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Abstract: Exosomes are nature’s nanocarriers that trans-
port biological information in humans. Their structural 
properties, origin and functions are making them interest-
ing objects for the diagnosis of diseases, such as cancer, 
and also, as innovative tools for drug delivery. The inter-
action of exosomes with the immune system has been one 
of the focal points of interest; nevertheless their “stealth” 
properties helping to avoid adverse immune reactions 
are still not fully understood. In this review, after giving 
an overview of recent findings on the role of exosomes 
in disease pathogenesis and physiological functions, we 
focused on their interaction with the immune system and 
possibilities for clinical applications. The potential of 
exosomes of creating stealth nanoparticles that are better 
tolerated by the immune system than the presently avail-
able synthetic drug delivery systems represent a promis-
ing new approach in nanomedicine.

Keywords: complement; drug delivery; exosome; lipo-
some; nanocarrier.

Introduction: nanocarriers of nature
In the field of bio-engineering scientific efforts often 
mimic nature (1–4), this can be said of liposomes. When 

Bangham and Horn first visualized phospholipid bilay-
ers under the electron microscope 50  years ago, they 
thought they reproduced the bilayer membrane of an 
archetypical cell (5). They could hardly have suspected 
that two decades later a more elaborate natural design for 
liposomes would be discovered, in the form of exosomes. 
Exosomes were first described in the 1980s by Johnstone 
et al. (5) and were defined as vesicles formed in the endo-
somal compartments (multivesicular endosomes) which 
then get secreted into the extracellular space (Figure 1) 
to serve as nano-rafts carrying biological information 
between cells. Hence, they play a central role in intercel-
lular communication (5). Exosomes have been found to 
originate from various types of cells in the body, includ-
ing stem cells and fully differentiated cells. Their most 
important feature as compared to the endosomes is that 
the extracellular leaflet of the plasma membrane is fully 
preserved as an extracellular part of the exosomes.

Exosomes are defined by a size ranging from 30 to 
100  nm (6). Their exact size differs according to their 
origin. The structure of exosomes depends to the cell type 
they originate from, as well as on the function they play 
in intercellular communication (7). Another name which 
is used interchangeably is microvesicles, which describe 
100–1000 nm vesicular structures. But microvesicles are 
less precisely defined and cover both intra- and extracel-
lular vesicles while exosomes are only the extracellular 
vesicles (8). In the following sections we will focus on the 
structure and function of exosomes and on their interplay 
with the immune system as well as what role their special 
properties may play in future medical applications.

Structure of exosomes
It follows from the mechanism of exosome formation 
(Figure 1) that the content of exosomes contains mainly 
cytosol derived molecules, such as miRNA, mRNA, 
proteins, peptides, enzymes (9–13) and, as confirmed 
recently, also dsDNA (14, 15). Details about the content 
and the composition of exosomes can be found on the web 
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(http://www.exocarta.org/) provided by Mathivanan and 
Simpson (16). Extensive lists of molecules detected and 
identified in exosomes and microvesicles can be found in 
some excellent recently published reviews and research 
papers (8, 11, 12, 17–19). Figure 2 shows electron-micro-
scopic images of exosomes and microvesicles that differ 
in content, shape and membrane structure.

The proteins attached to the lipid bilayer of exosomes 
(arrows) originate from the plasma membrane which is 
preserved its original orientation. They cover a broad 
spectrum of immune-modulating and cell recognizing 

Figure 2: Electron micrographs of dendritic cell derived exosomes 
and microvesicles. The size bars in the EM images indicate 100 nm. 
The images were reproduced with permission from (19).

Figure 1: Mechanism of exosome release.

molecules that are either common, ubiquitous proteins 
or cell-type specific proteins. The former group includes 
cytoskeletal proteins, such as actin and tubulin, mem-
brane transport and fusion proteins (annexins and Rab 
proteins), integrins and proteins belonging to the heat-
shock family (immune activators such as Hsp70, Hsc70 
and Hsp90). The cell-type specific proteins include MHC 
class-I and class-II proteins, which present antigens, 
 tetraspanins (CD63, CD81, CD82, CD9 and CD86) which 
are involved in cell-cell contacts and in selective binding 
to certain target cells (20). As discussed later in detail, the 
surface exposed proteins have different roles including 
the targeting of exosomes to specific cells and modulating 
the immune response via activation or suppression. Addi-
tionally it has to be mentioned that the fact that endog-
enous exosomes are made from fragments of the plasma 
membrane in the preserved original orientation means 
that they also inherit the glycome, the glycocalyx from the 
originating cells with its innate immune tolerance.

