Cell Petri Net Concepts

Mitsuru Jitsukawa
Chiba-ken Asahi-shi Kotoda 2927-13
289-2502 Japan
Yasunari Shidama
Shinshu University
Nagano, Japan

Pauline N. Kawamoto Shinshu University
Nagano, Japan
Yatsuka Nakamura
Shinshu University
Nagano, Japan

Abstract

Summary. Based on the Petri net definitions and theorems already formalized in [8], with this article, we developed the concept of "Cell Petri Nets". It is based on [9]. In a cell Petri net we introduce the notions of colors and colored states of a Petri net, connecting mappings for linking two Petri nets, firing rules for transitions, and the synthesis of two or more Petri nets.

MML identifier: PETRI_2, version: $\underline{7.11 .014 .117 .1046}$

The papers [11], [12], [6], [13], [14], [10], [8], [2], [5], [3], [4], [7], and [1] provide the terminology and notation for this paper.

1. Preliminaries: Thin Cylinder, Locus

Let A be a non empty set, let B be a set, let B_{1} be a set, and let y_{1} be a function from B_{1} into A. Let us assume that $B_{1} \subseteq B$. The functor cylinder ${ }_{0}\left(A, B, B_{1}, y_{1}\right)$ yields a non empty subset of A^{B} and is defined by:
(Def. 1) $\operatorname{cylinder}_{0}\left(A, B, B_{1}, y_{1}\right)=\left\{y: B \rightarrow A: y \upharpoonright B_{1}=y_{1}\right\}$.
Let A be a non empty set and let B be a set. A non empty subset of A^{B} is said to be a thin cylinder of A and B if:
(Def. 2) There exists a subset B_{1} of B and there exists a function y_{1} from B_{1} into A such that B_{1} is finite and it $=\operatorname{cylinder}_{0}\left(A, B, B_{1}, y_{1}\right)$.
The following propositions are true:
(1) Let A be a non empty set, B be a set, and D be a thin cylinder of A and B. Then there exists a subset B_{1} of B and there exists a function y_{1} from B_{1} into A such that B_{1} is finite and $D=\left\{y: B \rightarrow A: y \upharpoonright B_{1}=y_{1}\right\}$.
(2) Let A_{1}, A_{2} be non empty sets, B be a set, and D_{1} be a thin cylinder of A_{1} and B. If $A_{1} \subseteq A_{2}$, then there exists a thin cylinder D_{2} of A_{2} and B such that $D_{1} \subseteq D_{2}$.

Let A be a non empty set and let B be a set. The thin cylinders of A and B constitute a non empty family of subsets of A^{B} defined by:
(Def. 3) The thin cylinders of A and $B=\left\{D \subseteq A^{B}: D\right.$ is a thin cylinder of A and $B\}$.
We now state three propositions:
(3) Let A be a non trivial set, B be a set, B_{2} be a set, y_{2} be a function from B_{2} into A, B_{3} be a set, and y_{3} be a function from B_{3} into A. If $B_{2} \subseteq B$ and $B_{3} \subseteq B$ and $\operatorname{cylinder}_{0}\left(A, B, B_{2}, y_{2}\right)=\operatorname{cylinder}_{0}\left(A, B, B_{3}, y_{3}\right)$, then $B_{2}=B_{3}$ and $y_{2}=y_{3}$.
(4) Let A_{1}, A_{2} be non empty sets and B_{4}, B_{5} be sets. Suppose $A_{1} \subseteq A_{2}$ and $B_{4} \subseteq B_{5}$. Then there exists a function F from the thin cylinders of A_{1} and B_{4} into the thin cylinders of A_{2} and B_{5} such that for every set x if $x \in$ the thin cylinders of A_{1} and B_{4}, then there exists a subset B_{1} of B_{4} and there exists a function y_{2} from B_{1} into A_{1} and there exists a function y_{3} from B_{1} into A_{2} such that B_{1} is finite and $y_{2}=y_{3}$ and $x=\operatorname{cylinder}_{0}\left(A_{1}, B_{4}, B_{1}, y_{2}\right)$ and $F(x)=$ cylinder $_{0}\left(A_{2}, B_{5}, B_{1}, y_{3}\right)$.
(5) Let A_{1}, A_{2} be non empty sets and B_{4}, B_{5} be sets. Then there exists a function G from the thin cylinders of A_{2} and B_{5} into the thin cylinders of A_{1} and B_{4} such that for every set x if $x \in$ the thin cylinders of A_{2} and B_{5}, then there exists a subset B_{3} of B_{5} and there exists a subset B_{2} of B_{4} and there exists a function y_{2} from B_{2} into A_{1} and there exists a function y_{3} from B_{3} into A_{2} such that B_{2} is finite and B_{3} is finite and $B_{2}=B_{4} \cap B_{3} \cap y_{3}^{-1}\left(A_{1}\right)$ and $y_{2}=y_{3} \upharpoonright B_{2}$ and $x=\operatorname{cylinder}_{0}\left(A_{2}, B_{5}, B_{3}, y_{3}\right)$ and $G(x)=$ cylinder ${ }_{0}\left(A_{1}, B_{4}, B_{2}, y_{2}\right)$.
Let A_{1}, A_{2} be non trivial sets and let B_{4}, B_{5} be sets. Let us assume that there exist sets x, y such that $x \neq y$ and $x, y \in A_{1}$ and $A_{1} \subseteq A_{2}$ and $B_{4} \subseteq B_{5}$. The functor Extcylinders $\left(A_{1}, B_{4}, A_{2}, B_{5}\right)$ yielding a function from the thin cylinders of A_{1} and B_{4} into the thin cylinders of A_{2} and B_{5} is defined by the condition (Def. 4).
(Def. 4) Let x be a set. Suppose $x \in$ the thin cylinders of A_{1} and B_{4}. Then there exists a subset B_{1} of B_{4} and there exists a function y_{2} from B_{1} into A_{1} and there exists a function y_{3} from B_{1} into A_{2} such that B_{1} is finite and $y_{2}=y_{3}$ and $x=\operatorname{cylinder}{ }_{0}\left(A_{1}, B_{4}, B_{1}, y_{2}\right)$ and $\left(\operatorname{Extcylinders}\left(A_{1}, B_{4}, A_{2}, B_{5}\right)\right)(x)=$ cylinder ${ }_{0}\left(A_{2}, B_{5}, B_{1}, y_{3}\right)$.

