
FORMALIZED MATHEMATICS

Vol. 21, No. 4, Pages 249–260, 2013
DOI: 10.2478/forma-2013-0027 degruyter.com/view/j/forma

Isometric Differentiable Functions on Real
Normed Space1

Yuichi Futa
Japan Advanced Institute
of Science and Technology
Ishikawa, Japan

Noboru Endou
Gifu National College of Technology

Gifu, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize isometric differentiable functions
on real normed space [17], and their properties.

MSC: 58C20 46G05 03B35

Keywords: isometric differentiable function

MML identifier: NDIFF 7, version: 8.1.02 5.22.1194

The notation and terminology used in this paper have been introduced in the
following articles: [3], [2], [8], [4], [5], [18], [10], [11], [19], [14], [16], [1], [6], [9],
[15], [23], [24], [21], [22], [13], [25], and [7].

1. Preliminaries

From now on S, T ,W , Y denote real normed spaces, f , f1, f2 denote partial
functions from S to T , Z denotes a subset of S, and i, n denote natural numbers.

Now we state the propositions:

(1) Let us consider a set X and functions I, f . Then (f�X) · I = (f ·
I)�I−1(X).

(2) Let us consider real normed spaces S, T , a linear operator L from S into
T , and points x, y of S. Then L(x)− L(y) = L(x− y).

1This work was supported by JSPS KAKENHI 23500029 and 22300285.
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(3) Let us consider real normed spaces X, Y, W , a function I from X into
Y, and partial functions f1, f2 from Y to W . Then

(i) (f1 + f2) · I = f1 · I + f2 · I, and

(ii) (f1 − f2) · I = f1 · I − f2 · I.
Proof: Set D1 = the carrier of X. For every element s of D1, s ∈
dom((f1+f2)·I) iff s ∈ dom(f1 ·I+f2 ·I) by [4, (11)]. For every element z of
D1 such that z ∈ dom((f1+f2)·I) holds ((f1+f2)·I)(z) = (f1 ·I+f2 ·I)(z)
by [4, (11), (12)]. For every element s of D1, s ∈ dom((f1 − f2) · I) iff
s ∈ dom(f1 · I − f2 · I) by [4, (11)]. For every element z of D1 such that
z ∈ dom((f1 − f2) · I) holds ((f1 − f2) · I)(z) = (f1 · I − f2 · I)(z) by [4,
(11), (12)]. �

(4) Let us consider real normed spaces X, Y, W , a function I from X into Y,
a partial function f from Y to W , and a real number r. Then r · (f · I) =
(r · f) · I. Proof: Set D1 = the carrier of X. For every element s of D1,
s ∈ dom((r · f) · I) iff s ∈ dom(f · I) by [4, (11)]. For every element s of
D1, s ∈ dom((r · f) · I) iff I(s) ∈ dom(r · f) by [4, (11)]. For every element
z of D1 such that z ∈ dom(r · (f · I)) holds (r · (f · I))(z) = ((r · f) · I)(z)
by [4, (12)]. �

(5) Let us consider a partial function f from T to W , a function g from S
into T , and a point x of S. Suppose

(i) x ∈ dom g, and

(ii) gx ∈ dom f , and

(iii) g is continuous in x, and

(iv) f is continuous in gx.

Then f ·g is continuous in x. Proof: Set h = f ·g. For every real number r
such that 0 < r there exists a real number s such that 0 < s and for every
point x1 of S such that x1 ∈ domh and ‖x1−x‖ < s holds ‖hx1 −hx‖ < r
by [14, (7)], [12, (3), (4)]. �

Let X, Y be real normed spaces and x be an element of X ×Y. The functor
reproj1(x) yielding a function from X into X × Y is defined by

(Def. 1) Let us consider an element r of X. Then it(r) = 〈〈r, x2〉〉.
The functor reproj2(x) yielding a function from Y into X × Y is defined by

(Def. 2) Let us consider an element r of Y. Then it(r) = 〈〈x1, r〉〉.

2. Isometries

Now we state the propositions:

(6) Let us consider a linear operator I from S into T and a point x of S. If
I is isometric, then I is continuous in x.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/10/15 1:58 PM



Isometric differentiable functions on real normed space 251

(7) Let us consider real normed spaces S, T and a linear operator f from
S into T . Then f is isometric if and only if for every element x of S,
‖f(x)‖ = ‖x‖. The theorem is a consequence of (2).