Physiological functions 
of exosomes
The first exosomes that were documented originated from 
circulating blood cells, particularly reticulocytes (5). Since 
then the importance of this phenomenon has been con-
firmed, further adding to the understanding of red blood 
cell differentiation (21). Platelets also shed exosomes, 
some of which may inhibit aggregation and act against 
thrombosis (22). White blood cell derived exosomes have 
several functions, the most complex one is the modulation 
of the immune system. These cell derived nano- vesicles 
mediate antigen presentation, which is one of the basic 
mechanisms of adaptive immunity and as such, has been a 
focal point of interest in immunology research (23). Recent 
publications revealed very complex roles of exosomes in 
immune modulation (24). Tracking of exosome release 
from immune cells was achieved by Soo et  al., using 
antibody connected magnetic beads for visualizing the 
dynamics of this process (25). Exosome- mediated immune 
responses in tumor patients (26) represents a special new 
field that will be discussed below in detail.

Role in disease pathogenesis
Exosomes play a central role in the manifestation and pro-
gression of several diseases, as well as in drug resistance, 
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therefore mapping their functions in intercellular commu-
nication is essential in understanding the pathomecha-
nism of these medical problems.

Several recent publications discuss the function of 
exosomes in oncogenesis, tumor cell exchanges and met-
astatic activities of tumors. Exosomes can transfer onco-
genic materials which affect organization of tumor cells 
and the progression of a tumor. Intercellular communica-
tion can happen through the delivery of genetic informa-
tion in the form of microRNA that is delivered from tumor 
cells to normal or pathological cells (27). Exosomes are 
pivotal in shielding tumor cells from the immune system, 
and at the same time induce inflammatory and angioge-
netic responses helping tumor cell adhesion and meta-
static growth (28).

In infections by different pathogens (viral, bacterial, 
fungal and parasite) exosomes play a key role in several 
areas. The pathomechanism of oncogenesis after spe-
cific viral infections, such as Epstein-Barr virus, has been 
recently connected to viral RNA carried by exosomes, 
creating an intercellular pathway for genetic information 
passage, leading to tumor formation (29). In HIV infec-
tion replication of the virus is helped by the presence of 
exosomes derived from HIV expressing cells (30). Exoso-
mal delivery of virus components and proteins are essen-
tial for disease progression in human T-lymphotropic 
virus type 1 infections (31). The pathomechanism of para-
site infections in some cases involves exosomes, where 
the vesicles can induce adhesion of the pathogen (32).

In neurologic disorders exosomes can be important 
factors. Exosomal communication between microglia 
and neurons of the brain is a way for the central nervous 
system to modulate the pathology of amyotrophic lateral 
sclerosis, which is the most common and most aggressive 
form of adult motor neuron degeneration (33). Exosomes 
can be a reason behind drug resistance in neurological 
diseases and cancer, an example of this can be found in 
the treatment of multiple myeloma (34). Exosomes have 
been identified as mediators of neuroinflammation after 
injuries of the central nervous system and have been 
implemented as potential therapeutic agents (35).

In the field of internal medicine the investigations 
of exosomal pathways present a new perspective on the 
pathomechanism of several diseases. A recent study found 
that exosomes may affect glycemic control in diabetes via 
the adiponectin pathway (36). It has also been observed 
that exosomes released by pancreatic cancer cells may 
play a role in the induction of diabetes associated with 
this type of malignancy (37). Exosomes coming from adi-
pocytes can induce liver pathology as they deregulate 
hepatocytes, leading to obesity-related liver disease (38).

Exosomes and the immune system
Exosomes are frequently exposed to the immune system 
both in health and disease and developed or expose 
mechanisms to avoid recognition, or they modulate the 
immune system to induce immune tolerance. The inter-
action of exosomes with the immune system depends on 
their origin; on antigens derived from diseased cell (e.g., 
tumor or virus-infected cell), and on immune modulating 
molecules enclosed in the vesicular container. As to how 
much exosomes are able to interfere with the immune 
system was described in detail in a review by Thery (8).