Let A_{1} be a non empty set, let A_{2} be a non trivial set, and let B_{4}, B_{5} be sets. Let us assume that $A_{1} \subseteq A_{2}$ and $B_{4} \subseteq B_{5}$. The functor Ristcylinders $\left(A_{1}, B_{4}, A_{2}, B_{5}\right)$ yields a function from the thin cylinders of A_{2} and B_{5} into the thin cylinders of A_{1} and B_{4} and is defined by the condition (Def. 5).
(Def. 5) Let x be a set. Suppose $x \in$ the thin cylinders of A_{2} and B_{5}. Then there exists a subset B_{3} of B_{5} and there exists a subset B_{2} of B_{4} and there exists a function y_{2} from B_{2} into A_{1} and there exists a function y_{3} from B_{3} into A_{2} such that B_{2} is finite and B_{3} is finite and $B_{2}=$ $B_{4} \cap B_{3} \cap y_{3}{ }^{-1}\left(A_{1}\right)$ and $y_{2}=y_{3} \upharpoonright B_{2}$ and $x=\operatorname{cylinder}_{0}\left(A_{2}, B_{5}, B_{3}, y_{3}\right)$ and $\left(\operatorname{Ristcylinders}\left(A_{1}, B_{4}, A_{2}, B_{5}\right)\right)(x)=\operatorname{cylinder}_{0}\left(A_{1}, B_{4}, B_{2}, y_{2}\right)$.
Let A be a non trivial set, let B be a set, and let D be a thin cylinder of A and B. The functor loc D yielding a finite subset of B is defined by the condition (Def. 6).
(Def. 6) There exists a subset B_{1} of B and there exists a function y_{1} from B_{1} into A such that B_{1} is finite and $D=\left\{y: B \rightarrow A: y \upharpoonright B_{1}=y_{1}\right\}$ and $\operatorname{loc} D=B_{1}$.

2. Colored Petri Nets

Let A_{1}, A_{2} be non trivial sets, let B_{4}, B_{5} be sets, let C_{1}, C_{2} be non trivial sets, let D_{1}, D_{2} be sets, and let F be a function from the thin cylinders of A_{1} and B_{4} into the thin cylinders of C_{1} and D_{1}. The functor CylinderFunc $\left(A_{1}, B_{4}, A_{2}, B_{5}, C_{1}, D_{1}, C_{2}, D_{2}, F\right)$ yielding a function from the thin cylinders of A_{2} and B_{5} into the thin cylinders of C_{2} and D_{2} is defined as follows:
(Def. 7) CylinderFunc $\left(A_{1}, B_{4}, A_{2}, B_{5}, C_{1}, D_{1}, C_{2}, D_{2}, F\right)=$ Extcylinders $\left(C_{1}, D_{1}, C_{2}, D_{2}\right) \cdot F \cdot \operatorname{Ristcylinders}\left(A_{1}, B_{4}, A_{2}, B_{5}\right)$.
We consider colored place/transition net structures as extensions of place/transition net structure as systems

〈 places, transitions, S-T arcs, T-S arcs, a colored set, a firing-rule 〉,
where the places and the transitions constitute non empty sets, the S-T arcs constitute a non empty relation between the places and the transitions, the T-S arcs constitute a non empty relation between the transitions and the places, the colored set is a non empty finite set, and the firing-rule is a function.

