FORMALIZED MATHEMATICS Vol. 21, No. 1, Pages 33–39, 2013 DOI: 10.2478/forma-2013-0003

Random Variables and Product of Probability Spaces¹

Hiroyuki Okazaki Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. We have been working on the formalization of the probability and the randomness. In [15] and [16], we formalized some theorems concerning the real-valued random variables and the product of two probability spaces. In this article, we present the generalized formalization of [15] and [16]. First, we formalize the random variables of arbitrary set and prove the equivalence between random variable on Σ , Borel sets and a real-valued random variable on Σ . Next, we formalize the product of countably infinite probability spaces.

MML identifier: RANDOM_3, version: 8.1.01 5.7.1169

The notation and terminology used in this paper have been introduced in the following articles: [1], [14], [12], [4], [11], [18], [7], [8], [5], [2], [3], [9], [13], [22], [15], [16], [20], [21], [17], [19], [6], and [10].

1. RANDOM VARIABLES

In this paper Ω , Ω_1 , Ω_2 denote non empty sets, Σ denotes a σ -field of subsets of Ω , S_1 denotes a σ -field of subsets of Ω_1 , and S_2 denotes a σ -field of subsets of Ω_2 .

Now we state the proposition:

(1) Let us consider a non empty set B and a function f. Then $f^{-1}(\bigcup B) = \bigcup \{f^{-1}(Y) \text{ where } Y \text{ is an element of } B : not contradiction} \}.$

Let us consider a function f from Ω_1 into Ω_2 , a sequence B of subsets of Ω_2 , and a sequence D of subsets of Ω_1 . Now we state the propositions:

C 2013 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online)

33

¹The 1st author was supported by JSPS KAKENHI 21240001, and the 2nd author was supported by JSPS KAKENHI 22300285.

- (2) If for every element n of \mathbb{N} , $D(n) = f^{-1}(B(n))$, then $f^{-1}(\bigcup B) = \bigcup D$.
- (3) If for every element n of \mathbb{N} , $D(n) = f^{-1}(B(n))$, then $f^{-1}($ Intersection B) =Intersection D.

Now we state the propositions:

- (4) Let us consider a function F from Ω into \mathbb{R} and a real number r. Suppose F is a real-valued random variable on Σ . Then $F^{-1}(]-\infty, r[) \in \Sigma$. PROOF: Consider X being an element of Σ such that $X = \Omega$ and F is measurable on X. For every element $z, z \in F^{-1}(]-\infty, r[)$ iff $z \in \Omega_{\Sigma} \cap \text{LE-dom}(F, r)$. \Box
- (5) Let us consider a function F from Ω into \mathbb{R} . Suppose F is a real-valued random variable on Σ . Then $\{x \text{ where } x \text{ is an element of the Borel sets}$ $: F^{-1}(x)$ is element of $\Sigma\}$ is a σ -field of subsets of \mathbb{R} . The theorem is a consequence of (4) and (3). PROOF: Set $S = \{x \text{ where } x \text{ is an element of}$ the Borel sets $: F^{-1}(x)$ is an element of $\Sigma\}$. For every element x such that $x \in S$ holds $x \in$ the Borel sets. Set $r_0 =$ the element of \mathbb{R} . Reconsider $y_0 = \text{halfline}(r_0)$ as an element of the Borel sets. For every subset A of \mathbb{R} such that $A \in S$ holds $A^c \in S$. For every sequence A_1 of subsets of \mathbb{R} such that $\operatorname{rng} A_1 \subseteq S$ holds Intersection $A_1 \in S$. \Box

Let us consider a function f from Ω into \mathbb{R} . Now we state the propositions:

- (6) Suppose f is a real-valued random variable on Σ . Then $\{x \text{ where } x \text{ is an element of the Borel sets}: f^{-1}(x)$ is an element of $\Sigma\}$ = the Borel sets.
- (7) f is random variable on Σ and the Borel sets if and only if f is a real-valued random variable on Σ .
- (8) The set of random variables on Σ and the Borel sets = the real-valued random variables set on Σ .

Let us consider Ω_1 , Ω_2 , S_1 , and S_2 . Let F be a function from Ω_1 into Ω_2 . We say that F is (S_1, S_2) -random variable-like if and only if

(Def. 1) F is random variable on S_1 and S_2 .

