

FORMALIZED MATHEMATICS Vol. 17, No. 1, Pages 37-42, 2009 DOI: 10.2478/v10037-009-0004-z

Cell Petri Net Concepts

Mitsuru Jitsukawa Chiba-ken Asahi-shi Kotoda 2927-13 289-2502 Japan Pauline N. Kawamoto Shinshu University Nagano, Japan

Yasunari Shidama Shinshu University Nagano, Japan Yatsuka Nakamura Shinshu University Nagano, Japan

Summary. Based on the Petri net definitions and theorems already formalized in [8], with this article, we developed the concept of "Cell Petri Nets". It is based on [9]. In a cell Petri net we introduce the notions of colors and colored states of a Petri net, connecting mappings for linking two Petri nets, firing rules for transitions, and the synthesis of two or more Petri nets.

MML identifier: PETRI_2, version: 7.11.01 4.117.1046

The papers [11], [12], [6], [13], [14], [10], [8], [2], [5], [3], [4], [7], and [1] provide the terminology and notation for this paper.

1. PRELIMINARIES: THIN CYLINDER, LOCUS

Let A be a non empty set, let B be a set, let B_1 be a set, and let y_1 be a function from B_1 into A. Let us assume that $B_1 \subseteq B$. The functor cylinder₀(A, B, B₁, y₁) yields a non empty subset of A^B and is defined by:

(Def. 1) cylinder₀(A, B, B_1, y_1) = { $y : B \to A : y \upharpoonright B_1 = y_1$ }.

Let A be a non empty set and let B be a set. A non empty subset of A^B is said to be a thin cylinder of A and B if:

(Def. 2) There exists a subset B_1 of B and there exists a function y_1 from B_1 into A such that B_1 is finite and it = cylinder₀ (A, B, B_1, y_1) . The following propositions are true:

37

C 2009 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

MITSURU JITSUKAWA et al.

- (1) Let A be a non empty set, B be a set, and D be a thin cylinder of A and B. Then there exists a subset B_1 of B and there exists a function y_1 from B_1 into A such that B_1 is finite and $D = \{y : B \to A : y | B_1 = y_1\}.$
- (2) Let A_1 , A_2 be non empty sets, B be a set, and D_1 be a thin cylinder of A_1 and B. If $A_1 \subseteq A_2$, then there exists a thin cylinder D_2 of A_2 and B such that $D_1 \subseteq D_2$.

Let A be a non empty set and let B be a set. The thin cylinders of A and B constitute a non empty family of subsets of A^B defined by:

(Def. 3) The thin cylinders of A and $B = \{D \subseteq A^B : D \text{ is a thin cylinder of } A \text{ and } B\}.$

We now state three propositions:

- (3) Let A be a non trivial set, B be a set, B_2 be a set, y_2 be a function from B_2 into A, B_3 be a set, and y_3 be a function from B_3 into A. If $B_2 \subseteq B$ and $B_3 \subseteq B$ and cylinder₀(A, B, B₂, y_2) = cylinder₀(A, B, B₃, y_3), then $B_2 = B_3$ and $y_2 = y_3$.
- (4) Let A_1, A_2 be non empty sets and B_4, B_5 be sets. Suppose $A_1 \subseteq A_2$ and $B_4 \subseteq B_5$. Then there exists a function F from the thin cylinders of A_1 and B_4 into the thin cylinders of A_2 and B_5 such that for every set x if $x \in$ the thin cylinders of A_1 and B_4 , then there exists a subset B_1 of B_4 and there exists a function y_2 from B_1 into A_1 and there exists a function y_3 from B_1 into A_2 such that B_1 is finite and $y_2 = y_3$ and $x = \text{cylinder}_0(A_1, B_4, B_1, y_2)$ and $F(x) = \text{cylinder}_0(A_2, B_5, B_1, y_3)$.
- (5) Let A_1 , A_2 be non empty sets and B_4 , B_5 be sets. Then there exists a function G from the thin cylinders of A_2 and B_5 into the thin cylinders of A_1 and B_4 such that for every set x if $x \in$ the thin cylinders of A_2 and B_5 , then there exists a subset B_3 of B_5 and there exists a subset B_2 of B_4 and there exists a function y_2 from B_2 into A_1 and there exists a function y_3 from B_3 into A_2 such that B_2 is finite and B_3 is finite and $B_2 = B_4 \cap B_3 \cap y_3^{-1}(A_1)$ and $y_2 = y_3 | B_2$ and $x = \text{cylinder}_0(A_2, B_5, B_3, y_3)$ and $G(x) = \text{cylinder}_0(A_1, B_4, B_2, y_2)$.

