincingly shows that markers of
MetS including TG, dyslipidemia, insulin resistance, and inflammatory mediators are enhanced upon
high fructose containing diets [46–48], no consistent effect of fructose on markers of MetS could be
found in studies using a defined weight-maintenance diet [47], suggesting that high fructose ingestion
combined with overeating and adiposity may be responsible for the adverse health effects.
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3. Fructose Metabolism in Adipose Tissue

Upon intestinal absorption, fructose is primarily metabolized by KHK to fructose-1-phosphate in
the liver, which is subsequently converted to triose phosphates and in this form can supply glycolysis,
lipid synthesis, gluconeogenesis, and/or glycogenesis pathways [58]. Fructose metabolism to triose
phosphates differs from that of glucose: it occurs independently of insulin and without the negative
feedback regulation of phosphofructokinase in the glycolytic pathway. The excessive consumption
of fructose challenges the capacity of the liver, and to a lesser extent fructose remains in the systemic
circulation, resulting in its utilization in peripheral tissues. Although adipocytes express GLUT5 [59]
and are able to take up fructose [60], the functional role of this fructose transporter in the adipose
tissue is not fully understood. In this regard, a novel significance of fructose and GLUT5 was
pointed out in regulating adipocyte differentiation [61]. Furthermore, it is known that the pathway of
fructose utilization in adipose tissue is largely different from that of the hepatic metabolism (Figure 1).
In contrast to hepatocytes, adipocytes lack KHK and are equipped with hexokinase, which catalyzes
the phosphorylation of fructose to fructose-6-phosphate (F6P) [62]. This obligatory intermediate, F6P,
can be converted to glucose-6-phosphate (G6P) by G6P isomerase in the cytoplasm and the ER [25],
or can be further metabolized by intermediary metabolic pathways. Investigating these roads and
predicting the metabolic responses of adipocytes to fructose is challenging.
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Figure 1. Intracellular metabolism of fructose and glucose. The intracellular metabolism of fructose
differs from that of glucose primarily due to its different transporters and initial enzymatic steps.
The main fructose metabolizing enzyme is fructokinase (ketohexokinase, KHK), which uses ATP
to phosphorylate fructose to fructose-1-phosphate. Since this reaction is poorly regulated, the
administration of excessive fructose results in rapid depletion of intracellular ATP levels, activation of
AMP deaminase, and generation of uric acid. In adipocytes due to the lack of fructokinase, fructose is
metabolized by hexokinase to fructose-6-phosphate, which can be converted to glucose-6-phosphate
that can promote the intracellular production of glucocorticoids via stimulation of 11β-HSD1 activity.

An important experimental model represents the use of 13C labeled fructose for in vitro and
in vivo investigations. A recent study was performed using a stable isotope based dynamic profiling
(SIDMAP) method with labeled [U-13C6]-D-fructose in differentiating and differentiated adipocytes
(Simpson-Golabi-Behmel Syndrome (SGBS) adipose cells) exposed with an escalating range of fructose
equivalent to predict the metabolic responses in detail [63]. Varma and colleagues found that
increasing concentrations of fructose triggered the pyruvate conversion to acetyl-CoA via the pyruvate
dehydrogenase reaction to form glutamate. The pyruvate dehydrogenase flux derived increased entry
into the TCA cycle also resulted in an expanded acetyl-CoA/citrate cycling into fatty acid synthesis and
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free palmitate release [63]. These results explored the lipogenic potential of fructose in adipocytes and
how fructose acts as an anabolic substrate for molecular synthesis and energy storage and much less
so for oxidation. On the other hand, when the intermediary metabolism of glucose was investigated
with the same method using [1,2-13C2]-D-glucose under the influence of increasing concentrations of
fructose, their data showed that fructose dose-dependently increased the oxidation of glucose, triggered
the conversion of glucose to lactate, but decreased the formation of glutamate or glycogen from glucose
and reduced the potential route for fatty acid synthesis and ribose synthesis [64]. The main novelty
of that study was to discover the role of the recently described serine synthesis, one-carbon cycle, and
glycine cleavage (SOGC) pathway in the fate of glucose carbons in the presence of added fructose in
adipocytes. In this pathway, the glucose derived glycolytic metabolite 3-phosphoglycerate is used for
the synthesis of serine, from which a fraction subsequently is converted to glycine in a reaction that
is coupled with the one carbon metabolism pathway, yielding ATP [65]. The intermediates of the one
carbon pathway generate NADPH, a key cofactor needed for fatty acid synthesis. Thus, the presence of
fructose in adipocytes drives this alternate pathway, resulting in increased energy and CO2 production,
which can be utilized in fructose-induced lipogenesis and fat storage in adipocytes [64].

A recent in vivo study supported the above described effects of fructose. Independent of whether
fructose was provided either as a monosaccharide or in the form of sucrose combined with glucose,
fructose increased the whole-body exogenous carbohydrate oxidation rate during prolonged exercise
in volunteer healthy and trained cyclists [66]. A higher exogenous glucose oxidation rate was found to
correlate with increased performance during prolonged high-intensity exercise [67] and co-ingestion of
fructose further enhanced exogenous carbohydrate oxidation rates [66] and decreased gastrointestinal
distress [68,69]. In type 1 diabetic individuals, the co-ingestion of glucose and fructose was also
found to be beneficial during exercise compared to glucose alone. However, carbohydrate oxidation
was lower but fat oxidation was higher upon co-ingestion of fructose and glucose compared to
glucose alone in diabetic patients during exercise [70]. Additionally, the diabetic patients showed a
glycogen-sparing effect in the working muscle, although their lactate production was elevated, as was
also described previously in healthy individuals [71]. This suggests that the ingested fructose might be
partially converted into lactate [72], or the fructose itself prompts conversion of glucose into lactate, as
seen in vitro [64]. To conclude, these studies showed that co-ingestion of fructose with glucose may
optimize fuel metabolism during exercise in healthy individuals by a more efficient energy supply due
to higher carbohydrate oxidation and in diabetic patients by increased fat oxidation.

4. Effect of Fructose on Metabolic Disturbances

In the last couple of decades, the cellular and molecular mechanisms of adipocyte differentiation
have been extensively studied and various hormones and growth factors affecting adipocyte
differentiation in a positive or negative manner have been identified [9,73–78]. Although several
clinical and in vitro studies defined the high lipogenicity of fructose and its stimulation of
adipogenesis [19,79,80], further questions were raised on the exact mechanisms and regulatory factors
involved behind this phenomenon.

There is compelling evidence that oxidative stress is implicated in fructose-mediated adiposity,
insulin resistance, and metabolic syndrome. In a study in rats, fructose induced the mRNA and
protein expression of ER stress markers, including GRP-78, PERK, IRE1α, and CHOP in the liver [81];
which on one hand might contribute to the hepatic activation of SREBP-1c and lipid accumulation in
fructose-induced NAFLD [38], and on the other hand the increased ER-stress is also suggested to cause
hepatic insulin resistance by increasing de novo lipogenesis [10,82]. Another central role of the ER is to
control the transport and metabolism of cholesterol, an essential component of cellular membranes,
which is mainly regulated by transcription factors of the SREBP family [83].

Another aspect of the fructose-mediated metabolic effects, when it is rapidly metabolized in the
liver, is its conversion to fructose-1-phosphate, which can cause intracellular phosphate depletion and
AMP formation (Figure 1), resulting in the activation of AMP deaminase and the formation of uric
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acid [58]. Uric acid production has been identified as a sensitive measure of hepatic ATP depletion [84].
The serum uric acid can rapidly raise, up to a level of 2 mg/dL, after intravenous or oral fructose
consumption [85,86]. Although this initial increase is transient, it was found that administration of
fructose for several weeks increases fasting uric acid levels [87,88]. Elevated levels of uric acid have
been associated with a series of pathological conditions, including insulin resistance, obesity, T2DM,
and chronic kidney disease [57,89] and have been proposed as a risk factor for myocardial infarction
and neurological diseases including stroke [90,91]. Lowering the uric acid level using the xanthine
oxidase inhibitor febuxostat prevented the fructose-induced development of MetS [92]. One suggested
mechanism includes the direct effect of uric acid on adipocytes. Using cultured adipocytes, evidence
was provided for an induction of oxidative stress and inflammation by uric acid [93]. Knockdown of
the xanthine oxidoreductase inhibited adipogenesis and PPARγ activity [94]. These studies implicate
that uric acid might serve as an important regulator of adipogenesis; therefore, fructose-mediated uric
acid formation might be associated with insulin resistance and MetS.

It is important to note that rats possess uricase, which degrades uric acid to allantoin, explaining
why fructose does not increase the uric acid level effectively in this species. In experiments with rats,
uricase inhibitors are needed; however, this leads to more than 10-fold increased uric acid levels in
response to fructose administration [95]. In contrast, humans have no functional uricase due to an
evolutionary mutation [96]. Another reason why the rat may be of limited relevance to study fructose
toxicity is the fact that rats can produce ascorbate (vitamin C), which can block the adverse effects of
fructose. As an antioxidant, vitamin C can attenuate uric acid-mediated vascular smooth muscle cell
effects and hypertension [97,98].

In the adipose tissue, ER-stress induction also plays an important role in the pathomechanism
of impaired differentiation processes [99]. During maturation, the ER environment of fibroblast-like
preadipocytes must confront the demand of secreting enormous amounts of peptide and lipid
mediators and storing energy in the form of TG in lipid droplets [100]. During nutrient overload
and/or disturbances, cellular stress can lead to an impairment of ER function, limiting the capacity
of proper protein folding and resulting in an accumulation of unfolded proteins in the ER lumen,
ultimately leading to impaired adipocyte maturation. Such a mechanism for fructose-mediated
ER-stress induction in adipocytes was reported recently by Marek et al. [101]. They provided
important mechanistic insight into how fructose consumption not only influences ER redox status
via depleting ERO-1α expression but also affects one of the key ER-stress signaling pathways by
inducing XBP-1 splicing in the VAT of treated mice. Since the assembly and secretion of the beneficial
anti-inflammatory and insulin-sensitizing adipokine adiponectin is regulated by ER chaperones such
as ERO-1α and ERp44 [102], the fructose-mediated depletion of the biologically active high-molecular
weight protein adiponectin might be explained by an altered ER homeostasis [101]. Furthermore,
this study revealed macrophage infiltration and increased expression of inflammatory cytokines
such as monocyte chemoattractant-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in the VAT in
response to fructose [101]. Importantly, all of these fructose-mediated effects were mediated by KHK.
Although, the low-activity KHK (KHK-A) isoform is expressed in adipocytes [103] and alternative
hexokinase-mediated fructose metabolism takes part in adipose tissue, it is more reasonable to
imply that the observed fructose-mediated metabolic effects are triggered by KHK-C-dependent
metabolism in the liver. These recent results suggest that the enhanced hepatic de novo lipogenesis
and TG production affect adipose tissue via intermediary metabolic and inflammatory communication.
The fructose-induced proinflammatory process with infiltrated macrophages in VAT and the caused
adiponectin resistance are the main important contributors to insulin resistance and global metabolic
changes in the situation of fructose over-consumption [101].

Regarding this hypothesis, an important role of the ER protein CHOP in modulating the polarity
of adipose tissue macrophages was proposed recently [104]. A high fat diet (HFD; consisting of
saturated fat, protein, and sucrose, i.e., 32% sunflower oil, 33% casein, 18% sucrose) resulting in the
induction of ER-stress led to upregulation of CHOP expression in adipocytes, altering adipocyte
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function and suppressing microenvironment conditions, involving downregulation of Th2 cytokines
needed to inhibit M2 polarization of macrophages infiltrated in the adipose. Hence ER-stress induction
results in chronic inflammation in adipose tissue and insulin resistance at the whole-body level. In mice
with CHOP deficiency, adipose tissue macrophage M2 polarization was maintained and these mice
were protected against HFD-mediated metabolic effects and insulin resistance [104].