Let C_{3} be a colored place/transition net structure and let t_{0} be a transition of C_{3}. We say that t_{0} is outbound if and only if:
(Def. 8) $\overline{\left\{t_{0}\right\}}=\emptyset$.
Let C_{4} be a colored place/transition net structure. The functor Outbds C_{4} yielding a subset of the transitions of C_{4} is defined by:
(Def. 9) Outbds $C_{4}=\left\{x ; x\right.$ ranges over transitions of $C_{4}: x$ is outbound $\}$.

Let C_{3} be a colored place/transition net structure. We say that C_{3} is colored-PT-net-like if and only if the conditions (Def. 10) are satisfied.
(Def. 10)(i) dom (the firing-rule of $\left.C_{3}\right) \subseteq$ (the transitions of C_{3}) \backslash Outbds C_{3}, and
(ii) for every transition t of C_{3} such that $t \in \operatorname{dom}$ (the firing-rule of C_{3}) there exists a non empty subset C_{5} of the colored set of C_{3} and there exists a subset I of $*\{t\}$ and there exists a subset O of $\overline{\{t\}}$ such that (the firing-rule of $\left.C_{3}\right)(t)$ is a function from the thin cylinders of C_{5} and I into the thin cylinders of C_{5} and O.
We now state two propositions:
(6) Let C_{3} be a colored place/transition net structure and t be a transition of C_{3}. Suppose C_{3} is colored-PT-net-like and $t \in$ dom (the firing-rule of C_{3}). Then there exists a non empty subset C_{5} of the colored set of C_{3} and there exists a subset I of ${ }^{*}\{t\}$ and there exists a subset O of $\overline{\{t\}}$ such that (the firing-rule of $\left.C_{3}\right)(t)$ is a function from the thin cylinders of C_{5} and I into the thin cylinders of C_{5} and O.
(7) Let C_{4}, C_{6} be colored place/transition net structures, t_{1} be a transition of C_{4}, and t_{2} be a transition of C_{6}. Suppose that
(i) the places of $C_{4} \subseteq$ the places of C_{6},
(ii) the transitions of $C_{4} \subseteq$ the transitions of C_{6},
(iii) the S-T arcs of $C_{4} \subseteq$ the S-T arcs of C_{6},
(iv) the T-S arcs of $C_{4} \subseteq$ the T-S arcs of C_{6}, and
(v) $t_{1}=t_{2}$.

Then ${ }^{*}\left\{t_{1}\right\} \subseteq{ }^{*}\left\{t_{2}\right\}$ and $\overline{\left\{t_{1}\right\}} \subseteq \overline{\left\{t_{2}\right\}}$.
One can verify that there exists a colored place/transition net structure which is strict and colored-PT-net-like.

A colored place/transition net is a colored-PT-net-like colored place/transition net structure.

3. Color Counts of CPNT

Let C_{4}, C_{6} be colored place/transition net structures. We say that C_{4} misses C_{6} if and only if:
(Def. 11) (The places of $\left.C_{4}\right) \cap\left(\right.$ the places of $\left.C_{6}\right)=\emptyset$ and (the transitions of $\left.C_{4}\right) \cap\left(\right.$ the transitions of $\left.C_{6}\right)=\emptyset$.
Let us note that the predicate C_{4} misses C_{6} is symmetric.

4. Colored States of CPNT

Let C_{4} be a colored place/transition net structure and let C_{6} be a colored place/transition net structure. Connecting mapping of C_{4} and C_{6} is defined by the condition (Def. 12).
(Def. 12) There exists a function O_{12} from Outbds C_{4} into the places of C_{6} and there exists a function O_{21} from Outbds C_{6} into the places of C_{4} such that it $=\left\langle O_{12}, O_{21}\right\rangle$.