(8) Let us consider a linear operator I from S into T and a subset Z of S.
If I is isometric, then I is continuous on Z. The theorem is a consequence
of (6).

(9) Let us consider a linear operator I from S into T . Suppose I is one-to-
one, onto, and isometric. Then there exists a linear operator J from T into
S such that

(i) J = I−1, and

(ii) J is one-to-one, onto, and isometric.

The theorem is a consequence of (7). Proof: Reconsider J = I−1 as a
function from T into S. For every points v, w of T , J(v+w) = J(v)+J(w)
by [5, (113)], [4, (34)]. For every point v of T and for every real number r,
J(r·v) = r·J(v) by [5, (113)], [4, (34)]. For every point v of T , ‖J(v)‖ = ‖v‖
by [5, (113)], [4, (34)]. �

Let us consider a linear operator I from S into T and a sequence s1 of S.
Now we state the propositions:

(10) If I is isometric and s1 is convergent, then I ·s1 is convergent and lim(I ·
s1) = I(lim s1).

(11) If I is one-to-one, onto, and isometric, then s1 is convergent iff I · s1 is
convergent.

Let us consider a linear operator I from S into T and a subset Z of S. Now
we state the propositions:

(12) If I is one-to-one, onto, and isometric, then Z is closed iff I◦Z is closed.

(13) If I is one-to-one, onto, and isometric, then Z is open iff I◦Z is open.

(14) If I is one-to-one, onto, and isometric, then Z is compact iff I◦Z is
compact.

Now we state the propositions:

(15) Let us consider a partial function f from T to W and a linear operator
I from S into T . Suppose I is one-to-one, onto, and isometric. Let us
consider a point x of S. Suppose I(x) ∈ dom f . Then f · I is continuous
in x if and only if f is continuous in I(x). The theorem is a consequence
of (9), (6), and (5).

(16) Let us consider a partial function f from T to W , a linear operator I
from S into T , and a set X. Suppose

(i) X ⊆ the carrier of T , and

(ii) I is one-to-one, onto, and isometric.
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Then f is continuous on X if and only if f · I is continuous on I−1(X).
The theorem is a consequence of (15) and (1). Proof: For every point y
of T such that y ∈ X holds f�X is continuous in y by [5, (113)], [23, (57)].
�

Let X, Y be real normed spaces. The functor IsoCPNrSP(X,Y ) yielding a
linear operator from X × Y into

∏
〈X,Y 〉 is defined by

(Def. 3) Let us consider a point x ofX and a point y of Y. Then it(x, y) = 〈x, y〉.
Now we state the proposition:

(17) Let us consider real normed spaces X, Y. Then 0∏〈X,Y 〉 =
(IsoCPNrSP(X,Y ))(0X×Y ).

Let X, Y be real normed spaces. Observe that IsoCPNrSP(X,Y ) is one-to-
one onto and isometric.

Let us note that there exists a linear operator from X × Y into
∏
〈X,Y 〉

which is one-to-one, onto, and isometric.
Let f be a one-to-one onto isometric linear operator from X × Y into

∏
〈X,

Y 〉. Let us note that the functor f−1 yields a linear operator from
∏
〈X,Y 〉 into

X × Y. One can verify that f−1 is one-to-one onto and isometric as a linear
operator from

∏
〈X,Y 〉 into X × Y.

Observe that there exists a linear operator from
∏
〈X,Y 〉 into X × Y which

is one-to-one, onto, and isometric.
Now we state the propositions:

(18) Let us consider real normed spaces X, Y, a point x of X, and a point
y of Y. Then (IsoCPNrSP(X,Y ))−1(〈x, y〉) = 〈〈x, y〉〉. Proof: Set I =
IsoCPNrSP(X,Y ). Set J = I−1. For every point x of X and for every
point y of Y, J(〈x, y〉) = 〈〈x, y〉〉 by [4, (34)]. �

(19) Let us consider real normed spaces X, Y.
Then (IsoCPNrSP(X,Y ))−1(0∏〈X,Y 〉) = 0X×Y . The theorem is a conse-
quence of (17).

(20) Let us consider real normed spaces X, Y and a subset Z of X×Y. Then
IsoCPNrSP(X,Y ) is continuous on Z.

(21) Let us consider real normed spaces X, Y and a subset Z of
∏
〈X,Y 〉.

Then (IsoCPNrSP(X,Y ))−1 is continuous on Z.