Another important mediator of adipogenesis and adipocyte function includes glucocorticoids.
Although both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) are
expressed in adipose tissue and have roles in regulating leptin expression, silencing experiments
showed that GR has more important roles in mediating adipogenesis and adipokine production
in human adipocytes [74,105]. In addition, the intracellular generation of active glucocorticoids in
monocyte/macrophages regulates the release of pro-inflammatory molecules [106]. It was shown that
the selective inhibition of 11β-HSD1 improved multiple MetS parameters, suppressed the inflammation
of adipose tissue [107], exerted anti-inflammatory effects in lipopolysaccharide (LPS)-activated
macrophages via the stimulation of heme oxygenase-1 [108], and reduced pro-inflammatory gene
expression in atherosclerotic tissues [109] in rodent models. Fructose-induced proinflammatory
effects in adipocytes or in macrophage infiltrating adipose tissue or the liver might be exacerbated
by reduced GR signaling and/or enhanced MR signaling [105,110,111], or it may directly stimulate
local glucocorticoid activation in these tissues (see below, Section 6). In this regard, the effects of
glucocorticoids in the development and progression of T2DM and cardiovascular complications
upon the excessive consumption of fructose-containing foods in our modern society need to be
further investigated. In line with a role for oxidative stress-related complications, several studies
implicated that the administration of antioxidants might prevent the fructose-induced adipose tissue
dysfunctions [112], or the progression of steatosis and inflammation in NAFLD [113,114].

To conclude, excess lipid accumulation caused by chronic fructose over-feeding is known to be
associated with ER-stress and cellular dysfunction in adipocytes.

5. Role of 11β-HSD1 in Adipocyte Differentiation/Proliferation

A systemic glucocorticoid excess, as observed in Cushing’s disease, leads to obesity and all
further symptoms of the MetS, with a pathological phenotype of dyslipidemia, insulin resistance, and
hypertension [115,116]. However, in abdominally obese patients without Cushing’s disease, circulating
cortisol levels are not elevated [115]. However, individuals with essential abdominal obesity have an
impaired diurnal glucocorticoid rhythm with lower peak levels but higher levels during nadir [117,118].
The total excretion of urinary glucocorticoid metabolites is elevated, probably as a result of an increased
hepatic clearance rate due to increased expression of 5α-reductase [21,119–121]. Since circulating
glucocorticoid levels are in the normal range, this indicates a higher hypothalamus-pituitary-adrenal
(HPA) axis activity. Importantly, the local cortisol synthesis in adipose tissue was found to be
increased and is recognized as an important etiologic factor for obesity-related diseases [21,33,122].
Intracellularly, 11β-HSD1 is responsible for the generation of physiologically active glucocorticoids
(cortisol, corticosterone) from their inert precursors (cortisone, 11-dehydrocorticosterone), thus
regulating glucocorticoid access to glucocorticoid- and mineralocorticoid receptors [28,29,32,34]. It is
known that 11β-HSD1 is elevated in adipose tissue in obesity [122,123], where it can contribute to
metabolic complications. In contrast, 11β-HSD1 expression remained at normal levels or was found
to be reduced in the liver in obesity and T2DM [123–125]. Investigations in transgene mice showed
that a moderate overexpression of 11β-HSD1 in adipose tissue was sufficient to induce specific fat
accumulation in the VAT [20]. These mice also presented with increased adipocyte size, especially
in the VAT, as well as increased non-esterified fatty acid release. Conversely, transgenic 11β-HSD1
KO mice showed reduced hyperglycemia and VAT accumulation and improved insulin sensitivity
compared to wild-type mice under conditions of stress and high-fat diet [126].

Earlier, our group reported the expression of hexose-6-phosphate dehydrogenase (H6PDH) in
rat epididymal fat, as detected at the level of mRNA, protein, and activity [127]. Adipocytes are
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equipped with a functional glucose-6-phosphate transporter (G6PT)—H6PDH—11β-HSD1 system.
As exemplified by the model compound metyrapone, an NADPH-depleting agent for modulating
local glucocorticoid activation [128], all three components are potential pharmacological targets.
Metyrapone administration caused a shift from 11β-HSD1 oxoreductase to dehydrogenase activity in
both 3T3-L1-derived and human stem cell-derived differentiated adipocytes [128]. Furthermore, the
depletion of luminal pyridine nucleotides in the ER attenuated 11β-HSD1 oxoreductase activity and
the decreased accumulation of lipid droplets during preadipocyte differentiation.

During adipocyte maturation, at an early stage, the expression of 11β-HSD1 is low in
pre-adipocytes, whereas it increases during the late phase. Earlier studies revealed that glucocorticoids
play an important role in preadipocyte differentiation, as active glucocorticoids were required for
terminal adipogenesis [129,130] and limit cell proliferation [131]. Inhibition of 11β-HSD1 activity by
pharmacological agents or shRNA blocked the capability of inactive 11-oxoglucocorticoids to promote
differentiation [132,133]. Thus, these observations emphasize the adipogenic role of glucocorticoids.

6. Effect of Fructose on 11β-HSD1 Expression and Activity

Recent evidence highlights a role of the ER as a nutrient sensor [134], supporting the cellular
response to extreme nutritional conditions. The redox state of ER-luminal pyridine nucleotides
determines the reaction direction of 11β-HSD1, and alterations of the redox state of pyridine
nucleotides are well mirrored by cortisone reduction and cortisol oxidation capacity [29,135].
Over-nutrition with a high sugar load stimulates the local activation of glucocorticoids through
the G6PT—H6PDH—11β-HSD1 triad. A previous study addressed the effect of extracellular glucose
availability on 11β-HSD1 activity [135]. Lowering glucose concentration in the culture medium caused
a decrease in the NADPH/NADP+ ratio, which consequently resulted in a shift from 11β-HSD1
oxoreductase to dehydrogenase activity, thereby lowering the cortisol/cortisone ratio. As reported
earlier, at 1 g/L of glucose, 11β-HSD1 oxoreductase activity decreased by 40% compared to cells kept in
4.5 g/L glucose medium. To see whether fructose might have a similar effect, we measured 11β-HSD1
oxoreductase and dehydrogenase activities in cells stably coexpressing 11β-HSD1 and H6PDH (HHH7
clone [136]) with different fructose concentrations in the culture medium (Figure 2). Interestingly, in
contrast to glucose, the presence of 1 g/L fructose in the medium as the only carbohydrate source was
still capable of maintaining high oxoreductase activity, indicating a high intraluminal NADPH/NADP+

ratio [35]. To extend this dose-dependent effect, we incubated HHH7 cells with various concentrations
of fructose. The results showed that even at fructose concentrations as low as 0.1 g/L, efficient
11β-HSD1 oxoreductase activity was observed (50% at 0.1 g/L compared to 4.5 g/L). This suggests
that fructose constitutes a more efficient source of ER-luminal NADPH than glucose.
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Figure 2. Exogenous fructose regulates 11β-HSD1 activity. Human embryonic kidney cells stably
expressing human 11β-HSD1 and H6PDH (HHH7 cell clone [136]) were incubated with different
fructose concentrations for 24 h, followed by determination of the 11β-HSD1 oxoreductase (left panel)
and dehydrogenase (right panel) activities. Increasing concentrations of extracellular fructose shifted
the activity from dehydrogenase to oxoreductase activity. Data represent mean ± S.D. from four
independent experiments.
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A possible explanation for the fact that fructose seems to be a preferred source for ER-luminal
NADPH generation and therefore stimulation of 11β-HSD1-dependent glucocorticoid activation,
compared to glucose, might be provided by its intracellular metabolism. Fructose is metabolized in the
liver to fructose-1-phosphate, bypassing the key glycolysis regulatory enzyme phosphofructokinase,
leading to enhanced lipogenesis. The adipose does not express fructokinase and fructose is converted
by hexokinase to F6P [137]. An in vitro study using rat and porcine liver microsomes found that G6P
and F6P but not galactose-1-phosphate, glucose-1-phosphate, and fructose-1-phosphate stimulated
11β-HSD1 oxoreductase activity [24]. Interestingly, F6P, unlike G6P, failed to increase 11β-HSD1
oxoreductase activity in porcine adipose microsomes, and the reason for this observation remains
unclear. Later, another study using rat liver and adipose microsomes demonstrated that F6P efficiently
induced 11β-HSD1 oxoreductase activity. This study also provided evidence for the existence of a F6P
transporter in the ER membrane that is distinct of the G6P transporter G6PT, and for the existence
of an ER-luminal F6P isomerase, which forms G6P for H6PDH-dependent NADPH generation [25].
Importantly, F6P did not directly serve as a substrate of H6PDH but needed to be first converted to G6P.
The luminal F6P isomerase showed different properties than its cytoplasmic counterpart, suggesting
that the ER-luminal enzyme is encoded by a different gene. Identification of the gene encoding this
ER-luminal F6P isomerase as well as that for the 6-phosphogluconate dehydrogenase (which generates
another NADPH molecule in addition to H6PDH) will be important for a better understanding of the
coupling of energy status and 11β-HSD1-mediated glucocorticoid activation.

An alternative explanation for the superiority of fructose in ER-luminal NADPH generation can
be the preferential transport of fructose and F6P over glucose and G6P through the plasma membrane
and ER membrane, respectively. Fructose stimulates its own uptake via GLUT5 at the gene expression
level (see above), while the most important glucose transporter in adipocytes, GLUT4, is active only
under hyperglycemic conditions. The rates of F6P and G6P transport through the ER-membrane have
not yet been compared, an issue that needs to be addressed in future research.

Fructose not only stimulates 11β-HSD1 oxoreductase activity by increasing luminal NADPH
generation but also by affecting gene expression. An increased 11β-HSD1 expression and activity was
observed in mouse 3T3-L1 adipocytes that were cultivated in medium containing fructose as the only
carbohydrate source instead of glucose [35]. As a possible explanation for the elevated expression,
an increased ratio of the transcription factors C/EBPα to C/EBPβ, reported earlier to be involved
in the transcriptional regulation of 11β-HSD1 [138,139], was detected. Moreover, 3T3-L1 adipocytes
differentiated in fructose containing medium had elevated expression of GLUT5, thus further
enhancing fructose uptake and stimulating 11β-HSD1 expression and activity. Additionally, lipolysis
was induced with increased phosphorylation of perilipin, enhanced expression of hormone sensitive
lipase and adipocyte triglyceride lipase, and elevated release of glycerol and FFA. This suggested
fructose as a potent adipocyte differentiation stimulant via increasing local glucocorticoid activation.

