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Summary. In this article, the definitions and basic properties of Riemann-
Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the
preliminary definition. We proved also some properties of finite sequences of real
numbers. In Sec. 2, we defined variation. Using the definition, we also defined
bounded variation and total variation, and proved theorems about related pro-
perties.

In Sec. 3, we defined Riemann-Stieltjes integral. Referring to the way of the
article [7], we described the definitions. In the last section, we proved theorems
about linearity of Riemann-Stieltjes integral. Because there are two types of line-
arity in Riemann-Stieltjes integral, we proved linearity in two ways. We showed
the proof of theorems based on the description of the article [7]. These formali-
zations are based on [8], [5], [3], and [4].
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1. Properties of Real Finite Sequences

Let A be a subset of R and % be a real-valued function. The functor vol(A, %)
yielding a real number is defined by the term
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(Def. 1)

{
0, if A is empty,
%(supA)− %(inf A), otherwise.

Now we state the propositions:

(1) Let us consider a non empty, closed interval subset A of R, a partition
D of A, a function % from A into R, a non empty, closed interval subset
B of R, and a finite sequence v of elements of R. Suppose B ⊆ A and
lenD = len v and for every natural number i such that i ∈ dom v holds
v(i) = vol(B ∩ divset(D, i), %). Then

∑
v = vol(B, %).

(2) Let us consider natural numbers n, m, a function a from Seg n× Segm
into R, and finite sequences p, q of elements of R. Suppose dom p = Seg n
and for every natural number i such that i ∈ dom p there exists a finite
sequence r of elements of R such that dom r = Segm and p(i) =

∑
r

and for every natural number j such that j ∈ dom r holds r(j) = a(i, j)
and dom q = Segm and for every natural number j such that j ∈ dom q

there exists a finite sequence s of elements of R such that dom s = Seg n
and q(j) =

∑
s and for every natural number i such that i ∈ dom s holds

s(i) = a(i, j). Then
∑
p =
∑
q.

2. The Definitions of Bounded Variation

Let A be a non empty, closed interval subset of R, % be a real-valued function,
and t be a partition of A. A var-volume of % and t is a finite sequence of elements
of R and is defined by

(Def. 2) len it = len t and for every natural number k such that k ∈ dom t holds
it(k) = | vol(divset(t, k), %)|.

Now we state the propositions:

(3) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, a partition t of A, a var-volume F of % and t, and a natural
number k. If k ∈ domF , then 0 ¬ F (k).

(4) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, a partition t of A, and a var-volume F of % and t. Then
0 ¬
∑
F . The theorem is a consequence of (3).

Let A be a non empty, closed interval subset of R and % be a function from
A into R. We say that % is bounded-variation if and only if

(Def. 3) there exists a real number d such that 0 < d and for every partition t of
A and for every var-volume F of % and t,

∑
F ¬ d.

Assume % is bounded-variation. The functor TotalVD(%) yielding a real num-
ber is defined by
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(Def. 4) there exists a non empty subset V of R such that V is upper bounded and
V = {r, where r is a real number : there exists a partition t of A and
there exists a var-volume F of % and t such that r =

∑
F} and it =

supV .

Now we state the propositions:

(5) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, and a partition T of A. Suppose % is bounded-variation.
Let us consider a var-volume F of % and T . Then

∑
F ¬ TotalVD(%).

(6) Let us consider a non empty, closed interval subset A of R, and a function
% from A into R. If % is bounded-variation, then 0 ¬ TotalVD(%). The
theorem is a consequence of (4).

3. The Definitions of Riemann-Stieltjes Integral

Let A be a non empty, closed interval subset of R, % be a function from A

into R, and u be a partial function from R to R. Assume % is bounded-variation
and domu = A. Let t be a partition of A.

A middle volume of %, u and t is a finite sequence of elements of R and is
defined by

(Def. 5) len it = len t and for every natural number k such that k ∈ dom t there
exists a real number r such that r ∈ rng(u� divset(t, k)) and it(k) = r ·
vol(divset(t, k), %).

Let T be a division sequence of A. A middle volume sequence of %, u and T
is a sequence of R∗ and is defined by

(Def. 6) for every element k of N, it(k) is a middle volume of %, u and T (k).

Let S be a middle volume sequence of %, u and T and k be a natural number.
One can check that the functor S(k) yields a middle volume of %, u and T (k).
From now on A denotes a non empty, closed interval subset of R, % denotes
a function from A into R, u denotes a partial function from R to R, T denotes
a division sequence of A, S denotes a middle volume sequence of %, u and T ,
and k denotes a natural number.

Let A be a non empty, closed interval subset of R, % be a function from A

into R, u be a partial function from R to R, T be a division sequence of A,
and S be a middle volume sequence of %, u and T . The functor middle-sum(S)
yielding a sequence of real numbers is defined by

(Def. 7) for every natural number i, it(i) =
∑

(S(i)).