(22) Let us consider real normed spaces S, T , W , a point f of the real norm
space of bounded linear operators from S intoW , a point g of the real norm
space of bounded linear operators from T into W , and a linear operator I
from S into T . Suppose

(i) I is one-to-one, onto, and isometric, and

(ii) f = g · I.
Then ‖f‖ = ‖g‖. The theorem is a consequence of (9) and (7). Proof:
Consider J being a linear operator from T into S such that J = I−1 and
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J is one-to-one, onto, and isometric. Reconsider g0 = g as a Lipschitzian
linear operator from T into W . Reconsider g3 = g · I as a Lipschitzian
linear operator from S into W . For every element x, x ∈ {‖g0(t)‖, where
t is a vector of T : ‖t‖ ¬ 1} iff x ∈ {‖g3(w)‖, where w is a vector of
S : ‖w‖ ¬ 1} by [4, (13), (35)]. �

Let us consider S and T . One can verify that every linear operator from S
into T which is isometric is also Lipschitzian.

3. Isometric Differentiable Functions on Real Normed Space

Let us consider a real norm space sequence G, a real normed space F , a set
i, partial functions f , g from

∏
G to F , and a subset X of

∏
G. Now we state

the propositions:

(23) Suppose X is open and i ∈ domG and f is partially differentiable on X
w.r.t. i and g is partially differentiable on X w.r.t. i. Then

(i) f + g is partially differentiable on X w.r.t. i, and

(ii) (f + g)�iX = (f�iX) + (g�iX).

(24) Suppose X is open and i ∈ domG and f is partially differentiable on X
w.r.t. i and g is partially differentiable on X w.r.t. i. Then

(i) f − g is partially differentiable on X w.r.t. i, and

(ii) (f − g)�iX = (f�iX)− (g�iX).

Now we state the propositions:

(25) Let us consider a real norm space sequence G, a real normed space F , a
set i, a partial function f from

∏
G to F , a real number r, and a subset

X of
∏
G. Suppose

(i) X is open, and

(ii) i ∈ domG, and

(iii) f is partially differentiable on X w.r.t. i.

Then

(iv) r · f is partially differentiable on X w.r.t. i, and

(v) r · f�iX = r · (f�iX).

Proof: Set h = r · f . For every point x of
∏
G such that x ∈ X holds h is

partially differentiable in x w.r.t. i and partdiff(h, x, i) = r ·partdiff(f, x, i)
by [19, (24), (30)]. Set f3 = f�iX. For every point x of

∏
G such that x ∈ X

holds (r · f3)x = partdiff(h, x, i). �

(26) Let us consider real normed spaces S, T , a Lipschitzian linear operator
L from S into T , and a point x0 of S. Then
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(i) L is differentiable in x0, and

(ii) L′(x0) = L.

The theorem is a consequence of (2). Proof: Reconsider L0 = L as a
point of the real norm space of bounded linear operators from S into T .
Reconsider R = (the carrier of S) 7−→ 0T as a partial function from S to
T . Set N = the neighbourhood of x0. For every point x of S such that
x ∈ N holds L0x − L0x0 = L(x− x0) +Rx−x0 by [20, (7)], [21, (4)]. �

(27) Let us consider a partial function f from T to W , a Lipschitzian linear
operator I from S into T , and a point I0 of the real norm space of bounded
linear operators from S into T . Suppose I0 = I. Let us consider a point x
of S. Suppose f is differentiable in I(x). Then

(i) f · I is differentiable in x, and

(ii) (f · I)′(x) = f ′(I(x)) · I0.
The theorem is a consequence of (26).

(28) Let us consider a partial function f from T to W and a linear operator
I from S into T . Suppose

(i) I is one-to-one and onto, and

(ii) I is isometric.

Let us consider a point x of S. Then f · I is differentiable in x if and only
if f is differentiable in I(x). The theorem is a consequence of (9), (26),
and (27).

(29) Let us consider a partial function f from T to W , a linear operator I
from S into T , and a set X. Suppose

(i) X ⊆ the carrier of T , and

(ii) I is one-to-one and onto, and

(iii) I is isometric.