The above described observations were supported by animal experimentation. A very recent
in vivo experiment with Sprague Dawley rats fed with a fructose solution (10% (w/v)) for 9 weeks
confirmed our (above established) hypothesis, that fructose overload promotes glucocorticoid
production through the enhanced expression and activity of 11β-HSD1 and H6PDH, supplying further
NADPH in rat epididymal white adipose tissue [140]. Importantly, these rats developed some of the
characteristic features of MetS, such as hypertriglyceridemia and hypertension. Other investigators
showed that a shorter exposure of 24 h to a high fructose diet in rats resulted in an elevated expression
of 11β-HSD1 in the liver and in VAT [23]. An enhanced expression of 11β-HSD1 as well as GR-regulated
lipogenic genes accompanied by an induced adipogenesis was suggested by studies using Wistar
rats on 10% fructose in the drinking water for a 9 week period [141–143]. Male rats that were
subjected to both fructose-rich diet and chronic unpredictable stress had slightly elevated corticosterone
levels, higher 11β-HSD1 expression (but not H6PDH, contrary with the previous animal study), and
evidence for increased GR activation [142]. Also, acetyl-CoA-carboxylase, fatty acid synthase and
hormone sensitive lipase expression levels were elevated. This may suggest that chronic stress further
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exacerbates the fructose-mediated induction of 11β-HSD1 and local glucocorticoid effects on lipolysis
and adipogenesis. A recent study with mice that were fed a high-fructose diet for 60 days found
elevated glucocorticoid levels in liver and adipose tissue as well as enhanced GR in the nucleus
and activation of its target genes [144]. Plasma FFA, TG, insulin, and glucose were increased while
hepatic glycogen was decreased. Treatment with the GR antagonist RU486 lowered plasma lipids,
tissue glucocorticoids, and GR activation, as well as the expression of its target genes. Additionally,
lipid accumulation in adipose tissue decreased and insulin sensitivity was improved. Interestingly,
the high-fructose diet resulted in an increased expression of 11β-HSD1, H6PDH, and G6PT in the
liver and adipose. Furthermore, the anti-lipogenic transcription factor Hes-1 was down regulated by
elevated GR activity while the expression of PPARγ, CD36, and SREBP1-c were enhanced, explaining
the elevated FFA and TG production. These observations suggest that high fructose consumption
leads to elevated expression and activity of the 11β-HSD1-H6PDH-G6PT triad, promoting local GR
activation and glucocorticoid-mediated stimulation of lipolysis and adipogenesis. It will be important
to see in follow-on studies whether the selective inhibition of 11β-HSD1 may protect from the adverse
metabolic effects of high-fructose consumption.

In this regard, a 16 week treatment of male mice with the American Lifestyle-induced Obesity
Syndrome (ALIOS) diet (ad libitum feeding of 45% calories from fat, 11.6% transfats, and 42 g/L
high fructose corn syrup (55% fructose, 45% glucose) in the drinking water) recapitulated obesity,
insulin resistance, dyslipidemia, and the spectrum of nonalcoholic fatty liver disease (NAFLD) [145].
However, global 11β-HSD1 KO mice were not protected from the metabolic dysregulation following
the 16 week ALIOS diet. Glucocorticoids are known to promote steatosis, among other mechanisms by
stimulating lipolysis within the adipose tissue, and this leads to increased FFA delivery to the liver,
for the production of lipids through increased hepatic de novo lipogenesis [146–148]. 11β-HSD1 KO
mice were protected from steatohepatitis upon adding glucocorticoids in the drinking water but as a
standard rodent chow [149]. This study also emphasizes the importance of adipose 11β-HSD1 and its
impact on the hepatic phenotype. Interestingly, the ALIOS diet led to an early transition to hepatic
inflammatory disease with elevated markers of inflammation, immune cell infiltration, and fibrosis in
11β-HSD1 KO mice, indicating a transition to non-alcoholic steatohepatitis (NASH) [145]. Why the
global 11β-HSD1 KO mice were not protected against the ALIOS diet in the study by Larner et al. [145],
but 11β-HSD1 KO mice were resistant against hyperglycemia induced by obesity or stress in the
study by Kotelevtsev et al. [126], remains unclear. Analysis of the differences in animal maintenance,
diet, and treatment duration may provide an explanation. It needs to be noted that the life-long
adaptation by compensatory mechanisms including an elevated adrenal glucocorticoid production
may be responsible for the lack of protection from the high fructose, high transfat diet in 11β-HSD1
KO mice, and that the administration of pharmacological inhibitors, especially when targeted to the
adipose tissue, may lead to a different outcome.

7. Conclusions

Both excessive fructose consumption and increased intracellular glucocorticoid activation have
been suggested to contribute to the pathogenesis of the MetS (Figure 3). Fructose is suggested to
be the most hypertriglyceridemic sugar. However, it is important to investigate whether abdominal
obesity exacerbates the hypertriglyceridemic effect of the high fructose diet and whether increased
glucocorticoids further aggravate the adverse metabolic effects of high fructose. Independently of
the consumed fructose, elevated glucocorticoids and central obesity, especially visceral obesity, are
associated with a higher risk for T2DM and MetS. Therefore, future investigations on the effects
of fructose should consider the source and dietary form of fructose (solid food or beverage) and
should include careful controls regarding the sex-, genetics-, stress-, and obesity-related differences
in responsiveness.
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Figure 3. Effect of fructose on liver and adipose tissue, their interconnections, and impact of 
glucocorticoid activation. Excessive fructose consumption is thought to be associated with hepatic 
steatosis, cellular stress, and inflammation of the MetS. The enhanced glucocorticoid production also 
has a crucial role in the regulation of adipocyte differentiation and cellular metabolism. 11β-HSD1, 
11β-hydroxysteroid dehydrogenase 1; 6PG, 6-phosphogluconate; Cyto, cytoplasm; ER, endoplasmic 
reticulum; F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; G6PT, glucose-6-phosphate 
transporter in the ER-membrane; H6PDH, hexose-6-phosphate dehydrogenase 

The importance of the G6PT-H6PDH-11β-HSD1 system in the ER-lumen received a distinct 
focus in the past few years, providing a novel pharmaceutical potential to intervene in the 
progression of MetS and prevent its diabetic and cardiovascular consequences. However, there are 
important questions remaining. Whether or not pharmacological inhibition of H6PDH or G6PT may 
offer therapeutic benefits remains fully unexplored and further basic research to better understand 
the functions of these two proteins is needed. The fact that global 11β-HSD1 KO mice, which are 
subjected to adaptation by life-long compensatory mechanisms, were not protected against the 
ALIOS diet in the study by Larner et al. [145] is an argument against protection from adverse 
metabolic effects of high fructose containing diet by the pharmacological inhibition of 11β-HSD1. 
However, selective inhibition of 11β-HSD1 in adipose tissue might be superior to global enzyme 
deficiency due to more pronounced feedback regulation and increased adrenal glucocorticoid 
production in the latter situation. Thus, the effect of selective inhibition of 11β-HSD1 specifically in 
adipose tissue should be investigated. Furthermore, species-specific differences need to be 
considered. Fructose as well as glucocorticoid metabolism in rodents and human are different in 
several aspects, and, ideally, clinical studies should be performed to better understand the link 
between high fructose intake and glucocorticoid action.  
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The importance of the G6PT-H6PDH-11β-HSD1 system in the ER-lumen received a distinct focus
in the past few years, providing a novel pharmaceutical potential to intervene in the progression
of MetS and prevent its diabetic and cardiovascular consequences. However, there are important
questions remaining. Whether or not pharmacological inhibition of H6PDH or G6PT may offer
therapeutic benefits remains fully unexplored and further basic research to better understand the
functions of these two proteins is needed. The fact that global 11β-HSD1 KO mice, which are subjected
to adaptation by life-long compensatory mechanisms, were not protected against the ALIOS diet in the
study by Larner et al. [145] is an argument against protection from adverse metabolic effects of high
fructose containing diet by the pharmacological inhibition of 11β-HSD1. However, selective inhibition
of 11β-HSD1 in adipose tissue might be superior to global enzyme deficiency due to more pronounced
feedback regulation and increased adrenal glucocorticoid production in the latter situation. Thus,
the effect of selective inhibition of 11β-HSD1 specifically in adipose tissue should be investigated.
Furthermore, species-specific differences need to be considered. Fructose as well as glucocorticoid
metabolism in rodents and human are different in several aspects, and, ideally, clinical studies should
be performed to better understand the link between high fructose intake and glucocorticoid action.
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Abbreviations

AMPK: Adenosine 5′-monophosphate (AMP)-activated protein kinase; ATP: Adenosine Triphosphate;
CVD: Cardiovascular Disease; CHOP: CCAAT-enhancer-binding protein homologous protein; ER: endoplasmic
reticulum; F1P: fructose-1-phosphate; G6P: glucose-6-phosphate; G6PT: G6P translocase; GLUT5: glucose
transporter 5; Fru-1-P: Fructose-1-phophate; FFA: free fatty acid; H6PD: hexose-6-phosphate dehydrogenase;
HFD: high fat diet; 11β-HSD1: 11β-hydroxysteroid dehydrogenase type 1; MetS: metabolic syndrome; NADPH:
reduced nicotinamide adenine dinucleotide phosphate; NAFLD: nonalcoholic fatty liver disease; NASH:
nonalcoholic steatohepatitis; PPARα: Peroxisome Proliferator-Activated Receptor α; ROS: reactive oxygen species;
SREBP1c: Sterol Response Element Binding Protein 1c; T2DM: type II diabetes mellitus; TG: triglycerides; TNF:
tumor necrosis factor; UPR: unfolded protein response; VAT: visceral adipose tissue; VLDL: Very Low Density
Lipoprotein; XBP-1: X-box binding protein 1.

References

1. Malik, V.S.; Hu, F.B. Fructose and Cardiometabolic Health: What the Evidence from Sugar-Sweetened
Beverages Tells Us. J. Am. Coll. Cardiol. 2015, 66, 1615–1624. [CrossRef] [PubMed]

2. Ogden, C.L.; Carroll, M.D.; Curtin, L.R.; McDowell, M.A.; Tabak, C.J.; Flegal, M.K. Prevalence of overweight
and obesity in the United States, 1999–2004. JAMA 2006, 295, 1549–1555. [CrossRef] [PubMed]

3. Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.P.; Hu, F.B. Sugar-sweetened beverages, obesity, type 2
diabetes mellitus, and cardiovascular disease risk. Circulation 2010, 121, 1356–1364. [CrossRef] [PubMed]

4. Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk
of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [CrossRef]
[PubMed]

5. Yudkin, J.; Roddy, J. Levels of Dietary Sucrose in Patients with Occlusive Atherosclerotic Disease. Lancet
1964, 2, 6–8. [CrossRef]

6. Bantle, J.P.; Laine, D.C.; Thomas, J.W. Metabolic effects of dietary fructose and sucrose in types I and II
diabetic subjects. JAMA 1986, 256, 3241–3246. [CrossRef] [PubMed]

7. Despres, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [CrossRef]
[PubMed]

8. Cristancho, A.G.; Lazar, M.A. Forming functional fat: A growing understanding of adipocyte differentiation.
Nat. Rev. Mol. Cell Biol. 2011, 12, 722–734. [CrossRef] [PubMed]

9. Trayhurn, P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 2013, 93, 1–21.
[CrossRef] [PubMed]

10. Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [CrossRef] [PubMed]
11. Calder, P.C.; Ahluwalia, N.; Brouns, F.; Buetler, T.; Clement, K.; Cunningham, K.; Esposito, K.; Jonsson, L.S.;

Kolb, H.; Lansink, M.; et al. Dietary factors and low-grade inflammation in relation to overweight and
obesity. Br. J. Nutr. 2011, 106 (Suppl. 3), S5–S78. [CrossRef] [PubMed]

12. Park, Y.K.; Yetley, E.A. Intakes and food sources of fructose in the United States. Am. J. Clin. Nutr. 1993, 58
(Suppl. 5), 737S–747S. [PubMed]

13. Vos, M.B.; Kimmons, J.E.; Gillespie, C.; Welsh, J.; Blanck, H.M. Dietary fructose consumption among US
children and adults: The Third National Health and Nutrition Examination Survey. Medscape J. Med. 2008,
10, 160. [PubMed]

14. Bray, G.A.; Nielsen, S.J.; Popkin, B.M. Consumption of high-fructose corn syrup in beverages may play a
role in the epidemic of obesity. Am. J. Clin. Nutr. 2004, 79, 537–543. [PubMed]

15. Stanhope, K.L.; Havel, P.J. Fructose consumption: Potential mechanisms for its effects to increase visceral
adiposity and induce dyslipidemia and insulin resistance. Curr. Opin. Lipidol. 2008, 19, 16–24. [CrossRef]
[PubMed]