Observe that there exists a function from Ω_1 into Ω_2 which is (S_1, S_2) -random variable-like.

A random variable of S_1 and S_2 is an (S_1, S_2) -random variable-like function from Ω_1 into Ω_2 . Now we state the proposition:

(9) Let us consider a function f from Ω into R. Then f is a random variable of Σ and the Borel sets if and only if f is a real-valued random variable on Σ.

Let F be a function. We say that F is random variable family-like if and only if

(Def. 2) Let us consider a set x. Suppose $x \in \text{dom } F$. Then there exist non empty sets Ω_1 , Ω_2 and there exists a σ -field S_1 of subsets of Ω_1 and there exists

34

a σ -field S_2 of subsets of Ω_2 and there exists a random variable f of S_1 and S_2 such that F(x) = f.

One can verify that there exists a function which is random variable familylike.

A random variable family is a random variable family-like function. In this paper F denotes a random variable of S_1 and S_2 .

Let Y be a non empty set, S be a σ -field of subsets of Y, and F be a function. We say that F is S-measure valued if and only if

(Def. 3) Let us consider a set x. If $x \in \text{dom } F$, then there exists a σ -measure M on S such that F(x) = M.

Note that there exists a function which is S-measure valued.

Let F be a function. We say that F is S-probability valued if and only if

(Def. 4) Let us consider a set x. If $x \in \text{dom } F$, then there exists a probability P on S such that F(x) = P.

Let us note that there exists a function which is S-probability valued.

Let X, Y be non empty sets. One can verify that there exists an S-probability valued function which is X-defined.

One can verify that there exists an X-defined S-probability valued function which is total.

Let Y be a non empty set. Let us note that every function which is S-probability valued is also S-measure valued.

Let F be a function. We say that F is S-random variable family if and only if

(Def. 5) Let us consider a set x. Suppose $x \in \text{dom } F$. Then there exists a real-valued random variable Z on S such that F(x) = Z.

Observe that there exists a function which is *S*-random variable family. Now we state the propositions:

- (10) Let us consider an element y of S_2 . Suppose $y \neq \emptyset$. Then $\{z \text{ where } z \text{ is an element of } \Omega_1 : F(z) \text{ is an element of } y\} = F^{-1}(y)$. PROOF: Set $D = \{z \text{ where } z \text{ is an element of } \Omega_1 : F(z) \text{ is an element of } y\}$. For every element $x, x \in D$ iff $x \in F^{-1}(y)$. \Box
- (11) Let us consider a random variable F of S_1 and S_2 . Then
 - (i) {x where x is a subset of Ω_1 : there exists an element y of S_2 such that $x = F^{-1}(y) \subseteq S_1$, and
 - (ii) {x where x is a subset of Ω_1 : there exists an element y of S_2 such that $x = F^{-1}(y)$ } is a σ -field of subsets of Ω_1 .

The theorem is a consequence of (3). PROOF: Set $S = \{x \text{ where } x \text{ is a subset of } \Omega_1 : \text{ there exists an element } y \text{ of } S_2 \text{ such that } x = F^{-1}(y)\}.$ For every element x such that $x \in S$ holds $x \in S_1$. For every subset A of Ω_1 such that $A \in S$ holds $A^c \in S$. For every sequence A_1 of subsets of Ω_1 such that rng $A_1 \subseteq S$ holds Intersection $A_1 \in S$. \Box

Let us consider Ω_1 , Ω_2 , S_1 , and S_2 . Let M be a measure on S_1 and F be a random variable of S_1 and S_2 . The functor the image measure of F and Myielding a measure on S_2 is defined by

(Def. 6) Let us consider an element y of S_2 . Then $it(y) = M(F^{-1}(y))$.

Let M be a σ -measure on S_1 . Note that the image measure of F and M is σ -additive.

Now we state the proposition:

(12) Let us consider a probability P on S_1 and a random variable F of S_1 and S_2 . Then (the image measure of F and $P2MP(\Omega_2) = 1$.