Evidence for the appearance of microvesicular struc-
tures and exosomes in the early fetal development was 
provided for exosomes containing FasL ligand (39). This 
molecule is involved in many immune modulating activi-
ties, such as self-tolerance in T cells towards fetal tissue 
during gestation, progression of autoimmunity, clonal dele-
tion of activated T cells, B-cell regulation and the establish-
ment of immune privilege in certain organs, such as brain, 
ovary, testis, pregnant uterus, placenta and eye (40). Two 
mechanism are proposed as to how the FasL ligand induces 
immune tolerance: i) apoptosis in the relevant antigen- 
specific lymphocytes that respond to the administered 
antigen (41, 42) and ii) the uptake of FasL induced apop-
totic cells by antigen-presenting cells (such as dendritic 
cells) and, in consequence, modulation of the activation of 
regulatory cells (43). The same mechanism was shown to be 
hijacked by tumors to induce immune tolerance (39, 44, 45).

Additionally, immune modulation can be gained by 
release of small (40 nm) exosome-like vesicular struc-
tures presenting MHC class II with antigens called “tole-
rosomes” (46). Another mechanisms for exosomes to 
modulate the immune system is by delivering microRNA 
enclosed in the exosomes into the cytosol of other cells.

Despite being effective modulators of immune 
response, exosomes are not recognized by the immune 
system as being foreign. Thus, they are not immunogenic 
and are not known to induce nonspecific innate immune 
responses, such as complement (C) activation or C activa-
tion-related pseudoallergy (CARPA), which is an immune 
barrier to the therapeutic use of liposomes and many 
other nanoparticle based i.v. drugs (47). Amazingly, there 
is no visible immune attack against exosomes when they 
get into the circulation. The explanation probably lies in 
the fact that exosomes are derived from the membranes 
of self-cells, against which the body develops specific and 
nonspecific tolerance.

The immunity of exosomes from immune destruction 
is due to an “inheritance” of surface molecules from their 
original cell that protects them from recognition. As to the 
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question, which surface molecules might provide this prop-
erty, Table 1 may give the answer, that is further visualized 
by Figure 3. It shows the molecules present on the surface 
of exosomes, which include 4 C inhibitors, each of which is 
known to be effective inhibitor of C activation. In addition, 
the surface of exosomes contain three molecule types that 
effectively induce specific tolerance.

As mentioned before, another immune interacting 
aspect of exosomes that should not be underestimated is 
the fact that the exosome lipid membrane derives from 
endogenous cell membranes and the outer leaflet of the 
plasma membrane is also the outer leaflet of the exosomes. 
With this orientation they inherit the immune tolerance 
induced by the glycocalix of the cells. In several works the 
importance of the glycome for innate immunity (48, 49) 
and the recognition of different or foreign glycan patterns 

Table 1: Molecules on exosomes allowing escape of immune 
recognition.

Molecules   Physiologic function   Literature

Complement modulators
 CD46   Membrane cofactor protein; 

control of C3
  41

 CD55   Decay-accelerating factor 
control of C3

  42, 43

 CD59   Control of MAC (membrane 
attack complex inducing pore 
formation) via C9

  41, 42

 CK2   Phosphorylates C9 and 
prevents lysis

  44

Specific tolerance inducers
  Human leucocyte 

antigen (HLA)-G 
class I molecule

  Induces immune tolerance to 
tumors

  45

  MHC class I and II 
+antigens

  Induce immune tolerance to 
tumors

  46

 FasL   Induce apoptosis in activated 
T cells

  44

by the immune system (49–51) were emphasized. That 
the disguise of the immune system is most effective if the 
glycome is similar is supported by the observation about the 
immune evasion of HIV-1 and their glycome similarity with 
microvesicles. HIV-1 and microvesicles from T cells share a 
common glycome, arguing for a common origin (48).