5. Outbound Transitions of CPNT

Let C_{4}, C_{6} be colored place/transition nets and let O be a connecting mapping of C_{4} and C_{6}. Connecting firing rule of C_{4}, C_{6}, and O is defined by the condition (Def. 13).
(Def. 13) There exist functions q_{12}, q_{21} and there exists a function O_{12} from Outbds C_{4} into the places of C_{6} and there exists a function O_{21} from Outbds C_{6} into the places of C_{4} such that
(i) $O=\left\langle O_{12}, O_{21}\right\rangle$,
(ii) $\operatorname{dom} q_{12}=$ Outbds C_{4},
(iii) $\operatorname{dom} q_{21}=$ Outbds C_{6},
(iv) for every transition t_{3} of C_{4} such that t_{3} is outbound holds $q_{12}\left(t_{3}\right)$ is a function from the thin cylinders of the colored set of C_{4} and ${ }^{*}\left\{t_{3}\right\}$ into the thin cylinders of the colored set of C_{4} and $O_{12}{ }^{\circ} t_{3}$,
(v) for every transition t_{4} of C_{6} such that t_{4} is outbound holds $q_{21}\left(t_{4}\right)$ is a function from the thin cylinders of the colored set of C_{6} and ${ }^{*}\left\{t_{4}\right\}$ into the thin cylinders of the colored set of C_{6} and $O_{21}{ }^{\circ} t_{4}$, and
(vi) \quad it $=\left\langle q_{12}, q_{21}\right\rangle$.

6. Connecting Mapping for CPNT1, CPNT2

Let C_{4}, C_{6} be colored place/transition nets, let O be a connecting mapping of C_{4} and C_{6}, and let q be a connecting firing rule of C_{4}, C_{6}, and O. Let us assume that C_{4} misses C_{6}. The functor synthesis $\left(C_{4}, C_{6}, O, q\right)$ yielding a strict colored place/transition net is defined by the condition (Def. 14).
(Def. 14) There exist functions q_{12}, q_{21} and there exists a function O_{12} from Outbds C_{4} into the places of C_{6} and there exists a function O_{21} from Outbds C_{6} into the places of C_{4} such that $O=\left\langle O_{12}, O_{21}\right\rangle$ and dom $q_{12}=\operatorname{Outbds} C_{4}$ and dom $q_{21}=\operatorname{Outbds} C_{6}$ and for every transition t_{3} of C_{4} such that t_{3} is outbound holds $q_{12}\left(t_{3}\right)$ is a function from the thin cylinders of the colored set of C_{4} and ${ }^{*}\left\{t_{3}\right\}$ into the thin cylinders of the colored set of C_{4} and $O_{12}{ }^{\circ} t_{3}$ and for every transition t_{4} of C_{6} such that t_{4} is outbound holds $q_{21}\left(t_{4}\right)$ is a function from the thin cylinders of the colored set of C_{6} and ${ }^{*}\left\{t_{4}\right\}$ into the thin cylinders of the colored set of C_{6} and $O_{21}{ }^{\circ} t_{4}$ and $q=\left\langle q_{12}, q_{21}\right\rangle$ and the places of $\operatorname{synthesis}\left(C_{4}, C_{6}, O, q\right)=\left(\right.$ the places of $\left.C_{4}\right) \cup\left(\right.$ the places of $\left.C_{6}\right)$ and the
transitions of synthesis $\left(C_{4}, C_{6}, O, q\right)=$ (the transitions of $\left.C_{4}\right) \cup$ (the transitions of C_{6}) and the S-T arcs of $\operatorname{synth} \operatorname{sis}\left(C_{4}, C_{6}, O, q\right)=($ the S-T arcs of $\left.C_{4}\right) \cup\left(\right.$ the S-T arcs of $\left.C_{6}\right)$ and the T-S arcs of synthesis $\left(C_{4}, C_{6}, O, q\right)=($ the T-S arcs of $\left.C_{4}\right) \cup\left(\right.$ the T-S arcs of $\left.C_{6}\right) \cup O_{12} \cup O_{21}$ and the colored set of $\operatorname{synthesis}\left(C_{4}, C_{6}, O, q\right)=\left(\right.$ the colored set of $\left.C_{4}\right) \cup\left(\right.$ the colored set of $\left.C_{6}\right)$ and the firing-rule of synthesis $\left(C_{4}, C_{6}, O, q\right)=\left(\right.$ the firing-rule of $\left.C_{4}\right)+\cdot($ the firing-rule of $\left.C_{6}\right)+\cdot q_{12}+\cdot q_{21}$.

References

[1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Pauline N. Kawamoto, Yasushi Fuwa, and Yatsuka Nakamura. Basic Petri net concepts. Formalized Mathematics, 3(2):183-187, 1992.
[9] Pauline N. Kawamoto and Yatsuka Nakamura. On Cell Petri Nets. Journal of Applied Functional Analysis, 1996.
[10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[11] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 14, 2008