16. Tappy, L.; Le, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010, 90,
23–46. [CrossRef] [PubMed]

17. Bizeau, M.E.; Pagliassotti, M.J. Hepatic adaptations to sucrose and fructose. Metabolism 2005, 54, 1189–1201.
[CrossRef] [PubMed]

18. Hanover, L.M.; White, J.S. Manufacturing, composition, and applications of fructose. Am. J. Clin. Nutr. 1993,
58 (Suppl. 5), 724S–732S. [PubMed]

http://dx.doi.org/10.1016/j.jacc.2015.08.025
http://www.ncbi.nlm.nih.gov/pubmed/26429086
http://dx.doi.org/10.1001/jama.295.13.1549
http://www.ncbi.nlm.nih.gov/pubmed/16595758
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.876185
http://www.ncbi.nlm.nih.gov/pubmed/20308626
http://dx.doi.org/10.2337/dc10-1079
http://www.ncbi.nlm.nih.gov/pubmed/20693348
http://dx.doi.org/10.1016/S0140-6736(64)90003-0
http://dx.doi.org/10.1001/jama.1986.03380230065027
http://www.ncbi.nlm.nih.gov/pubmed/3783868
http://dx.doi.org/10.1038/nature05488
http://www.ncbi.nlm.nih.gov/pubmed/17167477
http://dx.doi.org/10.1038/nrm3198
http://www.ncbi.nlm.nih.gov/pubmed/21952300
http://dx.doi.org/10.1152/physrev.00017.2012
http://www.ncbi.nlm.nih.gov/pubmed/23303904
http://dx.doi.org/10.1038/nature05485
http://www.ncbi.nlm.nih.gov/pubmed/17167474
http://dx.doi.org/10.1017/S0007114511005460
http://www.ncbi.nlm.nih.gov/pubmed/22133051
http://www.ncbi.nlm.nih.gov/pubmed/8213605
http://www.ncbi.nlm.nih.gov/pubmed/18769702
http://www.ncbi.nlm.nih.gov/pubmed/15051594
http://dx.doi.org/10.1097/MOL.0b013e3282f2b24a
http://www.ncbi.nlm.nih.gov/pubmed/18196982
http://dx.doi.org/10.1152/physrev.00019.2009
http://www.ncbi.nlm.nih.gov/pubmed/20086073
http://dx.doi.org/10.1016/j.metabol.2005.04.004
http://www.ncbi.nlm.nih.gov/pubmed/16125531
http://www.ncbi.nlm.nih.gov/pubmed/8213603


Nutrients 2017, 9, 426 13 of 19

19. Zubiria, M.G.; Alzamendi, A.; Moreno, G.; Rey, M.A.; Spinedi, E.; Giovambattista, A. Long-Term Fructose
Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells.
Nutrients 2016, 8, 198. [CrossRef] [PubMed]

20. Masuzaki, H.; Paterson, J.; Shinyama, H.; Morton, N.M.; Mullins, J.J.; Seckl, J.R.; Flier, J.S. A transgenic model
of visceral obesity and the metabolic syndrome. Science 2001, 294, 2166–2170. [CrossRef] [PubMed]

21. Tomlinson, J.W.; Finney, J.; Gay, C.; Hughes, B.A.; Hughes, S.V.; Stewart, P.M. Impaired glucose tolerance
and insulin resistance are associated with increased adipose 11beta-hydroxysteroid dehydrogenase type 1
expression and elevated hepatic 5alpha-reductase activity. Diabetes 2008, 57, 2652–2660. [CrossRef] [PubMed]

22. Morton, N.M. Obesity and corticosteroids: 11beta-hydroxysteroid type 1 as a cause and therapeutic target in
metabolic disease. Mol. Cell Endocrinol. 2010, 316, 154–164. [CrossRef] [PubMed]

23. London, E.; Castonguay, T.W. High fructose diets increase 11beta-hydroxysteroid dehydrogenase type 1 in
liver and visceral adipose in rats within 24-h exposure. Obesity 2011, 19, 925–932. [CrossRef] [PubMed]

24. McCormick, K.L.; Wang, X.; Mick, G.J. Modification of microsomal 11beta-HSD1 activity by cytosolic
compounds: Glutathione and hexose phosphoesters. J. Steroid. Biochem. Mol. Biol. 2008, 111, 18–23.
[CrossRef] [PubMed]

25. Senesi, S.; Legeza, B.; Balazs, Z.; Csala, M.; Marcolongo, P.; Kereszturi, E.; Szelenyi, P.; Egger, C.; Fulceri, R.;
Mandl, J.; et al. Contribution of fructose-6-phosphate to glucocorticoid activation in the endoplasmic
reticulum: Possible implication in the metabolic syndrome. Endocrinology 2010, 151, 4830–4839. [CrossRef]
[PubMed]

26. Staab, C.A.; Maser, E. 11beta-Hydroxysteroid dehydrogenase type 1 is an important regulator at the interface
of obesity and inflammation. J. Steroid Biochem. Mol. Biol. 2010, 119, 56–72. [CrossRef] [PubMed]

27. Lee, M.J.; Pramyothin, P.; Karastergiou, K.; Fried, S.K. Deconstructing the roles of glucocorticoids in adipose
tissue biology and the development of central obesity. Biochim. Biophys. Acta 2014, 1842, 473–481. [CrossRef]
[PubMed]

28. Banhegyi, G.; Benedetti, A.; Fulceri, R.; Senesi, S. Cooperativity between 11beta-hydroxysteroid
dehydrogenase type 1 and hexose-6-phosphate dehydrogenase in the lumen of the endoplasmic reticulum.
J. Biol. Chem. 2004, 279, 27017–27021. [CrossRef] [PubMed]

29. Atanasov, A.G.; Nashev, L.G.; Schweizer, R.A.; Frick, C.; Odermatt, A. Hexose-6-phosphate dehydrogenase
determines the reaction direction of 11beta-hydroxysteroid dehydrogenase type 1 as an oxoreductase.
FEBS Lett. 2004, 571, 129–133. [CrossRef] [PubMed]

30. Odermatt, A.; Arnold, P.; Stauffer, A.; Frey, B.M.; Frey, F.J. The N-terminal anchor sequences of
11beta-hydroxysteroid dehydrogenases determine their orientation in the endoplasmic reticulum membrane.
J. Biol. Chem. 1999, 274, 28762–28770. [CrossRef] [PubMed]

31. Ozols, J. Lumenal orientation and post-translational modifications of the liver microsomal 11
beta-hydroxysteroid dehydrogenase. J. Biol. Chem. 1995, 270, 2305–2312. [PubMed]

32. Odermatt, A.; Kratschmar, D.V. Tissue-specific modulation of mineralocorticoid receptor function by
11beta-hydroxysteroid dehydrogenases: An overview. Mol. Cell Endocrinol. 2012, 350, 168–186. [CrossRef]
[PubMed]

33. Tomlinson, J.W.; Walker, E.A.; Bujalska, I.J.; Draper, N.; Lavery, G.G.; Cooper, M.S.; Hewison, M.; Stewart, P.M.
11beta-hydroxysteroid dehydrogenase type 1: A tissue-specific regulator of glucocorticoid response.
Endocr. Rev. 2004, 25, 831–866. [CrossRef] [PubMed]

34. Seckl, J.R. 11beta-hydroxysteroid dehydrogenases: Changing glucocorticoid action. Curr. Opin. Pharmacol.
2004, 4, 597–602. [CrossRef] [PubMed]

35. Legeza, B.; Balazs, Z.; Odermatt, A. Fructose promotes the differentiation of 3T3-L1 adipocytes and
accelerates lipid metabolism. FEBS Lett. 2014, 588, 490–496. [CrossRef] [PubMed]

36. Welsh, J.A.; Sharma, A.; Abramson, J.L.; Vaccarino, V.; Gillespie, C.; Vos, M.B. Caloric sweetener consumption
and dyslipidemia among US adults. JAMA 2010, 303, 1490–1497. [CrossRef] [PubMed]

37. Basu, S.; Yoffe, P.; Hills, N.; Lustig, R.H. The relationship of sugar to population-level diabetes prevalence:
An econometric analysis of repeated cross-sectional data. PLoS ONE 2013, 8, e57873. [CrossRef] [PubMed]

38. Ouyang, X.; Cirillo, P.; Sautin, Y.; McCall, S.; Bruchette, J.L.; Diehl, A.M.; Johnson, R.J.; Abdelmalek, M.F.
Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J. Hepatol. 2008, 48, 993–999.
[CrossRef] [PubMed]

http://dx.doi.org/10.3390/nu8040198
http://www.ncbi.nlm.nih.gov/pubmed/27049396
http://dx.doi.org/10.1126/science.1066285
http://www.ncbi.nlm.nih.gov/pubmed/11739957
http://dx.doi.org/10.2337/db08-0495
http://www.ncbi.nlm.nih.gov/pubmed/18633104
http://dx.doi.org/10.1016/j.mce.2009.09.024
http://www.ncbi.nlm.nih.gov/pubmed/19804814
http://dx.doi.org/10.1038/oby.2010.284
http://www.ncbi.nlm.nih.gov/pubmed/21127473
http://dx.doi.org/10.1016/j.jsbmb.2008.04.003
http://www.ncbi.nlm.nih.gov/pubmed/18550363
http://dx.doi.org/10.1210/en.2010-0614
http://www.ncbi.nlm.nih.gov/pubmed/20826560
http://dx.doi.org/10.1016/j.jsbmb.2009.12.013
http://www.ncbi.nlm.nih.gov/pubmed/20045052
http://dx.doi.org/10.1016/j.bbadis.2013.05.029
http://www.ncbi.nlm.nih.gov/pubmed/23735216
http://dx.doi.org/10.1074/jbc.M404159200
http://www.ncbi.nlm.nih.gov/pubmed/15090536
http://dx.doi.org/10.1016/j.febslet.2004.06.065
http://www.ncbi.nlm.nih.gov/pubmed/15280030
http://dx.doi.org/10.1074/jbc.274.40.28762
http://www.ncbi.nlm.nih.gov/pubmed/10497248
http://www.ncbi.nlm.nih.gov/pubmed/7836463
http://dx.doi.org/10.1016/j.mce.2011.07.020
http://www.ncbi.nlm.nih.gov/pubmed/21820034
http://dx.doi.org/10.1210/er.2003-0031
http://www.ncbi.nlm.nih.gov/pubmed/15466942
http://dx.doi.org/10.1016/j.coph.2004.09.001
http://www.ncbi.nlm.nih.gov/pubmed/15525550
http://dx.doi.org/10.1016/j.febslet.2013.12.014
http://www.ncbi.nlm.nih.gov/pubmed/24374344
http://dx.doi.org/10.1001/jama.2010.449
http://www.ncbi.nlm.nih.gov/pubmed/20407058
http://dx.doi.org/10.1371/journal.pone.0057873
http://www.ncbi.nlm.nih.gov/pubmed/23460912
http://dx.doi.org/10.1016/j.jhep.2008.02.011
http://www.ncbi.nlm.nih.gov/pubmed/18395287


Nutrients 2017, 9, 426 14 of 19

39. Elliott, S.S.; Keim, N.L.; Stern, J.S.; Teff, K.; Havel, P.J. Fructose, weight gain, and the insulin resistance
syndrome. Am. J. Clin. Nutr. 2002, 76, 911–922. [PubMed]

40. Johnson, R.J.; Segal, M.S.; Sautin, Y.; Nakagawa, T.; Feig, D.I.; Kang, D.H.; Gersch, M.S.; Benner, S.;
Sanchez-Lozada, L.G. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the
metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr. 2007, 86,
899–906. [PubMed]