Potential of exosomes for clinical 
applications
There are several approaches that make use of the speci-
ficity and function of exosomes in the intercellular com-
munication of tumors. An area of increasing interest in 
the field of oncology is cancer immunotherapy, where 
exosomes have been shown to have a therapeutic poten-
tial (52, 53). Exosomes containing antigens of specific 
tumors can induce an immune response against cancer 
cells containing their antigen spectrum. These acellular 
structures can activate cytotoxic T cells which leads to 
apoptosis of the tumor cells they are directed against. 
Creating vaccines based on specificity of tumor-derived 
exosomes which contain the biomarkers necessary to 
target tumor cells can be a realistic option for immu-
notherapy (54–58). One possibility was outlined in a 
recently published article using exosomes derived from 
dendritic cells to induce antitumor immunity (59). The 
tumor derived exosomes present a first therapeutic 
vaccine with antigen-presenting dendritic cell derived 
exosomes approved in 2010 by the name of Provenge® for 
the personalized treatment of metastatic prostate cancer 
(60). So far it is the only FDA approved exosomes based 
cancer immune therapy.

The discussion about the medical benefit of Provenge® 
was controversial. The best benefit for the patients was 
found for low PSA (prostate specific antigen) levels. In 
a 512 patients double-blind, placebo-controlled, multi-
center phase 3 trial study a general improved survival in 
the treated patients was found to be 4.1 months with no 
effect on the tumour progression or decrease PSA levels 
(61). This improved survival was the reason for approval 
by the FDA and in 2013 also by EMA (European Medical 
Agency) and seems to be closely related to an activated 
immune system. There is still a critical discussion about 
the usefulness of PSA levels as prognostic markers in 
prostate cancer and if the high price of the treatment is 
justified but the approach to use dendritic cell derived 
exosomes was followed up in other clinical trials for the 
standalone treatment or combination therapy for other 
types of cancer (62).

Figure 3: Exosomes with complement system modulator (A) and 
other immune-tolerance promoting molecules (B).
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Another option for a cancer therapy involves the 
general removal of exosomes from the circulation (6). This 
idea stems from the fact that exosomes play an impor-
tant role in the pathomechanism of tumor progression 
and can also interfere with anti-tumor chemotherapy and 
lead to drug resistance. But one of the drawbacks is that 
the approaches used so far remove all exosomes, also the 
ones released from healthy cells and involved in cell-cell 
communications leading to adverse effects. A possible 
solution for this problem might be the selective removal 
of tumor-derived exosomes. With increasing knowledge 
about the mechanisms of immune escape and immune 
modulation of cancer derived exosomes it may be possible 
to identify molecules only present on the surface of these 
exosomes.

Exosomes for diagnosis and 
follow-up of medical conditions
Understanding the function of exosomes in the patho-
mechanism of diseases is an important step towards 
creating diagnostic strategies based on detecting disease-
specific exosomes. Structural properties of these nanocar-
riers can be harnessed as biomarkers for various diseases, 
which can be detected in several ways. This strategy has 
been recently implemented in the following cases.

Diagnosis, risk assessments and follow-up exami-
nations of laryngeal squamous cell carcinoma can be 
achieved by using exosomal biomarkers specific to the 
tumor cells (63). In patients with colorectal carcinoma, 
exosomes that contain tumor-specific antigens can be 
extracted from ascetic fluid or the plasma. These enti-
ties may be used as a fast and effective diagnostic tool 
(64, 65). In pancreatic cancer, the protein and microRNA 
content of tumor-specific exosomes can be analyzed in 
order to increase the effectiveness of diagnosis and com-
plement available diagnostic strategies (66). Exosomes 
that contain different cargos and receptors, like epidermal 
growth factor receptor, in their structure can be used in 
the diagnosis of lung cancer (67, 68).

Exosomes and their microRNA contents are important 
factors in the pathomechanism of asthma bronchiale and 
other pulmonary conditions, where exhaled breath can 
be a source of exosome extraction. This has a potential 
to create an easy way of quantifying disease specific bio-
markers for the follow-up controls of pulmonary diseases 
and also a possible diagnostic tool (69).

A recent review gives a concise overview of the clini-
cal applications of exosomes (70). Another appealing 

application of exosomes is their use as a stealth drug deliv-
ery system which we will discuss in the next paragraph.

Exosomes as immune-tolerated 
delivery systems
Mapping tumor-specific exosomes in the body is impor-
tant for diagnosis, but using their structural and “stealth” 
properties is a promising solution for creating novel 
highly specific immune-tolerated therapeutic systems. As 
mentioned before this approach failed if using synthetic 
liposomal delivery systems which can cause immune acti-
vation to an extent that can be fatal for the patient (71, 72). 
Creating a stable formulation that mimics the structure 
and function of exosomes is a complex task and has to be 
the result of careful consideration of previous trials and 
errors in the field of nanomedicine (73, 74).