Let A_1 , A_2 be non trivial sets and let B_4 , B_5 be sets. Let us assume that there exist sets x, y such that $x \neq y$ and x, $y \in A_1$ and $A_1 \subseteq A_2$ and $B_4 \subseteq B_5$. The functor Extrylinders (A_1, B_4, A_2, B_5) yielding a function from the thin cylinders of A_1 and B_4 into the thin cylinders of A_2 and B_5 is defined by the condition (Def. 4).

(Def. 4) Let x be a set. Suppose $x \in$ the thin cylinders of A_1 and B_4 . Then there exists a subset B_1 of B_4 and there exists a function y_2 from B_1 into A_1 and there exists a function y_3 from B_1 into A_2 such that B_1 is finite and $y_2 = y_3$ and $x = \text{cylinder}_0(A_1, B_4, B_1, y_2)$ and $(\text{Extcylinders}(A_1, B_4, A_2, B_5))(x) = \text{cylinder}_0(A_2, B_5, B_1, y_3).$

38

Let A_1 be a non empty set, let A_2 be a non trivial set, and let B_4 , B_5 be sets. Let us assume that $A_1 \subseteq A_2$ and $B_4 \subseteq B_5$. The functor Ristcylinders (A_1, B_4, A_2, B_5) yields a function from the thin cylinders of A_2 and B_5 into the thin cylinders of A_1 and B_4 and is defined by the condition (Def. 5).

(Def. 5) Let x be a set. Suppose $x \in$ the thin cylinders of A_2 and B_5 . Then there exists a subset B_3 of B_5 and there exists a subset B_2 of B_4 and there exists a function y_2 from B_2 into A_1 and there exists a function y_3 from B_3 into A_2 such that B_2 is finite and B_3 is finite and $B_2 =$ $B_4 \cap B_3 \cap y_3^{-1}(A_1)$ and $y_2 = y_3 \upharpoonright B_2$ and $x = \text{cylinder}_0(A_2, B_5, B_3, y_3)$ and (Ristcylinders (A_1, B_4, A_2, B_5)) $(x) = \text{cylinder}_0(A_1, B_4, B_2, y_2)$.

Let A be a non trivial set, let B be a set, and let D be a thin cylinder of A and B. The functor $\log D$ yielding a finite subset of B is defined by the condition (Def. 6).

(Def. 6) There exists a subset B_1 of B and there exists a function y_1 from B_1 into A such that B_1 is finite and $D = \{y : B \to A : y | B_1 = y_1\}$ and $\log D = B_1$.

2. Colored Petri Nets

Let A_1 , A_2 be non trivial sets, let B_4 , B_5 be sets, let C_1 , C_2 be non trivial sets, let D_1 , D_2 be sets, and let F be a function from the thin cylinders of A_1 and B_4 into the thin cylinders of C_1 and D_1 . The functor CylinderFunc($A_1, B_4, A_2, B_5, C_1, D_1, C_2, D_2, F$) yielding a function from the thin cylinders of A_2 and B_5 into the thin cylinders of C_2 and D_2 is defined as follows:

(Def. 7) CylinderFunc $(A_1, B_4, A_2, B_5, C_1, D_1, C_2, D_2, F) =$

Extcylinders $(C_1, D_1, C_2, D_2) \cdot F \cdot \text{Ristcylinders}(A_1, B_4, A_2, B_5).$

We consider colored place/transition net structures as extensions of place/transition net structure as systems

 \langle places, transitions, S-T arcs, T-S arcs, a colored set, a firing-rule \rangle ,

where the places and the transitions constitute non empty sets, the S-T arcs constitute a non empty relation between the places and the transitions, the T-S arcs constitute a non empty relation between the transitions and the places, the colored set is a non empty finite set, and the firing-rule is a function.

Let C_3 be a colored place/transition net structure and let t_0 be a transition of C_3 . We say that t_0 is outbound if and only if:

(Def. 8) $\overline{\{t_0\}} = \emptyset$.

Let C_4 be a colored place/transition net structure. The functor Outbds C_4 yielding a subset of the transitions of C_4 is defined by:

(Def. 9) Outbds $C_4 = \{x; x \text{ ranges over transitions of } C_4: x \text{ is outbound}\}.$

Let C_3 be a colored place/transition net structure. We say that C_3 is colored-PT-net-like if and only if the conditions (Def. 10) are satisfied.

- (Def. 10)(i) dom (the firing-rule of C_3) \subseteq (the transitions of C_3) \ Outbds C_3 , and
 - (ii) for every transition t of C_3 such that $t \in \text{dom}$ (the firing-rule of C_3) there exists a non empty subset C_5 of the colored set of C_3 and there exists a subset I of $*\{t\}$ and there exists a subset O of $\overline{\{t\}}$ such that (the firing-rule of C_3)(t) is a function from the thin cylinders of C_5 and I into the thin cylinders of C_5 and O.

We now state two propositions:

- (6) Let C₃ be a colored place/transition net structure and t be a transition of C₃. Suppose C₃ is colored-PT-net-like and t ∈ dom (the firing-rule of C₃). Then there exists a non empty subset C₅ of the colored set of C₃ and there exists a subset I of *{t} and there exists a subset O of {t} such that (the firing-rule of C₃)(t) is a function from the thin cylinders of C₅ and I into the thin cylinders of C₅ and O.
- (7) Let C_4 , C_6 be colored place/transition net structures, t_1 be a transition of C_4 , and t_2 be a transition of C_6 . Suppose that
- (i) the places of $C_4 \subseteq$ the places of C_6 ,
- (ii) the transitions of $C_4 \subseteq$ the transitions of C_6 ,
- (iii) the S-T arcs of $C_4 \subseteq$ the S-T arcs of C_6 ,
- (iv) the T-S arcs of $C_4 \subseteq$ the T-S arcs of C_6 , and
- (v) $t_1 = t_2$.

Then ${}^{*}{t_1} \subseteq {}^{*}{t_2}$ and ${t_1} \subseteq {t_2}$.

One can verify that there exists a colored place/transition net structure which is strict and colored-PT-net-like.

A colored place/transition net is a colored-PT-net-like colored place/transition net structure.

3. Color Counts of CPNT

Let C_4 , C_6 be colored place/transition net structures. We say that C_4 misses C_6 if and only if:

(Def. 11) (The places of C_4) \cap (the places of C_6) = \emptyset and (the transitions of C_4) \cap (the transitions of C_6) = \emptyset .

Let us note that the predicate C_4 misses C_6 is symmetric.

4. Colored States of CPNT

Let C_4 be a colored place/transition net structure and let C_6 be a colored place/transition net structure. Connecting mapping of C_4 and C_6 is defined by the condition (Def. 12).

40

(Def. 12) There exists a function O_{12} from Outbds C_4 into the places of C_6 and there exists a function O_{21} from Outbds C_6 into the places of C_4 such that it = $\langle O_{12}, O_{21} \rangle$.