Let us consider Ω_1 , Ω_2 , S_1 , and S_2 . Let P be a probability on S_1 and F be a random variable of S_1 and S_2 . The functor probability (F, P) yielding a probability on S_2 is defined by the term

(Def. 7) M2P the image measure of F and P2M P.

Now we state the propositions:

- (13) Let us consider a probability P on S_1 and a random variable F of S_1 and S_2 . Then probability(F, P) = the image measure of F and P2M P. The theorem is a consequence of (12).
- (14) Let us consider a probability P on S_1 , a random variable F of S_1 and S_2 , and a set y. If $y \in S_2$, then $(\text{probability}(F, P))(y) = P(F^{-1}(y))$. The theorem is a consequence of (13).
- (15) Every function from Ω_1 into Ω_2 is a random variable of the trivial σ -field of Ω_1 and the trivial σ -field of Ω_2 .
- (16) Let us consider a non empty set S. Then every non empty finite sequence of elements of S is a random variable of the trivial σ -field of Seg len F and the trivial σ -field of S. The theorem is a consequence of (15).
- (17) Let us consider finite non empty sets V, S, a random variable G of the trivial σ -field of V and the trivial σ -field of S, and a set y. Suppose $y \in$ the trivial σ -field of S. Then (probability(G, the trivial probability of V)) $(y) = \overline{\frac{\overline{G^{-1}(y)}}{\overline{\overline{V}}}}$. The theorem is a consequence of (14).
- (18) Let us consider a finite non empty set S, a non empty finite sequence s of elements of S, and a set x. Suppose $x \in S$. Then there exists a random variable G of the trivial σ -field of Seg len s and the trivial σ -field of S such that
 - (i) G = s, and
 - (ii) (probability(G, the trivial probability of Seg len s))($\{x\}$) = Prob_D(x, s).

The theorem is a consequence of (16) and (17).

2. PRODUCT OF PROBABILITY SPACES

Let D be a non-empty many sorted set indexed by \mathbb{N} and n be a natural number. One can check that D(n) is non empty.

Let S, F be many sorted sets indexed by N. We say that F is σ -field S-sequence-like if and only if

(Def. 8) Let us consider a natural number n. Then F(n) is a σ -field of subsets of S(n).

Let S be a many sorted set indexed by \mathbb{N} . Let us observe that there exists a many sorted set indexed by \mathbb{N} which is σ -field S-sequence-like.

Let D be a many sorted set indexed by \mathbb{N} . A σ -field sequence of D is a σ -field D-sequence-like many sorted set indexed by \mathbb{N} . Let S be a σ -field sequence of D and n be a natural number. Note that the functor S(n) yields a σ -field of subsets of D(n). Let D be a non-empty many sorted set indexed by \mathbb{N} . Let M be a many sorted set indexed by \mathbb{N} . We say that M is S-probability sequence-like if and only if

(Def. 9) Let us consider a natural number n. Then M(n) is a probability on S(n). Observe that there exists a many sorted set indexed by \mathbb{N} which is S-probability sequence-like.

A probability sequence of S is an S-probability sequence-like many sorted set indexed by N. Let P be a probability sequence of S and n be a natural number. One can verify that the functor P(n) yields a probability on S(n). Let D be a many sorted set indexed by N. The functor the product domain D yielding a many sorted set indexed by N is defined by

(Def. 10) (i) it(0) = D(0), and

(ii) for every natural number i, $it(i + 1) = it(i) \times D(i + 1)$.

Now we state the proposition:

- (19) Let us consider a many sorted set D indexed by \mathbb{N} . Then
 - (i) (the product domain D)(0) = D(0), and
 - (ii) (the product domain D)(1) = $D(0) \times D(1)$, and
 - (iii) (the product domain D)(2) = $D(0) \times D(1) \times D(2)$, and
 - (iv) (the product domain D)(3) = $D(0) \times D(1) \times D(2) \times D(3)$.

Let D be a non-empty many sorted set indexed by \mathbb{N} . Let us note that the product domain D is non-empty.

Let D be a finite-yielding many sorted set indexed by \mathbb{N} . One can check that the product domain D is finite-yielding.