Tumor cell derived exosomes that are synthesized based 
on the tumor cell’s antibody spectrum also present a novel 
delivery solution. Hereby exosomes loaded with different 
agents (such as diagnostic particles or drugs) specifically 
bind to the target cells creating a therapeutic accumulation 
in a specific area. Modeling of the exosomal structure has 
been already proven to work on a  large-scale basis (75). In a 
recent publication the potential use of exosomes combined 
with staphylococcal enterotoxin B in the therapy of pancre-
atic cancer was described (76). Exosomes were extracted 
from the tumor and based on their specific antigen bio-
marker could reach tumor sites, where the enterotoxin was 
unloaded and induced apoptosis of tumor cells.

There is an important feature of tumor-derived 
exosomes that needs to be kept in mind and needs close 
monitoring during their use for treatment and that is their 
involvement in preparing a niche for circulating cancer 
cells in the proccess of metastasis formation in distant 
tissues (77–80). While this property is of minor impor-
tance for cancer immune therapy it can be important 
for drug delivery as the equipment of molecules on the 
exosomes surface can affect auto-immunity and binding 
to unknown distant organs (81, 82). But Jung et  al. also 
showed that for the pre-metastatic niche and cancer for-
mation some soluble factors and circulating cancer cells 
are required (78).

There are also several medical fields, other than oncol-
ogy, where the potential therapeutic use of exosomes may 
be possible. A recently published article in the field of car-
diology pinpoints microRNA containing exosomes as the 
mediators of cardiac muscle regeneration after ischemic 
stress. This phenomenon can be used in direct therapy, 
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if these particles can be engineered ex vivo before being 
given to the patients directly (83).

Another important field were the immune modulat-
ing properties of exosomes were explored for therapeutic 
applications are dendritic cell-derived Fas L contain and/
or antigen presenting exosomes for inflammatory diseases 
such as arthritis (84).

There are several ongoing preclinical studies on the 
therapeutic uses of exosomes, which show the potential for 
clinical use in the treatment of several medical conditions 
(85). While dendritic cell-derived exosomes were mainly 
used to induce immune response other cell type released 
exosomes were used for their potential as a stealth drug 
delivery system. Lai et al. reviewed e.g. the utility of mes-
enchymal stem cell-derived exosomes as a vehicle for drug 
delivery (86). In this review Lai and his co-worker identi-
fied the loading of the exosomes without disturbing their 
unique stealth properties as the major obstacle for the use 
as drug delivery system mainly for interfering RNA. The 
loading can be done during exosomes biogenesis in the 

cells or afterwards by electroporation or incubation with 
lipofectamine. Both techniques are likely to change the 
membrane of the exosomes as lipofectamine® is known 
to decrease cell viability as a positively charged polymer 
by nanoporation of the plasma membrane and depolari-
zation of the mitochondrial membrane (for a review see 
e.g. the effect of surface properties on nanoparticle-cell 
interactions (87). As the interaction between membrane 
and polycation is electrostatic it is unlikely that the effect 
is reversible and a resealing will take place.

On the other hand electroporation was successfully 
investigated for some types of siRNA while for other type 
of RNA such as mRNA, miRNA or shRNA the approach was 
unsuccessful. A third strategy which was tested was the 
overexpression of RNA by the exosomes producing cells 
which allows even the incorporation of fully functional 
miRNA and mRNA (88).

That exosome loading with drug molecules or 
therapeutic proteins, peptides, and hormones is feasi-
ble is clearly indicated by the negative example of the 
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Figure 4: Exosomes based drug delivery (reproduced from the work of Marcus and Leonard) (88) (Permission has been granted by the authors).
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Table 2: Exosomes based drug delivery [reproduced from Marcus and Leonard 2013 (88)] (Permission has been granted by the authors).