5. Outbound Transitions of CPNT

Let C_4 , C_6 be colored place/transition nets and let O be a connecting mapping of C_4 and C_6 . Connecting firing rule of C_4 , C_6 , and O is defined by the condition (Def. 13).

- (Def. 13) There exist functions q_{12} , q_{21} and there exists a function O_{12} from Outbds C_4 into the places of C_6 and there exists a function O_{21} from Outbds C_6 into the places of C_4 such that
 - (i) $O = \langle O_{12}, O_{21} \rangle$,
 - (ii) $\operatorname{dom} q_{12} = \operatorname{Outbds} C_4,$
 - (iii) $\operatorname{dom} q_{21} = \operatorname{Outbds} C_6,$
 - (iv) for every transition t_3 of C_4 such that t_3 is outbound holds $q_{12}(t_3)$ is a function from the thin cylinders of the colored set of C_4 and $*\{t_3\}$ into the thin cylinders of the colored set of C_4 and $O_{12}^{\circ}t_3$,
 - (v) for every transition t_4 of C_6 such that t_4 is outbound holds $q_{21}(t_4)$ is a function from the thin cylinders of the colored set of C_6 and $*\{t_4\}$ into the thin cylinders of the colored set of C_6 and $O_{21}^{\circ}t_4$, and

(vi) it =
$$\langle q_{12}, q_{21} \rangle$$
.

6. Connecting Mapping for CPNT1, CPNT2

Let C_4 , C_6 be colored place/transition nets, let O be a connecting mapping of C_4 and C_6 , and let q be a connecting firing rule of C_4 , C_6 , and O. Let us assume that C_4 misses C_6 . The functor synthesis(C_4, C_6, O, q) yielding a strict colored place/transition net is defined by the condition (Def. 14).

- (Def. 14) There exist functions q_{12} , q_{21} and there exists a function O_{12} from Outbds C_4 into the places of C_6 and there exists a function O_{21} from Outbds C_6 into the places of C_4 such that $O = \langle O_{12}, O_{21} \rangle$ and dom $q_{12} =$ Outbds C_4 and dom $q_{21} =$ Outbds C_6 and for every transition t_3 of C_4 such that t_3 is outbound holds $q_{12}(t_3)$ is a function from the thin cylinders of the colored set of C_4 and $*\{t_3\}$ into the thin cylinders of the colored set of C_4 and $o_{12}\circ t_3$ and for every transition t_4 of C_6 such that t_4 is outbound holds $q_{21}(t_4)$ is a function from the
 - thin cylinders of the colored set of C_6 and $*\{t_4\}$ into the thin cylinders of the colored set of C_6 and $O_{21}^{\circ}t_4$ and $q = \langle q_{12}, q_{21} \rangle$ and the places of synthesis $(C_4, C_6, O, q) =$ (the places of C_4) \cup (the places of C_6) and the

transitions of synthesis(C_4, C_6, O, q) = (the transitions of C_4) \cup (the transitions of C_6) and the S-T arcs of synthesis(C_4, C_6, O, q) = (the S-T arcs of C_4) \cup (the S-T arcs of C_6) and the T-S arcs of synthesis(C_4, C_6, O, q) = (the T-S arcs of C_4) \cup (the T-S arcs of C_6) $\cup O_{12} \cup O_{21}$ and the colored set of synthesis(C_4, C_6, O, q) = (the colored set of C_4) \cup (the transition of C_6) and the firing-rule of synthesis(C_4, C_6, O, q) = (the firing-rule of C_6)+ $\cdot q_{12}$ + $\cdot q_{21}$.

References

- [1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [2] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [8] Pauline N. Kawamoto, Yasushi Fuwa, and Yatsuka Nakamura. Basic Petri net concepts. Formalized Mathematics, 3(2):183–187, 1992.
- [9] Pauline N. Kawamoto and Yatsuka Nakamura. On Cell Petri Nets. Journal of Applied Functional Analysis, 1996.
- [10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [11] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received October 14, 2008