41. Dennison, B.A.; Rockwell, H.L.; Baker, S.L. Excess fruit juice consumption by preschool-aged children is
associated with short stature and obesity. Pediatrics 1997, 99, 15–22. [PubMed]

42. Ludwig, D.S.; Peterson, K.E.; Gortmaker, S.L. Relation between consumption of sugar-sweetened drinks and
childhood obesity: A prospective, observational analysis. Lancet 2001, 357, 505–508. [CrossRef]

43. Schulze, M.B.; Manson, J.E.; Ludwig, D.S.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B.
Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged
women. JAMA 2004, 292, 927–934. [CrossRef] [PubMed]

44. Ma, J.; McKeown, N.M.; Hwang, S.J.; Hoffmann, U.; Jacques, P.F.C.S. Fox, Sugar-Sweetened Beverage
Consumption Is Associated With Change of Visceral Adipose Tissue Over 6 Years of Follow-Up. Circulation
2016, 133, 370–377. [CrossRef] [PubMed]

45. Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.;
Dyachenko, A.; Zhang, W.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases
visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig.
2009, 119, 1322–1334. [CrossRef] [PubMed]

46. Ha, V.; Jayalath, V.H.; Cozma, A.I.; Mirrahimi, A.; de Souza, R.J.; Sievenpiper, J.L. Fructose-containing
sugars, blood pressure, and cardiometabolic risk: A critical review. Curr. Hypertens. Rep. 2013, 15, 281–297.
[CrossRef] [PubMed]

47. Sievenpiper, J.L.; de Souza, R.J.; Mirrahimi, A.; Yu, M.E.; Carleton, A.J.; Beyene, J.; Chiavaroli, L.; di Buono, M.;
Jenkins, A.L.; Leiter, L.A.; et al. Effect of fructose on body weight in controlled feeding trials: A systematic
review and meta-analysis. Ann Intern. Med. 2012, 156, 291–304. [CrossRef] [PubMed]

48. Wang, D.D.; Sievenpiper, J.L.; de Souza, R.J.; Chiavaroli, L.; Ha, V.; Cozma, A.I.; Mirrahimi, A.; Yu, M.E.;
Carleton, A.J.; di Buono, M.; et al. The effects of fructose intake on serum uric acid vary among controlled
dietary trials. J. Nutr. 2012, 142, 916–923. [CrossRef] [PubMed]

49. Matsuzaka, T.; Shimano, H.; Yahagi, N.; Amemiya-Kudo, M.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.;
Tomita, S.; Sekiya, M.; et al. Insulin-independent induction of sterol regulatory element-binding protein-1c
expression in the livers of streptozotocin-treated mice. Diabetes 2004, 53, 560–569. [CrossRef] [PubMed]

50. Bantle, J.P.; Raatz, S.K.; Thomas, W.; Georgopoulos, A. Effects of dietary fructose on plasma lipids in healthy
subjects. Am. J. Clin. Nutr. 2000, 72, 1128–1134. [PubMed]

51. Bantle, J.P.; Swanson, J.E.; Thomas, W.; Laine, D.C. Metabolic effects of dietary fructose in diabetic subjects.
Diabetes Care 1992, 15, 1468–1476. [CrossRef] [PubMed]

52. Shapiro, A.; Mu, W.; Roncal, C.; Cheng, K.Y.; Johnson, R.J.; Scarpace, P.J. Fructose-induced leptin resistance
exacerbates weight gain in response to subsequent high-fat feeding. Am. J. Physiol. Regul. Integr.
Comp. Physiol. 2008, 295, R1370–R1375. [CrossRef] [PubMed]

53. Le, K.A.; Faeh, D.; Stettler, R.; Ith, M.; Kreis, R.; Vermathen, P.; Boesch, C.; Ravussin, E.; Tappy, L. A 4-wk
high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy
humans. Am. J. Clin. Nutr. 2006, 84, 1374–1379. [PubMed]

54. Le, K.A.; Ith, M.; Kreis, R.; Faeh, D.; Bortolotti, M.; Tran, C.; Boesch, C.; Tappy, L. Fructose overconsumption
causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of
type 2 diabetes. Am. J. Clin. Nutr. 2009, 89, 1760–1765. [CrossRef] [PubMed]

55. Nakagawa, T.; Hu, H.; Zharikov, S.; Tuttle, K.R.; Short, R.A.; Glushakova, O.; Ouyang, X.; Feig, D.I.;
Block, E.R.; Herrera-Acosta, J.; et al. A causal role for uric acid in fructose-induced metabolic syndrome.
Am. J. Physiol. Renal. Physiol. 2006, 290, F625–F631. [CrossRef] [PubMed]

56. Bremer, A.A.; Stanhope, K.L.; Graham, J.L.; Cummings, B.P.; Wang, W.; Saville, B.R.; Havel, P.J. Fructose-fed
rhesus monkeys: A nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes.
Clin. Transl. Sci. 2011, 4, 243–252. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/12399260
http://www.ncbi.nlm.nih.gov/pubmed/17921363
http://www.ncbi.nlm.nih.gov/pubmed/8989331
http://dx.doi.org/10.1016/S0140-6736(00)04041-1
http://dx.doi.org/10.1001/jama.292.8.927
http://www.ncbi.nlm.nih.gov/pubmed/15328324
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.018704
http://www.ncbi.nlm.nih.gov/pubmed/26755505
http://dx.doi.org/10.1172/JCI37385
http://www.ncbi.nlm.nih.gov/pubmed/19381015
http://dx.doi.org/10.1007/s11906-013-0364-1
http://www.ncbi.nlm.nih.gov/pubmed/23793849
http://dx.doi.org/10.7326/0003-4819-156-4-201202210-00007
http://www.ncbi.nlm.nih.gov/pubmed/22351714
http://dx.doi.org/10.3945/jn.111.151951
http://www.ncbi.nlm.nih.gov/pubmed/22457397
http://dx.doi.org/10.2337/diabetes.53.3.560
http://www.ncbi.nlm.nih.gov/pubmed/14988238
http://www.ncbi.nlm.nih.gov/pubmed/11063439
http://dx.doi.org/10.2337/diacare.15.11.1468
http://www.ncbi.nlm.nih.gov/pubmed/1468273
http://dx.doi.org/10.1152/ajpregu.00195.2008
http://www.ncbi.nlm.nih.gov/pubmed/18703413
http://www.ncbi.nlm.nih.gov/pubmed/17158419
http://dx.doi.org/10.3945/ajcn.2008.27336
http://www.ncbi.nlm.nih.gov/pubmed/19403641
http://dx.doi.org/10.1152/ajprenal.00140.2005
http://www.ncbi.nlm.nih.gov/pubmed/16234313
http://dx.doi.org/10.1111/j.1752-8062.2011.00298.x
http://www.ncbi.nlm.nih.gov/pubmed/21884510


Nutrients 2017, 9, 426 15 of 19

57. Johnson, R.J.; Perez-Pozo, S.E.; Sautin, Y.Y.; Manitius, J.; Sanchez-Lozada, L.G.; Feig, D.I.; Shafiu, M.; Segal, M.;
Glassock, R.J.; Shimada, M.; et al. Hypothesis: Could excessive fructose intake and uric acid cause type 2
diabetes? Endocr. Rev. 2009, 30, 96–116. [CrossRef] [PubMed]

58. Mayes, P.A. Intermediary metabolism of fructose. Am. J. Clin. Nutr. 1993, 58, 754S–765S. [PubMed]
59. Douard, V.; Ferraris, R.P. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol.

Endocrinol. Metab. 2008, 295, E227–E237. [CrossRef] [PubMed]
60. Hajduch, E.; Darakhshan, F.; Hundal, H.S. Fructose uptake in rat adipocytes: GLUT5 expression and the

effects of streptozotocin-induced diabetes. Diabetologia 1998, 41, 821–828. [CrossRef] [PubMed]
61. Du, L.; Heaney, A.P. Regulation of adipose differentiation by fructose and GluT5. Mol. Endocrinol. 2012, 26,

1773–1782. [CrossRef] [PubMed]
62. Froesch, E.R. Fructose metabolism in adipose tissue. Acta Med. Scand. Suppl. 1972, 542, 37–46. [CrossRef]

[PubMed]
63. Varma, V.; Boros, L.G.; Nolen, G.T.; Chang, C.W.; Wabitsch, M.; Beger, R.D.; Kaput, J. Metabolic fate of

fructose in human adipocytes: A targeted 13C tracer fate association study. Metabolomics 2015, 11, 529–544.
[CrossRef] [PubMed]

64. Varma, V.; Boros, L.G.; Nolen, G.T.; Chang, C.W.; Wabitsch, M.; Beger, R.D.; Kaput, J. Fructose Alters
Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the
One-Carbon Cycle Energy Producing Pathway. Metabolites 2015, 5, 364–385. [CrossRef] [PubMed]

65. Tedeschi, P.M.; Markert, E.K.; Gounder, M.; Lin, H.; Dvorzhinski, D.; Dolfi, S.C.; Chan, L.L.; Qiu, J.;
DiPaola, R.S.; Hirshfield, K.M.; et al. Contribution of serine, folate and glycine metabolism to the ATP,
NADPH and purine requirements of cancer cells. Cell Death Dis. 2013, 4, e877. [CrossRef] [PubMed]

66. Trommelen, J.; Fuchs, C.J.; Beelen, M.; Lenaerts, K.; Jeukendrup, A.E.; Cermak, N.M.; van Loon, L.J.
Fructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation during Exercise. Nutrients 2017, 9.
[CrossRef] [PubMed]

67. Smith, J.W.; Zachwieja, J.J.; Peronnet, F.; Passe, D.H.; Massicotte, D.; Lavoie, C.; Pascoe, D.D. Fuel selection
and cycling endurance performance with ingestion of [13C]glucose: Evidence for a carbohydrate dose
response. J. Appl. Physiol. 2010, 108, 1520–1529. [CrossRef] [PubMed]

68. Baur, D.A.; Schroer, A.B.; Luden, N.D.; Womack, C.J.; Smyth, S.A.; Saunders, M.J. Glucose-fructose enhances
performance versus isocaloric, but not moderate, glucose. Med. Sci. Sports. Exerc. 2014, 46, 1778–1786.
[CrossRef] [PubMed]

69. Rowlands, D.S.; Swift, M.; Ros, M.; Green, J.G. Composite versus single transportable carbohydrate solution
enhances race and laboratory cycling performance. Appl. Physiol. Nutr. Metab. 2012, 37, 425–436. [CrossRef]
[PubMed]

70. Bally, L.; Kempf, P.; Zueger, T.; Speck, C.; Pasi, N.; Ciller, C.; Feller, K.; Loher, H.; Rosset, R.; Wilhelm, M.; et al.
Metabolic Effects of Glucose-Fructose Co-Ingestion Compared to Glucose Alone during Exercise in Type 1
Diabetes. Nutrients 2017, 9. [CrossRef] [PubMed]

71. Lecoultre, V.; Benoit, R.; Carrel, G.; Schutz, Y.; Millet, G.P.; Tappy, L.; Schneiter, P. Fructose and glucose
co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an
equimolar intake of glucose. Am. J. Clin. Nutr. 2010, 92, 1071–1079. [CrossRef] [PubMed]

72. Sahebjami, H.; Scalettar, R. Effects of fructose infusion on lactate and uric acid metabolism. Lancet 1971, 1,
366–369. [CrossRef]

73. Gregoire, F.M.; Smas, C.M.; Sul, H.S. Understanding adipocyte differentiation. Physiol. Rev. 1998, 78, 783–809.
[PubMed]