Then f is differentiable on X if and only if f ·I is differentiable on I−1(X).
The theorem is a consequence of (28) and (1). Proof: For every point y
of T such that y ∈ X holds f�X is differentiable in y by [5, (113)]. �

(30) Let us consider real normed spaces X, Y, a partial function f from
∏
〈X,

Y 〉 toW , and a subset D of
∏
〈X,Y 〉. Suppose f is differentiable on D. Let

us consider a point z of
∏
〈X,Y 〉. Suppose z ∈ dom f ′�D. Then f ′�D(z) =

((f · IsoCPNrSP(X,Y ))′�(IsoCPNrSP(X,Y ))−1(D))(IsoCPNrSP(X,Y ))−1(z)·
(IsoCPNrSP(X,Y ))−1. The theorem is a consequence of (17), (29), and
(27). Proof: Set I = IsoCPNrSP(X,Y ). Set J = (IsoCPNrSP(X,Y ))−1.
Set g = f · I. Set E = I−1(D). For every point z of

∏
〈X,Y 〉 such that

z ∈ dom f ′�D holds f ′�D(z) = (g′�E)J(z) · I−1 by [10, (31)], [5, (113)], [23,
(36)]. �
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Isometric differentiable functions on real normed space 255

(31) Let us consider real normed spaces X, Y, a partial function f from X ×
Y to W , and a subset D of X × Y. Suppose f is differentiable on D. Let
us consider a point z of X × Y. Suppose z ∈ dom f ′�D. Then f ′�D(z) =
((f · (IsoCPNrSP(X,Y ))−1)′�((IsoCPNrSP(X,Y ))−1)−1(D))(IsoCPNrSP(X,Y ))(z)·
((IsoCPNrSP(X,Y ))−1)−1. The theorem is a consequence of (18), (19),
(17), (29), and (27). Proof: Set I = (IsoCPNrSP(X,Y ))−1. Set J =
IsoCPNrSP(X,Y ). Set g = f · I. Set E = I−1(D). For every point z of
X × Y such that z ∈ dom f ′�D holds f ′�D(z) = (g′�E)J(z) · I−1 by [10, (31)],
[5, (113)], [23, (36)]. �

(32) Let us consider real normed spaces X, Y and a point z of X × Y. Then

(i) reproj1(z) = (IsoCPNrSP(X,Y ))−1 · reproj(1(∈ dom〈X,Y 〉),
(IsoCPNrSP(X,Y ))(z)), and

(ii) reproj2(z) = (IsoCPNrSP(X,Y ))−1 · reproj(2(∈ dom〈X,Y 〉),
(IsoCPNrSP(X,Y ))(z)).

The theorem is a consequence of (18).

Let X, Y be real normed spaces and z be a point of X ×Y. Let us note that
the functor z1 yields a point of X. One can verify that the functor z2 yields a
point of Y. Let X, Y, W be real normed spaces. Let f be a partial function from
X × Y to W . We say that f is partially differentiable in z w.r.t. 1 if and only if

(Def. 4) f · reproj1(z) is differentiable in z1.

We say that f is partially differentiable in z w.r.t. 2 if and only if

(Def. 5) f · reproj2(z) is differentiable in z2.

Now we state the propositions:

(33) Let us consider real normed spaces X, Y and a point z of X × Y. Then

(i) z1 = the projection onto 1(∈ dom〈X,Y 〉)((IsoCPNrSP(X,Y ))(z)),
and

(ii) z2 = the projection onto 2(∈ dom〈X,Y 〉)((IsoCPNrSP(X,Y ))(z)).

(34) Let us consider real normed spaces X, Y, W , a point z of X × Y, and a
partial function f from X × Y to W . Then

(i) f is partially differentiable in z w.r.t. 1 iff f · (IsoCPNrSP(X,Y ))−1

is partially differentiable in (IsoCPNrSP(X,Y ))(z) w.r.t. 1, and

(ii) f is partially differentiable in z w.r.t. 2 iff f · (IsoCPNrSP(X,Y ))−1

is partially differentiable in (IsoCPNrSP(X,Y ))(z) w.r.t. 2.

The theorem is a consequence of (32) and (33).

Let X, Y, W be real normed spaces, z be a point of X×Y, and f be a partial
function from X×Y to W . The functor partdiff(f, z) w.r.t. 1 yielding a point of
the real norm space of bounded linear operators from X into W is defined by
the term
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(Def. 6) (f · reproj1(z))′(z1).

The functor partdiff(f, z) w.r.t. 2 yielding a point of the real norm space of
bounded linear operators from Y into W is defined by the term

(Def. 7) (f · reproj2(z))′(z2).