We say that u is Riemann-Stieltjes integrable with % if and only if
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(Def. 8) there exists a real number I such that for every division sequence T

of A for every middle volume sequence S of %, u and T such that δT
is convergent and lim δT = 0 holds middle-sum(S) is convergent and
lim middle-sum(S) = I.

Assume % is bounded-variation and domu = A and u is Riemann-Stieltjes

integrable with %. The functor
∫
%

u(x)dx yielding a real number is defined by

(Def. 9) for every division sequence T of A and for every middle volume sequ-
ence S of %, u and T such that δT is convergent and lim δT = 0 holds
middle-sum(S) is convergent and lim middle-sum(S) = it .

4. Linearity of Riemann-Stieltjes Integral

Now we state the propositions:

(7) Let us consider a non empty, closed interval subset A of R, a real number
r, a function % from A into R, and partial functions u, w from R to R.
Suppose % is bounded-variation and domu = A and domw = A and
w = r · u and u is Riemann-Stieltjes integrable with %. Then

(i) w is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

w(x)dx = r ·
∫
%

u(x)dx.

(8) Let us consider a non empty, closed interval subset A of R, a function
% from A into R, and partial functions u, w from R to R. Suppose % is
bounded-variation and domu = A and domw = A and w = −u and u is
Riemann-Stieltjes integrable with %. Then

(i) w is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

w(x)dx = −
∫
%

u(x)dx.

The theorem is a consequence of (7).

Let us consider a non empty, closed interval subset A of R, a function %

from A into R, and partial functions u, v, w from R to R. Now we state the
propositions:

(9) Suppose % is bounded-variation and domu = A and dom v = A and
domw = A and w = u + v and u is Riemann-Stieltjes integrable with %

and v is Riemann-Stieltjes integrable with %. Then

(i) w is Riemann-Stieltjes integrable with %, and
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(ii)
∫
%

w(x)dx =
∫
%

u(x)dx+
∫
%

v(x)dx.

(10) Suppose % is bounded-variation and domu = A and dom v = A and
domw = A and w = u − v and u is Riemann-Stieltjes integrable with %

and v is Riemann-Stieltjes integrable with %. Then

(i) w is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

w(x)dx =
∫
%

u(x)dx−
∫
%

v(x)dx.

The theorem is a consequence of (8) and (9).

(11) Let us consider non empty, closed interval subsets A, B of R, a real
number r, and functions %, %1 from A into R. Suppose B ⊆ A and % = r·%1.
Then vol(B, %) = r · vol(B, %1).
Proof: Set x1 = supB. Set x2 = inf B. |x2 − x1| = x1 − x2 by [6, (11)],
[2, (44)]. �

(12) Let us consider a non empty, closed interval subset A of R, a real number
r, functions %, %1 from A into R, and a partial function u from R to R.
Suppose % is bounded-variation and %1 is bounded-variation and domu =
A and % = r · %1 and u is Riemann-Stieltjes integrable with %1. Then

(i) u is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

u(x)dx = r ·
∫
%1

u(x)dx.

The theorem is a consequence of (11).

(13) Let us consider a non empty, closed interval subset A of R, functions
%, %1 from A into R, and a partial function u from R to R. Suppose %
is bounded-variation and %1 is bounded-variation and domu = A and
% = −%1 and u is Riemann-Stieltjes integrable with %1. Then

(i) u is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

u(x)dx = −
∫
%1

u(x)dx.

The theorem is a consequence of (12).

(14) Let us consider non empty, closed interval subsets A, B of R, and func-
tions %, %1, %2 from A into R. Suppose B ⊆ A and % = %1 + %2. Then
vol(B, %) = vol(B, %1) + vol(B, %2).
Proof: Set x1 = supB. Set x2 = inf B. |x2 − x1| = x1 − x2 by [6, (11)],
[2, (44)]. �
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(15) Let us consider a non empty, closed interval subset A of R, functions
%, %1, %2 from A into R, and a partial function u from R to R. Suppose
% is bounded-variation and %1 is bounded-variation and %2 is bounded-
variation and domu = A and % = %1 + %2 and u is Riemann-Stieltjes
integrable with %1 and u is Riemann-Stieltjes integrable with %2. Then

(i) u is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

u(x)dx =
∫
%1

u(x)dx+
∫
%2

u(x)dx.

The theorem is a consequence of (14).

(16) Let us consider non empty, closed interval subsets A, B of R, and func-
tions %, %1, %2 from A into R. Suppose B ⊆ A and % = %1 − %2. Then
vol(B, %) = vol(B, %1)− vol(B, %2). The theorem is a consequence of (14).

(17) Let us consider a non empty, closed interval subset A of R, functions
%, %1, %2 from A into R, and a partial function u from R to R. Suppose
% is bounded-variation and %1 is bounded-variation and %2 is bounded-
variation and domu = A and % = %1 − %2 and u is Riemann-Stieltjes
integrable with %1 and u is Riemann-Stieltjes integrable with %2. Then

(i) u is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

u(x)dx =
∫
%1

u(x)dx−
∫
%2

u(x)dx.

The theorem is a consequence of (16).
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