74. Lee, M.J.; Fried, S.K. The glucocorticoid receptor, not the mineralocorticoid receptor, plays the dominant role
in adipogenesis and adipokine production in human adipocytes. Int. J. Obes. (Lond.) 2014, 38, 1228–1233.
[CrossRef] [PubMed]

75. Rosen, E.D.; Spiegelman, B.M. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 2000, 16,
145–171. [CrossRef] [PubMed]

76. Wang, Y.; Zhao, L.; Smas, C.; Sul, H.S. Pref-1 interacts with fibronectin to inhibit adipocyte differentiation.
Mol. Cell Biol. 2010, 30, 3480–3492. [CrossRef] [PubMed]

77. De Sa, P.M.; Richard, A.J.; Hang, H.; Stephens, J.M. Transcriptional Regulation of Adipogenesis.
Compr. Physiol. 2017, 7, 635–674.

http://dx.doi.org/10.1210/er.2008-0033
http://www.ncbi.nlm.nih.gov/pubmed/19151107
http://www.ncbi.nlm.nih.gov/pubmed/8213607
http://dx.doi.org/10.1152/ajpendo.90245.2008
http://www.ncbi.nlm.nih.gov/pubmed/18398011
http://dx.doi.org/10.1007/s001250050993
http://www.ncbi.nlm.nih.gov/pubmed/9686924
http://dx.doi.org/10.1210/me.2012-1122
http://www.ncbi.nlm.nih.gov/pubmed/22827929
http://dx.doi.org/10.1111/j.0954-6820.1972.tb05317.x
http://www.ncbi.nlm.nih.gov/pubmed/4516493
http://dx.doi.org/10.1007/s11306-014-0716-0
http://www.ncbi.nlm.nih.gov/pubmed/25972768
http://dx.doi.org/10.3390/metabo5020364
http://www.ncbi.nlm.nih.gov/pubmed/26087138
http://dx.doi.org/10.1038/cddis.2013.393
http://www.ncbi.nlm.nih.gov/pubmed/24157871
http://dx.doi.org/10.3390/nu9020167
http://www.ncbi.nlm.nih.gov/pubmed/28230742
http://dx.doi.org/10.1152/japplphysiol.91394.2008
http://www.ncbi.nlm.nih.gov/pubmed/20299609
http://dx.doi.org/10.1249/MSS.0000000000000284
http://www.ncbi.nlm.nih.gov/pubmed/25134001
http://dx.doi.org/10.1139/h2012-013
http://www.ncbi.nlm.nih.gov/pubmed/22468766
http://dx.doi.org/10.3390/nu9020164
http://www.ncbi.nlm.nih.gov/pubmed/28230765
http://dx.doi.org/10.3945/ajcn.2010.29566
http://www.ncbi.nlm.nih.gov/pubmed/20826630
http://dx.doi.org/10.1016/S0140-6736(71)92208-2
http://www.ncbi.nlm.nih.gov/pubmed/9674695
http://dx.doi.org/10.1038/ijo.2014.6
http://www.ncbi.nlm.nih.gov/pubmed/24430397
http://dx.doi.org/10.1146/annurev.cellbio.16.1.145
http://www.ncbi.nlm.nih.gov/pubmed/11031233
http://dx.doi.org/10.1128/MCB.00057-10
http://www.ncbi.nlm.nih.gov/pubmed/20457810


Nutrients 2017, 9, 426 16 of 19

78. Poulos, S.P.; Dodson, M.V.; Culver, M.F.; Hausman, G.J. The increasingly complex regulation of adipocyte
differentiation. Exp. Biol. Med. (Maywood) 2016, 241, 449–456. [CrossRef] [PubMed]

79. Mastrocola, R.; Nigro, D.; Chiazza, F.; Medana, C.; Bello, F.D.; Boccuzzi, G.; Collino, M.; Aragno, M.
Fructose-derived advanced glycation end-products drive lipogenesis and skeletal muscle reprogramming
via SREBP-1c dysregulation in mice. Free Radic. Biol. Med. 2016, 91, 224–235. [CrossRef] [PubMed]

80. Robubi, A.; Huber, K.R.; Krugluger, W. Extra fructose in the growth medium fuels lipogenesis of adipocytes.
J. Obes. 2014, 2014, 647034. [CrossRef] [PubMed]

81. Balakumar, M.; Raji, L.; Prabhu, D.; Sathishkumar, C.; Prabu, P.; Mohan, V.; Balasubramanyam, M.
High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes
mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol. Cell Biochem. 2016, 423, 93–104.
[CrossRef] [PubMed]

82. Samuel, V.T.; Petersen, K.F.; Shulman, G.I. Lipid-induced insulin resistance: Unravelling the mechanism.
Lancet 2010, 375, 2267–2277. [CrossRef]

83. Ye, J.; DeBose-Boyd, R.A. Regulation of cholesterol and fatty acid synthesis. Cold Spring Harb. Perspect. Biol.
2011, 3. [CrossRef] [PubMed]

84. Petrie, J.L.; Patman, G.L.; Sinha, I.; Alexander, T.D.; Reeves, H.L.; Agius, L. The rate of production of uric acid
by hepatocytes is a sensitive index of compromised cell ATP homeostasis. Am. J. Physiol. Endocrinol. Metab.
2013, 305, E1255–E1265. [CrossRef] [PubMed]

85. Perheentupa, J.; Raivio, K. Fructose-induced hyperuricaemia. Lancet 1967, 2, 528–531. [CrossRef]
86. Fiaschi, E.; Baggio, B.; Favaro, S.; Antonello, A.; Camerin, E.; Todesco, S.; Borsatti, A. Fructose-induced

hyperuricemia in essential hypertension. Metabolism 1977, 26, 1219–1223. [CrossRef]
87. Israel, K.D.; Michaelis, O.E.T.; Reiser, S.; Keeney, M. Serum uric acid, inorganic phosphorus, and

glutamic-oxalacetic transaminase and blood pressure in carbohydrate-sensitive adults consuming three
different levels of sucrose. Ann. Nutr. Metab. 1983, 27, 425–435. [CrossRef] [PubMed]

88. Reiser, S.; Powell, A.S.; Scholfield, D.J.; Panda, P.; Ellwood, K.C.; Canary, J.J. Blood lipids, lipoproteins,
apoproteins, and uric acid in men fed diets containing fructose or high-amylose cornstarch. Am. J. Clin. Nutr.
1989, 49, 832–839. [PubMed]

89. Odermatt, A. The Western-style diet: A major risk factor for impaired kidney function and chronic kidney
disease. Am. J. Physiol. Renal. Physiol. 2011, 301, F919–F931. [CrossRef] [PubMed]

90. Bos, M.J.; Koudstaal, P.J.; Hofman, A.; Witteman, J.C.; Breteler, M.M. Uric acid is a risk factor for myocardial
infarction and stroke: The Rotterdam study. Stroke 2006, 37, 1503–1507. [CrossRef] [PubMed]

91. Jin, M.; Yang, F.; Yang, I.; Yin, Y.; Luo, J.J.; Wang, H.; Yang, X.F. Uric acid, hyperuricemia and vascular
diseases. Front. Biosci. 2012, 17, 656–669. [CrossRef]

92. Sanchez-Lozada, L.G.; Tapia, E.; Bautista-Garcia, P.; Soto, V.; Avila-Casado, C.; Vega-Campos, I.P.;
Nakagawa, T.; Zhao, L.; Franco, M.; Johnson, R.J. Effects of febuxostat on metabolic and renal alterations
in rats with fructose-induced metabolic syndrome. Am. J. Physiol. Renal. Physiol. 2008, 294, F710–F718.
[CrossRef] [PubMed]

93. Sautin, Y.Y.; Nakagawa, T.; Zharikov, S.; Johnson, R.J. Adverse effects of the classic antioxidant uric acid in
adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am. J. Physiol. Cell Physiol. 2007, 293,
C584–C596. [CrossRef] [PubMed]

94. Cheung, K.J.; Tzameli, I.; Pissios, P.; Rovira, I.; Gavrilova, O.; Ohtsubo, T.; Chen, Z.; Finkel, T.; Flier, J.S.;
Friedman, J.M. Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab.
2007, 5, 115–128. [CrossRef] [PubMed]

95. Stavric, B.; Johnson, W.J.; Clayman, S.; Gadd, R.E.; Chartrand, A. Effect of fructose administration on serum
urate levels in the uricase inhibited rat. Experientia 1976, 32, 373–374. [CrossRef] [PubMed]

96. Watanabe, S.; Kang, D.H.; Feng, L.; Nakagawa, T.; Kanellis, J.; Lan, H.; Mazzali, M.; Johnson, R.J. Uric acid,
hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 2002, 40, 355–360. [CrossRef]
[PubMed]

97. Vasdev, S.; Gill, V.; Parai, S.; Longerich, L.; Gadag, V. Dietary vitamin E and C supplementation prevents
fructose induced hypertension in rats. Mol. Cell Biochem. 2002, 241, 107–114. [CrossRef] [PubMed]

http://dx.doi.org/10.1177/1535370215619041
http://www.ncbi.nlm.nih.gov/pubmed/26645953
http://dx.doi.org/10.1016/j.freeradbiomed.2015.12.022
http://www.ncbi.nlm.nih.gov/pubmed/26721591
http://dx.doi.org/10.1155/2014/647034
http://www.ncbi.nlm.nih.gov/pubmed/24693420
http://dx.doi.org/10.1007/s11010-016-2828-5
http://www.ncbi.nlm.nih.gov/pubmed/27699590
http://dx.doi.org/10.1016/S0140-6736(10)60408-4
http://dx.doi.org/10.1101/cshperspect.a004754
http://www.ncbi.nlm.nih.gov/pubmed/21504873
http://dx.doi.org/10.1152/ajpendo.00214.2013
http://www.ncbi.nlm.nih.gov/pubmed/24045866
http://dx.doi.org/10.1016/S0140-6736(67)90494-1
http://dx.doi.org/10.1016/0026-0495(77)90114-7
http://dx.doi.org/10.1159/000176714
http://www.ncbi.nlm.nih.gov/pubmed/6638951
http://www.ncbi.nlm.nih.gov/pubmed/2497634
http://dx.doi.org/10.1152/ajprenal.00068.2011
http://www.ncbi.nlm.nih.gov/pubmed/21880837
http://dx.doi.org/10.1161/01.STR.0000221716.55088.d4
http://www.ncbi.nlm.nih.gov/pubmed/16675740
http://dx.doi.org/10.2741/3950
http://dx.doi.org/10.1152/ajprenal.00454.2007
http://www.ncbi.nlm.nih.gov/pubmed/18216151
http://dx.doi.org/10.1152/ajpcell.00600.2006
http://www.ncbi.nlm.nih.gov/pubmed/17428837
http://dx.doi.org/10.1016/j.cmet.2007.01.005
http://www.ncbi.nlm.nih.gov/pubmed/17276354
http://dx.doi.org/10.1007/BF01940847
http://www.ncbi.nlm.nih.gov/pubmed/1253916
http://dx.doi.org/10.1161/01.HYP.0000028589.66335.AA
http://www.ncbi.nlm.nih.gov/pubmed/12215479
http://dx.doi.org/10.1023/A:1020835229591
http://www.ncbi.nlm.nih.gov/pubmed/12482032


Nutrients 2017, 9, 426 17 of 19

98. Kanellis, J.; Watanabe, S.; Li, J.H.; Kang, D.H.; Li, P.; Nakagawa, T.; Wamsley, A.; Sheikh-Hamad, D.; Lan, H.Y.;
Feng, L.; et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth
muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension 2003, 41, 1287–1293.
[CrossRef] [PubMed]

99. Gregor, M.F.; Hotamisligil, G.S. Thematic review series: Adipocyte Biology. Adipocyte stress: The
endoplasmic reticulum and metabolic disease. J. Lipid. Res. 2007, 48, 1905–1914. [CrossRef] [PubMed]