Now we state the proposition:

(35) Let us consider real normed spaces X, Y, W , a point z of X × Y, and a
partial function f from X × Y to W . Then

(i) partdiff(f, z) w.r.t. 1 = partdiff(f · (IsoCPNrSP(X,Y ))−1,

(IsoCPNrSP(X,Y ))(z), 1), and

(ii) partdiff(f, z) w.r.t. 2 = partdiff(f · (IsoCPNrSP(X,Y ))−1,

(IsoCPNrSP(X,Y ))(z), 2).

The theorem is a consequence of (32) and (33).

Let us consider real normed spaces X, Y, W , a point z of X×Y, and partial
functions f1, f2 from X × Y to W . Now we state the propositions:

(36) Suppose f1 is partially differentiable in z w.r.t. 1 and f2 is partially
differentiable in z w.r.t. 1. Then

(i) f1 + f2 is partially differentiable in z w.r.t. 1, and

(ii) partdiff(f1 + f2, z) w.r.t. 1 =

partdiff(f1, z) w.r.t. 1 + partdiff(f2, z) w.r.t. 1, and

(iii) f1 − f2 is partially differentiable in z w.r.t. 1, and

(iv) partdiff(f1 − f2, z) w.r.t. 1 =

partdiff(f1, z) w.r.t. 1− partdiff(f2, z) w.r.t. 1.

(37) Suppose f1 is partially differentiable in z w.r.t. 2 and f2 is partially
differentiable in z w.r.t. 2. Then

(i) f1 + f2 is partially differentiable in z w.r.t. 2, and

(ii) partdiff(f1 + f2, z) w.r.t. 2 =

partdiff(f1, z) w.r.t. 2 + partdiff(f2, z) w.r.t. 2, and

(iii) f1 − f2 is partially differentiable in z w.r.t. 2, and

(iv) partdiff(f1 − f2, z) w.r.t. 2 =

partdiff(f1, z) w.r.t. 2− partdiff(f2, z) w.r.t. 2.

Let us consider real normed spacesX, Y, W , a point z ofX×Y, a real number
r, and a partial function f from X × Y to W . Now we state the propositions:

(38) Suppose f is partially differentiable in z w.r.t. 1. Then

(i) r · f is partially differentiable in z w.r.t. 1, and

(ii) partdiff(r · f, z) w.r.t. 1 = r · partdiff(f, z) w.r.t. 1.

(39) Suppose f is partially differentiable in z w.r.t. 2. Then

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/10/15 1:58 PM



Isometric differentiable functions on real normed space 257

(i) r · f is partially differentiable in z w.r.t. 2, and

(ii) partdiff(r · f, z) w.r.t. 2 = r · partdiff(f, z) w.r.t. 2.

Let X, Y, W be real normed spaces, Z be a set, and f be a partial function
from X × Y to W . We say that f is partially differentiable on Z w.r.t. 1 if and
only if

(Def. 8) (i) Z ⊆ dom f , and

(ii) for every point z of X × Y such that z ∈ Z holds f�Z is partially
differentiable in z w.r.t. 1.

We say that f is partially differentiable on Z w.r.t. 2 if and only if

(Def. 9) (i) Z ⊆ dom f , and

(ii) for every point z of X × Y such that z ∈ Z holds f�Z is partially
differentiable in z w.r.t. 2.

Now we state the proposition:

(40) Let us consider real normed spaces X, Y, W , a subset Z of X × Y, and
a partial function f from X × Y to W . Then

(i) f is partially differentiable on Z w.r.t. 1 iff f · (IsoCPNrSP(X,Y ))−1

is partially differentiable on ((IsoCPNrSP(X,Y ))−1)−1(Z) w.r.t. 1,
and

(ii) f is partially differentiable on Z w.r.t. 2 iff f · (IsoCPNrSP(X,Y ))−1

is partially differentiable on ((IsoCPNrSP(X,Y ))−1)−1(Z) w.r.t. 2.

The theorem is a consequence of (18), (19), (17), (34), and (1). Proof: Set
I = (IsoCPNrSP(X,Y ))−1. Set g = f · I. Set E = I−1(Z). f is partially
differentiable on Z w.r.t. 1 iff g is partially differentiable on E w.r.t. 1 by
[5, (113)], [4, (34)], [5, (38)]. f is partially differentiable on Z w.r.t. 2 iff g
is partially differentiable on E w.r.t. 2 by [5, (113)], [4, (34)], [5, (38)]. �

Let X, Y, W be real normed spaces, Z be a set, and f be a partial function
from X×Y toW . Assume f is partially differentiable on Z w.r.t. 1. The functor
f �1 Z yielding a partial function from X×Y to the real norm space of bounded
linear operators from X into W is defined by

(Def. 10) (i) dom it = Z, and

(ii) for every point z of X × Y such that z ∈ Z holds itz =

partdiff(f, z) w.r.t. 1.