Exosome source 
(H = human cell)

  Recipient cell type   Cargo delivered   Functional consequences

Immunosuppressive effects
  (H) EBV 

transformed B 
cells

  Monocyte-derived DC   Viral miRNA   Down-regulation of antiviral response

  Serum of 
pregnant human 
patients

  (H) Jurkat T cells   FasL   Suppression of CD3 signaling and IL-2 production

  Murine BMDC 
overexpressing 
IL-10

  Murine T cells   Antigen, presented 
on MHCII

  Suppression T cell proliferation

Immunostimulatory effects
 Murine BMDC   Murine CD8 and CD4 T 

cells (in vitro and in vivo)
  Antigen, presented 

on MHC
  Induction of T cell proliferation

  CD28 stimulated 
CD3 T cells (H)

  Unstimulated CD3 T cells 
(H)

  Unidentified   T cell activation, induction of proliferation and cytokine 
production when co-delivered with IL-2

 Murine BMDC   Murine BMDC (allogeneic)   Antigen   Transfer of foreign antigen, followed by foreign antigen 
presentation to and activation of T cells

  PMBC derived 
DC incubated 
with HIV

  Jurkat T cell line 
expressing CCR5

  HIV viral particles   Delivery of functional HIV viral particles encapsulated 
in exosomes, leading to HIV infection of recipient cells

pathogenic exosome-loading of prion (89), or other dis-
ease-related proteins (90). An overview summarizing 
the progress made so far for exosomes as a drug delivery 
system mainly for therapeutic RNA in cancer therapy was 
published by Johnsen et  al. (91) and even for a broader 
application by Marcus and Leonard, which is visualized 
in Figure 4 (88) and Table 2 (88).

But the first step in using the exosomes, both for diag-
nosis and for therapeutic applications is the isolation of 
the intact exosomes from body fluids such as urine (92), 
blood, semen (93) and others (9, 11, 94) which will be 
described with detection and characterization methods in 
the next paragraph.

Exosome isolation, detection, and 
characterization
In order to be able to explore not only the diagnostic value 
of exosomes derived from blood but also to produce and 
load exosomes from exogenous sources the process of 
isolating exosomes from surrounding biomaterial (such 
as plasma or interstitial fluid) is essential in being able to 
coherently investigate their structure and functions.

The extraction process can be achieved using several 
methods. Ultracentrifugation onto a sucrose cushion is a 
simple way of separating the vesicles. Ultracentrifugation 

can be followed by filtering the exosomes through a 
porous membrane. A recently published report shows 
another easy and efficient way of separating exosome 
populations from a sample that is called ExoQuick™  
(95–98). Reproducability of isolation methods is an impor-
tant factor in exosome research and recent approaches, 
such as an effective semi-automated nanoparticle track-
ing analysis, have shown developments in this field (99).

Dynamic light scatter measurements, flow cytomet-
ric analysis, microspectroscopy and electron micros-
copy examination of exosome containing samples is 
an option for the characterization of specific exosomes. 
Other imaging technologies that have also been imple-
mented for such use include micro nuclear magnetic 
resonance, and X-ray scattering (99–102). Finding the 
origin of a population of exosomes extracted from 
a sample can be achieved by analyzing the specific 
marker antigens on the surface of the exosome. A recent 
approach has been to use a micro-fluidic exosome anal-
ysis platform that enables identification using disease-
specific markers (103).

Summary and outlook
In the past 10  years exosomes raised high expectations 
for a better understanding of long distance cell-cell 
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communication, development and progress of several 
severe diseases such as cancer and neurodegeneration 
due to protein oligomers and aggregates. Now it is com-
monly accepted that exosomes are involved in intercellular 
cell transport of proteins, peptides, RNAs and dsDNA. The 
molecules which allow the exosomes to evade immune 
recognition are identified and they are either immune 
suppressive or immune modulating by interaction with 
different complements.

In order to adapt the immune-stealth properties 
for beneficial use such as drug or gene delivery several 
techniques were explored either to produce autologous 
exosomes for cancer immune therapy but more inter-
estingly to produce in large scale drug- or RNA-loaded 
exosomes from stem cells. While the main focus has been 
on identifying the immune modulators so far little atten-
tion has been given to the glycome. If exosomes are pro-
duced by exogenous cells, the glycome may not be similar 
and immune recognition may occur. The fact that synthetic 
liposomes cause immune response and CARPA can also 
be related to the mismatch of the glycome or the absence 
of it which induces the strong immune stimulation.
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