Differentiable Functions into Real Normed Spaces

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Keiko Narita
Hirosaki-city
Aomori, Japan

Noboru Endou
Nagano National College of Technology
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize the differentiability of functions from the set of real numbers into a normed vector space [14].

MML identifier: NDIFF_3, version: $\underline{7.11 .074 .156 .1112}$

The notation and terminology used here have been introduced in the following papers: [12], [2], [3], [7], [9], [11], [1], [4], [10], [13], [6], [17], [18], [15], [8], [16], [19], and [5].

For simplicity, we adopt the following rules: F denotes a non trivial real normed space, G denotes a real normed space, X denotes a set, x, x_{0}, r, p denote real numbers, n, k denote elements of \mathbb{N}, Y denotes a subset of \mathbb{R}, Z denotes an open subset of \mathbb{R}, s_{1} denotes a sequence of real numbers, s_{2} denotes a sequence of G, f, f_{1}, f_{2} denote partial functions from \mathbb{R} to the carrier of F, h denotes a convergent to 0 sequence of real numbers, and c denotes a constant sequence of real numbers.

We now state two propositions:
(1) If for every n holds $\left\|s_{2}(n)\right\| \leq s_{1}(n)$ and s_{1} is convergent and $\lim s_{1}=0$, then s_{2} is convergent and $\lim s_{2}=0_{G}$.
(2) $\left(s_{1} \uparrow k\right)\left(s_{2} \uparrow k\right)=\left(s_{1} s_{2}\right) \uparrow k$.

Let us consider F and let I_{1} be a partial function from \mathbb{R} to the carrier of F. We say that I_{1} is rest-like if and only if:
(Def. 1) $\quad I_{1}$ is total and for every h holds $h^{-1}\left(I_{1 *} h\right)$ is convergent and $\lim \left(h^{-1}\left(I_{1 *} h\right)\right)=0_{F}$.
Let us consider F. One can check that there exists a partial function from \mathbb{R} to the carrier of F which is rest-like. Let us consider F. A rest of F is a rest-like partial function from \mathbb{R} to the carrier of F. Let us consider F and let I_{1} be a function from \mathbb{R} into the carrier of F. We say that I_{1} is linear if and only if:
(Def. 2) There exists a point r of F such that for every real number p holds $I_{1}(p)=p \cdot r$.
Let us consider F. Note that there exists a function from \mathbb{R} into the carrier of F which is linear. Let us consider F. A linear of F is a linear function from \mathbb{R} into the carrier of F.

We use the following convention: R, R_{1}, R_{2} denote rests of F and L, L_{1}, L_{2} denote linears of F.

The following propositions are true:
(3) $L_{1}+L_{2}$ is a linear of F and $L_{1}-L_{2}$ is a linear of F.
(4) $r L$ is a linear of F.
(5) Let h_{1}, h_{2} be partial functions from \mathbb{R} to the carrier of F and s_{2} be a sequence of real numbers. If rng $s_{2} \subseteq \operatorname{dom} h_{1} \cap \operatorname{dom} h_{2}$, then $\left(h_{1}+h_{2}\right)_{*} s_{2}=$ $\left(h_{1 *} s_{2}\right)+\left(h_{2 *} s_{2}\right)$ and $\left(h_{1}-h_{2}\right)_{*} s_{2}=\left(h_{1 *} s_{2}\right)-\left(h_{2 *} s_{2}\right)$.
(6) Let h_{1}, h_{2} be partial functions from \mathbb{R} to the carrier of F and s_{2} be a sequence of real numbers. If h_{1} is total and h_{2} is total, then $\left(h_{1}+h_{2}\right)_{*} s_{2}=$ $\left(h_{1 *} s_{2}\right)+\left(h_{2 *} s_{2}\right)$ and $\left(h_{1}-h_{2}\right)_{*} s_{2}=\left(h_{1 *} s_{2}\right)-\left(h_{2 *} s_{2}\right)$.
(7) $\quad R_{1}+R_{2}$ is a rest of F and $R_{1}-R_{2}$ is a rest of F.
(8) $\quad r R$ is a rest of F.