Assume f is partially differentiable on Z w.r.t. 2. The functor f �2 Z yielding
a partial function from X×Y to the real norm space of bounded linear operators
from Y into W is defined by

(Def. 11) (i) dom it = Z, and

(ii) for every point z of X × Y such that z ∈ Z holds itz =

partdiff(f, z) w.r.t. 2.
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Let us consider real normed spaces X, Y, W , a subset Z of X × Y, and a
partial function f from X × Y to W . Now we state the propositions:

(41) Suppose f is partially differentiable on Z w.r.t. 1. Then f �1 Z = (f ·
(IsoCPNrSP(X,Y ))−1�1((IsoCPNrSP(X,Y ))−1)−1(Z))·IsoCPNrSP(X,Y ).

(42) Suppose f is partially differentiable on Z w.r.t. 2. Then f �2 Z = (f ·
(IsoCPNrSP(X,Y ))−1�2((IsoCPNrSP(X,Y ))−1)−1(Z))·IsoCPNrSP(X,Y ).

(43) Suppose Z is open. Then f is partially differentiable on Z w.r.t. 1 if and
only if Z ⊆ dom f and for every point x of X × Y such that x ∈ Z holds
f is partially differentiable in x w.r.t. 1.

(44) Suppose Z is open. Then f is partially differentiable on Z w.r.t. 2 if and
only if Z ⊆ dom f and for every point x of X × Y such that x ∈ Z holds
f is partially differentiable in x w.r.t. 2.

Let us consider real normed spaces X, Y, W , a subset Z of X×Y, and partial
functions f , g from X × Y to W . Now we state the propositions:

(45) Suppose Z is open and f is partially differentiable on Z w.r.t. 1 and g
is partially differentiable on Z w.r.t. 1. Then

(i) f + g is partially differentiable on Z w.r.t. 1, and

(ii) (f + g) �1 Z = (f �1 Z) + (g �1 Z).

(46) Suppose Z is open and f is partially differentiable on Z w.r.t. 1 and g
is partially differentiable on Z w.r.t. 1. Then

(i) f − g is partially differentiable on Z w.r.t. 1, and

(ii) (f − g) �1 Z = (f �1 Z)− (g �1 Z).

(47) Suppose Z is open and f is partially differentiable on Z w.r.t. 2 and g
is partially differentiable on Z w.r.t. 2. Then

(i) f + g is partially differentiable on Z w.r.t. 2, and

(ii) (f + g) �2 Z = (f �2 Z) + (g �2 Z).

(48) Suppose Z is open and f is partially differentiable on Z w.r.t. 2 and g
is partially differentiable on Z w.r.t. 2. Then

(i) f − g is partially differentiable on Z w.r.t. 2, and

(ii) (f − g) �2 Z = (f �2 Z)− (g �2 Z).

Let us consider real normed spaces X, Y, W , a subset Z of X × Y, a re-
al number r, and a partial function f from X × Y to W . Now we state the
propositions:

(49) Suppose Z is open and f is partially differentiable on Z w.r.t. 1. Then

(i) r · f is partially differentiable on Z w.r.t. 1, and

(ii) r · f �1 Z = r · (f �1 Z).

(50) Suppose Z is open and f is partially differentiable on Z w.r.t. 2. Then

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/10/15 1:58 PM



Isometric differentiable functions on real normed space 259

(i) r · f is partially differentiable on Z w.r.t. 2, and

(ii) r · f �2 Z = r · (f �2 Z).

Let us consider real normed spaces X, Y, W , a subset Z of X × Y, and a
partial function f from X × Y to W . Now we state the propositions:

(51) Suppose f is differentiable on Z. Then f ′�Z is continuous on Z if and
only if (f · (IsoCPNrSP(X,Y ))−1)′�((IsoCPNrSP(X,Y ))−1)−1(Z) is continuous
on ((IsoCPNrSP(X,Y ))−1)−1(Z).

(52) Suppose Z is open. Then f is partially differentiable on Z w.r.t. 1 and
f is partially differentiable on Z w.r.t. 2 and f �1 Z is continuous on Z
and f �2 Z is continuous on Z if and only if f is differentiable on Z and
f ′�Z is continuous on Z.
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