Let us consider Ω and Σ . Let P be a set. Assume P is a probability on Σ . The functor modetrans (P, Σ) yielding a probability on Σ is defined by the term (Def. 11) P. Let D be a finite-yielding non-empty many sorted set indexed by \mathbb{N} . The functor the trivial σ -field sequence D yielding a σ -field sequence of D is defined by

(Def. 12) Let us consider a natural number n. Then it(n) = the trivial σ -field of D(n).

Let P be a probability sequence of the trivial σ -field sequence D and n be a natural number. One can check that the functor P(n) yields a probability on the trivial σ -field of D(n). The functor ProductProbability(P, D) yielding a many sorted set indexed by N is defined by

(Def. 13) (i)
$$it(0) = P(0)$$
, and

(ii) for every natural number i, it(i + 1) =Product-Probability((the product domain D)(i), D(i+1), modetrans $(it(i), the trivial \sigma$ -field of (the product domain D)(i)), P(i + 1)).

Let us consider a finite-yielding non-empty many sorted set D indexed by \mathbb{N} , a probability sequence P of the trivial σ -field sequence D, and a natural number n. Now we state the propositions:

- (20) (ProductProbability(P, D))(n) is a probability on the trivial σ -field of (the product domain D)(n).
- (21) There exists a probability P_4 on the trivial σ -field of (the product domain D)(n) such that
 - (i) $P_4 = (\text{ProductProbability}(P, D))(n)$, and
 - (ii) $(ProductProbability(P, D))(n+1) = Product-Probability((the product domain <math>D)(n), D(n+1), P_4, P(n+1)).$

Now we state the proposition:

- (22) Let us consider a finite-yielding non-empty many sorted set D indexed by \mathbb{N} and a probability sequence P of the trivial σ -field sequence D. Then
 - (i) (ProductProbability(P, D))(0) = P(0), and
 - (ii) (ProductProbability(P, D))(1) =Product-Probability(D(0), D(1), P(0), P(1)), and
 - (iii) there exists a probability P_1 on the trivial σ -field of $D(0) \times D(1)$ such that $P_1 = (\text{ProductProbability}(P, D))(1)$ and $(\text{ProductProbability}(P, D))(2) = \text{Product-Probability}(D(0) \times D(1), D(2), P_1, P(2))$, and
 - (iv) there exists a probability P_2 on the trivial σ -field of $D(0) \times D(1) \times D(2)$ such that $P_2 = (\text{ProductProbability}(P, D))(2)$ and (ProductProbability $(P, D))(3) = \text{Product-Probability}(D(0) \times D(1) \times D(2), D(3), P_2, P(3))$, and
 - (v) there exists a probability P_3 on the trivial σ -field of $D(0) \times D(1) \times D(2) \times D(3)$ such that $P_3 = (\text{ProductProbability}(P, D))(3)$ and

 $(ProductProbability(P, D))(4) = Product-Probability(D(0) \times D(1) \times D(2) \times D(3), D(4), P_3, P(4)).$

The theorem is a consequence of (19) and (21).

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Józef Białas. The σ -additive measure theory. Formalized Mathematics, 2(2):263–270, 1991.
- [6] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- [7] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1): 55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [12] Peter Jaeger. Elementary introduction to stochastic finance in discrete time. Formalized Mathematics, 20(1):1–5, 2012. doi:10.2478/v10037-012-0001-5.
- [13] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [14] Hiroyuki Okazaki. Probability on finite and discrete set and uniform distribution. Formalized Mathematics, 17(2):173–178, 2009. doi:10.2478/v10037-009-0020-z.
- [15] Hiroyuki Okazaki and Yasunari Shidama. Probability on finite set and real-valued random variables. Formalized Mathematics, 17(2):129–136, 2009. doi:10.2478/v10037-009-0014-x.
- [16] Hiroyuki Okazaki and Yasunari Shidama. Probability measure on discrete spaces and algebra of real-valued random variables. *Formalized Mathematics*, 18(4):213–217, 2010. doi:10.2478/v10037-010-0026-6.
- [17] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [18] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187–190, 1990.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [22] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. The relevance of measure and probability, and definition of completeness of probability. *Formalized Mathematics*, 14 (4):225–229, 2006. doi:10.2478/v10037-006-0026-8.

Received December 1, 2012