Let us consider F, f and let x_{0} be a real number. We say that f is differentiable in x_{0} if and only if:
(Def. 3) There exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exist L, R such that for every x such that $x \in N$ holds $f_{x}-f_{x_{0}}=L(x-$ $\left.x_{0}\right)+R_{x-x_{0}}$.
Let us consider F, f and let x_{0} be a real number. Let us assume that f is differentiable in x_{0}. The functor $f^{\prime}\left(x_{0}\right)$ yielding a point of F is defined by the condition (Def. 4).
(Def. 4) There exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exist L, R such that $f^{\prime}\left(x_{0}\right)=L(1)$ and for every x such that $x \in N$ holds $f_{x}-f_{x_{0}}=L\left(x-x_{0}\right)+R_{x-x_{0}}$.
Let us consider F, f, X. We say that f is differentiable on X if and only if:
(Def. 5) $\quad X \subseteq \operatorname{dom} f$ and for every x such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.
The following propositions are true:
(9) If f is differentiable on X, then X is a subset of \mathbb{R}.
(10) f is differentiable on Z iff $Z \subseteq \operatorname{dom} f$ and for every x such that $x \in Z$ holds f is differentiable in x.
(11) If f is differentiable on Y, then Y is open.

Let us consider F, f, X. Let us assume that f is differentiable on X. The functor $f_{\uparrow X}^{\prime}$ yields a partial function from \mathbb{R} to the carrier of F and is defined by:
(Def. 6) $\operatorname{dom}\left(f_{\mid X}^{\prime}\right)=X$ and for every x such that $x \in X$ holds $f_{\mid X}^{\prime}(x)=f^{\prime}(x)$.
Next we state a number of propositions:
(12) Suppose $Z \subseteq \operatorname{dom} f$ and there exists a point r of F such that $\operatorname{rng} f=\{r\}$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{Z}^{\prime}\right)_{x}=0_{F}$.
(13) Let x_{0} be a real number and N be a neighbourhood of x_{0}. Suppose f is differentiable in x_{0} and $N \subseteq \operatorname{dom} f$. Let given h, c. Suppose rng $c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(f_{*}(h+c)\right)-\left(f_{*} c\right)\right)$ is convergent and $f^{\prime}\left(x_{0}\right)=\lim \left(h^{-1}\left(\left(f_{*}(h+c)\right)-\left(f_{*} c\right)\right)\right)$.
(14) If f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}, then $f_{1}+f_{2}$ is differentiable in x_{0} and $\left(f_{1}+f_{2}\right)^{\prime}\left(x_{0}\right)=f_{1}{ }^{\prime}\left(x_{0}\right)+f_{2}{ }^{\prime}\left(x_{0}\right)$.
(15) If f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}, then $f_{1}-f_{2}$ is differentiable in x_{0} and $\left(f_{1}-f_{2}\right)^{\prime}\left(x_{0}\right)=f_{1}{ }^{\prime}\left(x_{0}\right)-f_{2}{ }^{\prime}\left(x_{0}\right)$.
(16) For every real number r such that f is differentiable in x_{0} holds $r f$ is differentiable in x_{0} and $(r f)^{\prime}\left(x_{0}\right)=r \cdot f^{\prime}\left(x_{0}\right)$.
(17) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}+f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1}+f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}+f_{2}\right)_{Y}^{\prime}(x)=f_{1}{ }^{\prime}(x)+f_{2}{ }^{\prime}(x)$.
(18) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}-f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1}-f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}-f_{2}\right)_{\mid Z}^{\prime}(x)=f_{1}^{\prime}(x)-f_{2}^{\prime}(x)$.
(19) Suppose $Z \subseteq \operatorname{dom}(r f)$ and f is differentiable on Z. Then $r f$ is differentiable on Z and for every x such that $x \in Z$ holds $(r f)^{\prime}{ }_{Z}(x)=r \cdot f^{\prime}(x)$.
(20) If $Z \subseteq \operatorname{dom} f$ and $f \upharpoonright Z$ is constant, then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\lceil Z}^{\prime}(x)=0_{F}$.
(21) Let r, p be points of F and given Z, f. Suppose $Z \subseteq \operatorname{dom} f$ and for every x such that $x \in Z$ holds $f_{x}=x \cdot r+p$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\mid Z}^{\prime}(x)=r$.
(22) For every real number x_{0} such that f is differentiable in x_{0} holds f is continuous in x_{0}.
(23) If f is differentiable on X, then $f \upharpoonright X$ is continuous.
(24) If f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z.
(25) There exists a rest R of F such that $R_{0}=0_{F}$ and R is continuous in 0 .

Let us consider F and let f be a partial function from \mathbb{R} to the carrier of F. We say that f is differentiable if and only if:
(Def. 7) $\quad f$ is differentiable on $\operatorname{dom} f$.
Let us consider F. One can check that there exists a function from \mathbb{R} into the carrier of F which is differentiable. We now state the proposition
(26) Let f be a differentiable partial function from \mathbb{R} to the carrier of F. If $Z \subseteq \operatorname{dom} f$, then f is differentiable on Z.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45-49, 2011, doi: 10.2478/v10037-011-0008-3.
[10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[11] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[14] Laurent Schwartz. Cours d'analyse, vol. 1. Hermann Paris, 1967.
[15] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[19] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received October 13, 2010