100. Rosen, E.D.; MacDougald, O.A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 2006,
7, 885–896. [CrossRef] [PubMed]

101. Marek, G.; Pannu, V.; Shanmugham, P.; Pancione, B.; Mascia, D.; Crosson, S.; Ishimoto, T.; Sautin, Y.Y.
Adiponectin resistance and proinflammatory changes in the visceral adipose tissue induced by fructose
consumption via ketohexokinase-dependent pathway. Diabetes 2015, 64, 508–518. [CrossRef] [PubMed]

102. Wang, Z.V.; Schraw, T.D.; Kim, J.Y.; Khan, T.; Rajala, M.W.; Follenzi, A.; Scherer, P.E. Secretion of the
adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention.
Mol. Cell Biol. 2007, 27, 3716–3731. [CrossRef] [PubMed]

103. Diggle, C.P.; Shires, M.; Leitch, D.; Brooke, D.; Carr, I.M.; Markham, A.F.; Hayward, B.E.; Asipu, A.;
Bonthron, D.T. Ketohexokinase: Expression and localization of the principal fructose-metabolizing enzyme.
J. Histochem. Cytochem. 2009, 57, 763–774. [CrossRef] [PubMed]

104. Suzuki, T.; Gao, J.; Ishigaki, Y.; Kondo, K.; Sawada, S.; Izumi, T.; Uno, K.; Kaneko, K.; Tsukita, S.;
Takahashi, K.; et al. ER Stress Protein CHOP Mediates Insulin Resistance by Modulating Adipose Tissue
Macrophage Polarity. Cell Rep. 2017, 18, 2045–2057. [CrossRef] [PubMed]

105. Hoppmann, J.; Perwitz, N.; Meier, B.; Fasshauer, M.; Hadaschik, D.; Lehnert, H.; Klein, J. The balance
between gluco—And mineralo-corticoid action critically determines inflammatory adipocyte responses.
J. Endocrinol. 2010, 204, 153–164. [CrossRef] [PubMed]

106. Zhang, T.Y.; Daynes, R.A. Macrophages from 11beta-hydroxysteroid dehydrogenase type 1-deficient mice
exhibit an increased sensitivity to lipopolysaccharide stimulation due to TGF-beta-mediated up-regulation
of SHIP1 expression. J. Immunol. 2007, 179, 6325–6335. [CrossRef] [PubMed]

107. Wang, L.; Liu, J.; Zhang, A.S.; Cheng, P.; Zhang, X.; Lv, S.; Wu, L.; Yu, J.; Di, W.J.; Zha, J.M.; et al. BVT.2733, a
Selective 11 beta-Hydroxysteroid Dehydrogenase Type 1 Inhibitor, Attenuates Obesity and Inflammation in
Diet-Induced Obese Mice. PLoS ONE 2012, 7. [CrossRef]

108. Park, S.B.; Park, J.S.; Jung, W.H.; Kim, H.Y.; Kwak, H.J.; Ahn, J.H.; Choi, K.J.; Na, Y.J.; Choi, S.; Rhee, S.D.; et al.
Anti-inflammatory effect of a selective 11beta-hydroxysteroid dehydrogenase type 1 inhibitor via the
stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages. J. Pharmacol. Sci.
2016, 131, 241–250. [CrossRef] [PubMed]

109. Luo, M.J.J.; Thieringer, R.; Springer, M.S.; Wright, S.D.; Hermanowski-Vosatka, A.; Plump, A.; Balkovec, J.M.;
Cheng, K.; Ding, G.J.; Kawka, D.W.; et al. 11 beta-HSD1 inhibition reduces atherosclerosis in mice by altering
proinflammatory gene expression in the vasculature. Physiol. Genom. 2013, 45, 47–57. [CrossRef] [PubMed]

110. Chantong, B.; Kratschmar, D.V.; Nashev, L.G.; Balazs, Z.; Odermatt, A. Mineralocorticoid and glucocorticoid
receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine
BV-2 microglial cells. J. Neuroinflamm. 2012, 9, 260. [CrossRef] [PubMed]

111. Hirata, A.; Maeda, N.; Nakatsuji, H.; Hiuge-Shimizu, A.; Okada, T.; Funahashi, T.; Shimomura, I.
Contribution of glucocorticoid-mineralocorticoid receptor pathway on the obesity-related adipocyte
dysfunction. Biochem. Biophys. Res. Commun. 2012, 419, 182–187. [CrossRef] [PubMed]

112. Farina, J.P.; Garcia, M.E.; Alzamendi, A.; Giovambattista, A.; Marra, C.A.; Spinedi, E.; Gagliardino, J.J.
Antioxidant treatment prevents the development of fructose-induced abdominal adipose tissue dysfunction.
Clin. Sci. 2013, 125, 87–97. [CrossRef] [PubMed]

113. Lavine, J.E.; Schwimmer, J.B.; van Natta, M.L.; Molleston, J.P.; Murray, K.F.; Rosenthal, P.; Abrams, S.H.;
Scheimann, A.O.; Sanyal, A.J.; Chalasani, N.; et al. Nonalcoholic Steatohepatitis Clinical Research, Effect of
vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: The
TONIC randomized controlled trial. JAMA 2011, 305, 1659–1668. [CrossRef] [PubMed]

114. Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.;
Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. Pioglitazone, vitamin E, or
placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010, 362, 1675–1685. [CrossRef] [PubMed]

http://dx.doi.org/10.1161/01.HYP.0000072820.07472.3B
http://www.ncbi.nlm.nih.gov/pubmed/12743010
http://dx.doi.org/10.1194/jlr.R700007-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/17699733
http://dx.doi.org/10.1038/nrm2066
http://www.ncbi.nlm.nih.gov/pubmed/17139329
http://dx.doi.org/10.2337/db14-0411
http://www.ncbi.nlm.nih.gov/pubmed/25187370
http://dx.doi.org/10.1128/MCB.00931-06
http://www.ncbi.nlm.nih.gov/pubmed/17353260
http://dx.doi.org/10.1369/jhc.2009.953190
http://www.ncbi.nlm.nih.gov/pubmed/19365088
http://dx.doi.org/10.1016/j.celrep.2017.01.076
http://www.ncbi.nlm.nih.gov/pubmed/28228268
http://dx.doi.org/10.1677/JOE-09-0292
http://www.ncbi.nlm.nih.gov/pubmed/19939912
http://dx.doi.org/10.4049/jimmunol.179.9.6325
http://www.ncbi.nlm.nih.gov/pubmed/17947710
http://dx.doi.org/10.1371/journal.pone.0040056
http://dx.doi.org/10.1016/j.jphs.2016.07.003
http://www.ncbi.nlm.nih.gov/pubmed/27523796
http://dx.doi.org/10.1152/physiolgenomics.00109.2012
http://www.ncbi.nlm.nih.gov/pubmed/23170035
http://dx.doi.org/10.1186/1742-2094-9-260
http://www.ncbi.nlm.nih.gov/pubmed/23190711
http://dx.doi.org/10.1016/j.bbrc.2012.01.139
http://www.ncbi.nlm.nih.gov/pubmed/22326264
http://dx.doi.org/10.1042/CS20120470
http://www.ncbi.nlm.nih.gov/pubmed/23384123
http://dx.doi.org/10.1001/jama.2011.520
http://www.ncbi.nlm.nih.gov/pubmed/21521847
http://dx.doi.org/10.1056/NEJMoa0907929
http://www.ncbi.nlm.nih.gov/pubmed/20427778


Nutrients 2017, 9, 426 18 of 19

115. Bujalska, I.J.; Kumar, S.; Stewart, P.M. Does central obesity reflect ”Cushing’s disease of the omentum”?
Lancet 1997, 349, 1210–1213. [CrossRef]

116. Stewart, P.M. Tissue-specific Cushing’s syndrome, 11beta-hydroxysteroid dehydrogenases and the
redefinition of corticosteroid hormone action. Eur. J. Endocrinol. 2003, 149, 163–168. [CrossRef] [PubMed]

117. Corbalan-Tutau, D.; Madrid, J.A.; Nicolas, F.; Garaulet, M. Daily profile in two circadian markers ”melatonin
and cortisol” and associations with metabolic syndrome components. Physiol. Behav. 2014, 123, 231–235.
[CrossRef] [PubMed]

118. Cardoso, E.M.; Arregger, A.L.; Monardes, G.; Contreras, L.N. An accurate, non-invasive approach to diagnose
Cushing’s syndrome in at-risk populations. Steroids 2013, 78, 476–482. [CrossRef] [PubMed]

119. Reinehr, T.; Kulle, A.; Wolters, B.; Knop, C.; Lass, N.; Welzel, M.; Holterhus, P.M. Relationships
between 24-hour urinary free cortisol concentrations and metabolic syndrome in obese children. J. Clin.
Endocrinol. Metab. 2014, 99, 2391–2399. [CrossRef] [PubMed]

120. Livingstone, D.E.; Jones, G.C.; Smith, K.; Jamieson, P.M.; Andrew, R.; Kenyon, C.J.; Walker, B.R.
Understanding the role of glucocorticoids in obesity: Tissue-specific alterations of corticosterone metabolism
in obese Zucker rats. Endocrinology 2000, 141, 560–563. [CrossRef] [PubMed]

121. Wake, D.J.; Strand, M.; Rask, E.; Westerbacka, J.; Livingstone, D.E.; Soderberg, S.; Andrew, R.; Yki-Jarvinen, H.;
Olsson, T.; Walker, B.R. Intra-adipose sex steroid metabolism and body fat distribution in idiopathic human
obesity. Clin. Endocrinol. (Oxf.) 2007, 66, 440–446. [CrossRef] [PubMed]

122. Rask, E.; Walker, B.R.; Soderberg, S.; Livingstone, D.E.; Eliasson, M.; Johnson, O.; Andrew, R.;
Olsson, T. Tissue-specific changes in peripheral cortisol metabolism in obese women: Increased adipose
11beta-hydroxysteroid dehydrogenase type 1 activity. J. Clin. Endocrinol. Metab. 2002, 87, 3330–3336.
[PubMed]

123. Rask, E.; Olsson, T.; Soderberg, S.; Andrew, R.; Livingstone, D.E.; Johnson, O.; Walker, B.R. Tissue-specific
dysregulation of cortisol metabolism in human obesity. J. Clin. Endocrinol. Metab. 2001, 86, 1418–1421.
[CrossRef] [PubMed]

124. Stewart, P.M.; Boulton, A.; Kumar, S.; Clark, P.M.; Shackleton, C.H. Cortisol metabolism in human obesity:
Impaired cortisone→cortisol conversion in subjects with central adiposity. J. Clin. Endocrinol. Metab. 1999,
84, 1022–1027. [CrossRef] [PubMed]

125. Westerbacka, J.; Yki-Jarvinen, H.; Vehkavaara, S.; Hakkinen, A.M.; Andrew, R.; Wake, D.J.; Seckl, J.R.;
Walker, B.R. Body fat distribution and cortisol metabolism in healthy men: Enhanced 5beta-reductase and
lower cortisol/cortisone metabolite ratios in men with fatty liver. J. Clin. Endocrinol. Metab. 2003, 88,
4924–4931. [CrossRef] [PubMed]

126. Kotelevtsev, Y.; Holmes, M.C.; Burchell, A.; Houston, P.M.; Schmoll, D.; Jamieson, P.; Best, R.; Brown, R.;
Edwards, C.R.; Seckl, J.R.; et al. 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated
glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc. Natl. Acad. Sci. USA
1997, 94, 14924–14929. [CrossRef] [PubMed]

127. Marcolongo, P.; Senesi, S.; Giunti, R.; Csala, M.; Fulceri, R.; Banhegyi, G.; Benedetti, A. Expression of
hexose-6-phosphate dehydrogenase in rat tissues. J. Steroid. Biochem. Mol. Biol. 2011, 126, 57–64. [CrossRef]
[PubMed]

128. Marcolongo, P.; Senesi, S.; Gava, B.; Fulceri, R.; Sorrentino, V.; Margittai, E.; Lizak, B.; Csala, M.; Banhegyi, G.;
Benedetti, A. Metyrapone prevents cortisone-induced preadipocyte differentiation by depleting luminal
NADPH of the endoplasmic reticulum. Biochem. Pharmacol. 2008, 76, 382–390. [CrossRef] [PubMed]

129. Hauner, H.; Entenmann, G.; Wabitsch, M.; Gaillard, D.; Ailhaud, G.; Negrel, R.; Pfeiffer, E.F. Promoting effect
of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined
medium. J. Clin. Investig. 1989, 84, 1663–1670. [CrossRef] [PubMed]

130. Hauner, H.; Schmid, P.; Pfeiffer, E.F. Glucocorticoids and insulin promote the differentiation of human
adipocyte precursor cells into fat cells. J. Clin. Endocrinol. Metab. 1987, 64, 832–835. [CrossRef] [PubMed]

131. Tomlinson, J.W.; Stewart, P.M. The functional consequences of 11beta-hydroxysteroid dehydrogenase
expression in adipose tissue. Horm. Metab. Res. 2002, 34, 746–751. [CrossRef] [PubMed]

132. Bujalska, I.J.; Kumar, S.; Hewison, M.; Stewart, P.M. Differentiation of adipose stromal cells: The roles of
glucocorticoids and 11beta-hydroxysteroid dehydrogenase. Endocrinology 1999, 140, 3188–3196. [PubMed]

http://dx.doi.org/10.1016/S0140-6736(96)11222-8
http://dx.doi.org/10.1530/eje.0.1490163
http://www.ncbi.nlm.nih.gov/pubmed/12943516
http://dx.doi.org/10.1016/j.physbeh.2012.06.005
http://www.ncbi.nlm.nih.gov/pubmed/22705307
http://dx.doi.org/10.1016/j.steroids.2013.02.005
http://www.ncbi.nlm.nih.gov/pubmed/23485687
http://dx.doi.org/10.1210/jc.2013-4398
http://www.ncbi.nlm.nih.gov/pubmed/24670085
http://dx.doi.org/10.1210/en.141.2.560
http://www.ncbi.nlm.nih.gov/pubmed/28201073
http://dx.doi.org/10.1111/j.1365-2265.2007.02755.x
http://www.ncbi.nlm.nih.gov/pubmed/17302881
http://www.ncbi.nlm.nih.gov/pubmed/12107245
http://dx.doi.org/10.1210/jcem.86.3.7453
http://www.ncbi.nlm.nih.gov/pubmed/11238541
http://dx.doi.org/10.1210/jc.84.3.1022
http://www.ncbi.nlm.nih.gov/pubmed/10084590
http://dx.doi.org/10.1210/jc.2003-030596
http://www.ncbi.nlm.nih.gov/pubmed/14557475
http://dx.doi.org/10.1073/pnas.94.26.14924
http://www.ncbi.nlm.nih.gov/pubmed/9405715
http://dx.doi.org/10.1016/j.jsbmb.2011.05.006
http://www.ncbi.nlm.nih.gov/pubmed/21620971
http://dx.doi.org/10.1016/j.bcp.2008.05.027
http://www.ncbi.nlm.nih.gov/pubmed/18599022
http://dx.doi.org/10.1172/JCI114345
http://www.ncbi.nlm.nih.gov/pubmed/2681273
http://dx.doi.org/10.1210/jcem-64-4-832
http://www.ncbi.nlm.nih.gov/pubmed/3546356
http://dx.doi.org/10.1055/s-2002-38242
http://www.ncbi.nlm.nih.gov/pubmed/12660893
http://www.ncbi.nlm.nih.gov/pubmed/28200656


Nutrients 2017, 9, 426 19 of 19

133. Liu, Y.; Park, F.; Pietrusz, J.L.; Jia, G.; Singh, R.J.; Netzel, B.C.; Liang, M. Suppression of 11beta-hydroxysteroid
dehydrogenase type 1 with RNA interference substantially attenuates 3T3-L1 adipogenesis. Physiol. Genom.
2008, 32, 343–351. [CrossRef] [PubMed]

134. Mandl, J.; Meszaros, T.; Banhegyi, G.; Hunyady, L.; Csala, M. Endoplasmic reticulum: Nutrient sensor in
physiology and pathology. Trend Endocrinol. Metab. TEM 2009, 20, 194–201. [CrossRef] [PubMed]

135. Dzyakanchuk, A.A.; Balazs, Z.; Nashev, L.G.; Amrein, K.E.; Odermatt, A. 11beta-Hydroxysteroid
dehydrogenase 1 reductase activity is dependent on a high ratio of NADPH/NADP(+) and is stimulated by
extracellular glucose. Mol. Cell Endocrinol. 2009, 301, 137–141. [CrossRef] [PubMed]

136. Gumy, C.; Thurnbichler, C.; Aubry, E.M.; Balazs, Z.; Pfisterer, P.; Baumgartner, L.; Stuppner, H.; Odermatt, A.;
Rollinger, J.M. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 by plant extracts used as traditional
antidiabetic medicines. Fitoterapia 2009, 80, 200–205. [CrossRef] [PubMed]

137. Froesch, E.R.; Ginsberg, J.L. Fructose metabolism of adipose tissue. I. Comparison of fructose and glucose
metabolism in epididymal adipose tissue of normal rats. J. Biol. Chem. 1962, 237, 3317–3324. [PubMed]

138. Apostolova, G.; Schweizer, R.A.; Balazs, Z.; Kostadinova, R.M.; Odermatt, A. Dehydroepiandrosterone
inhibits the amplification of glucocorticoid action in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2005,
288, E957–E964. [CrossRef] [PubMed]

139. Balazs, Z.; Schweizer, R.A.; Frey, F.J.; Rohner-Jeanrenaud, F.; Odermatt, A. DHEA induces 11 -HSD2 by
acting on CCAAT/enhancer-binding proteins. J. Am. Soc. Nephrol. 2008, 19, 92–101. [CrossRef] [PubMed]

140. Prince, P.D.; Santander, Y.; Gerez, E.M.; Hocht, C.; Polizio, A.H.; Mayer, M.A.; Taira, C.A.; Fraga, C.G.;
Galleano, M.; Carranza, A. Fructose increases corticosterone production in association with NADPH
metabolism alterations in rat epididymal white adipose tissue. J. Nutrit. Biochem. 2017. [CrossRef]

141. Kovacevic, S.; Nestorov, J.; Matic, G.; Elakovic, I. Fructose and stress induce opposite effects on lipid
metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. Europ. J. Nutr.
2016. [CrossRef]

142. Bursac, B.N.; Djordjevic, A.D.; Vasiljevic, A.D.; Milutinovic, D.D.; Velickovic, N.A.; Nestorovic, N.M.;
Matic, G.M. Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue.
J. Nutr. Biochem. 2013, 24, 1166–1172. [CrossRef] [PubMed]

143. Bursac, B.N.; Vasiljevic, A.D.; Nestorovic, N.M.; Velickovic, N.A.; Milutinovic, D.D.V.; Matic, G.M.;
Djordjevic, A.D. High-fructose diet leads to visceral adiposity and hypothalamic leptin resistance in male
rats—Do glucocorticoids play a role? J. Nutr. Biochem. 2014, 25, 446–455. [CrossRef] [PubMed]

144. Priyadarshini, E.; Anuradha, C.V. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated
Lipid Abnormalities in High-Fructose-Fed Mice. Can. J. Diabet. 2017, 41, 41–51. [CrossRef] [PubMed]

145. Larner, D.P.; Morgan, S.A.; Gathercole, L.L.; Doig, C.L.; Guest, P.; Weston, C.; Hazeldine, J.; Tomlinson, J.W.;
Stewart, P.M.; Lavery, G.G. Male 11beta-HSD1 Knockout Mice Fed Trans-Fats and Fructose Are Not
Protected From Metabolic Syndrome or Nonalcoholic Fatty Liver Disease. Endocrinology 2016, 157, 3493–3504.
[CrossRef] [PubMed]

146. Hellerstein, M.K. De novo lipogenesis in humans: Metabolic and regulatory aspects. Eur. J. Clin. Nutr. 1999,
53, S53–S65. [CrossRef] [PubMed]

147. Baxter, J.D.; Forsham, P.H. Tissue effects of glucocorticoids. Am. J. Med. 1972, 53, 573–589. [CrossRef]
148. Dolinsky, V.W.; Douglas, D.N.; Lehner, R.; Vance, D.E. Regulation of the enzymes of hepatic microsomal

triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem. J. 2004, 378,
967–974. [CrossRef] [PubMed]

149. Morgan, S.A.; McCabe, E.L.; Gathercole, L.L.; Hassan-Smith, Z.K.; Larner, D.P.; Bujalska, I.J.; Stewart, P.M.;
Tomlinson, J.W.; Lavery, G.G. 11beta-HSD1 is the major regulator of the tissue-specific effects of circulating
glucocorticoid excess. Proc. Natl. Acad Sci. USA 2014, 111, E2482–E2491. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1152/physiolgenomics.00067.2007
http://www.ncbi.nlm.nih.gov/pubmed/18073273
http://dx.doi.org/10.1016/j.tem.2009.01.003
http://www.ncbi.nlm.nih.gov/pubmed/19349192
http://dx.doi.org/10.1016/j.mce.2008.08.009
http://www.ncbi.nlm.nih.gov/pubmed/18778749
http://dx.doi.org/10.1016/j.fitote.2009.01.009
http://www.ncbi.nlm.nih.gov/pubmed/19535018
http://www.ncbi.nlm.nih.gov/pubmed/13959931
http://dx.doi.org/10.1152/ajpendo.00442.2004
http://www.ncbi.nlm.nih.gov/pubmed/15613680
http://dx.doi.org/10.1681/ASN.2007030263
http://www.ncbi.nlm.nih.gov/pubmed/18032797
http://dx.doi.org/10.1016/j.jnutbio.2017.02.021
http://dx.doi.org/10.1007/s00394-016-1251-8
http://dx.doi.org/10.1016/j.jnutbio.2012.09.002
http://www.ncbi.nlm.nih.gov/pubmed/23253598
http://dx.doi.org/10.1016/j.jnutbio.2013.12.005
http://www.ncbi.nlm.nih.gov/pubmed/24565674
http://dx.doi.org/10.1016/j.jcjd.2016.06.003
http://www.ncbi.nlm.nih.gov/pubmed/27614803
http://dx.doi.org/10.1210/en.2016-1357
http://www.ncbi.nlm.nih.gov/pubmed/27384305
http://dx.doi.org/10.1038/sj.ejcn.1600744
http://www.ncbi.nlm.nih.gov/pubmed/10365981
http://dx.doi.org/10.1016/0002-9343(72)90154-4
http://dx.doi.org/10.1042/bj20031320
http://www.ncbi.nlm.nih.gov/pubmed/14662008
http://dx.doi.org/10.1073/pnas.1323681111
http://www.ncbi.nlm.nih.gov/pubmed/24889609
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Dietary Fructose and Adiposity 
	Fructose Metabolism in Adipose Tissue 
	Effect of Fructose on Metabolic Disturbances 
	Role of 11-HSD1 in Adipocyte Differentiation/Proliferation 
	Effect of Fructose on 11-HSD1 Expression and Activity 
	Conclusions 

