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Summary. We have been working on the formalization of the probability
and the randomness. In [15] and [16], we formalized some theorems concerning
the real-valued random variables and the product of two probability spaces. In
this article, we present the generalized formalization of [15] and [16]. First, we
formalize the random variables of arbitrary set and prove the equivalence between
random variable on Σ, Borel sets and a real-valued random variable on Σ. Next,
we formalize the product of countably infinite probability spaces.
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The notation and terminology used in this paper have been introduced in the
following articles: [1], [14], [12], [4], [11], [18], [7], [8], [5], [2], [3], [9], [13], [22],
[15], [16], [20], [21], [17], [19], [6], and [10].

1. Random Variables

In this paper Ω, Ω1, Ω2 denote non empty sets, Σ denotes a σ-field of subsets
of Ω, S1 denotes a σ-field of subsets of Ω1, and S2 denotes a σ-field of subsets
of Ω2.

Now we state the proposition:

(1) Let us consider a non empty set B and a function f . Then f−1(
⋃
B) =⋃

{f−1(Y ) where Y is an element of B : not contradiction}.
Let us consider a function f from Ω1 into Ω2, a sequence B of subsets of Ω2,

and a sequence D of subsets of Ω1. Now we state the propositions:
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(2) If for every element n of N, D(n) = f−1(B(n)), then f−1(
⋃
B) =

⋃
D.

(3) If for every element n of N,D(n) = f−1(B(n)), then f−1(IntersectionB) =
IntersectionD.

Now we state the propositions:

(4) Let us consider a function F from Ω into R and a real number r. Suppose
F is a real-valued random variable on Σ. Then F−1(]−∞, r[) ∈ Σ. Proof:
Consider X being an element of Σ such that X = Ω and F is measurable
on X. For every element z, z ∈ F−1(]−∞, r[) iff z ∈ ΩΣ ∩ LE-dom(F, r).
�

(5) Let us consider a function F from Ω into R. Suppose F is a real-valued
random variable on Σ. Then {x where x is an element of the Borel sets
: F−1(x) is element of Σ} is a σ-field of subsets of R. The theorem is a
consequence of (4) and (3). Proof: Set S = {x where x is an element of
the Borel sets : F−1(x) is an element of Σ}. For every element x such that
x ∈ S holds x ∈ the Borel sets. Set r0 = the element of R. Reconsider
y0 = halfline(r0) as an element of the Borel sets. For every subset A of R
such that A ∈ S holds Ac ∈ S. For every sequence A1 of subsets of R such
that rngA1 ⊆ S holds IntersectionA1 ∈ S. �

Let us consider a function f from Ω into R. Now we state the propositions:

(6) Suppose f is a real-valued random variable on Σ. Then {x where x is
an element of the Borel sets : f−1(x) is an element of Σ} = the Borel sets.

(7) f is random variable on Σ and the Borel sets if and only if f is a real-
valued random variable on Σ.

(8) The set of random variables on Σ and the Borel sets = the real-valued
random variables set on Σ.

Let us consider Ω1, Ω2, S1, and S2. Let F be a function from Ω1 into Ω2.
We say that F is (S1, S2)-random variable-like if and only if

(Def. 1) F is random variable on S1 and S2.

Observe that there exists a function from Ω1 into Ω2 which is (S1, S2)-
random variable-like.

A random variable of S1 and S2 is an (S1, S2)-random variable-like function
from Ω1 into Ω2. Now we state the proposition:

(9) Let us consider a function f from Ω into R. Then f is a random variable
of Σ and the Borel sets if and only if f is a real-valued random variable
on Σ.

Let F be a function. We say that F is random variable family-like if and
only if

(Def. 2) Let us consider a set x. Suppose x ∈ domF . Then there exist non empty
sets Ω1, Ω2 and there exists a σ-field S1 of subsets of Ω1 and there exists
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a σ-field S2 of subsets of Ω2 and there exists a random variable f of S1

and S2 such that F (x) = f .

One can verify that there exists a function which is random variable family-
like.

A random variable family is a random variable family-like function. In this
paper F denotes a random variable of S1 and S2.

Let Y be a non empty set, S be a σ-field of subsets of Y , and F be a function.
We say that F is S-measure valued if and only if

(Def. 3) Let us consider a set x. If x ∈ domF , then there exists a σ-measure M
on S such that F (x) = M .

Note that there exists a function which is S-measure valued.
Let F be a function. We say that F is S-probability valued if and only if

(Def. 4) Let us consider a set x. If x ∈ domF , then there exists a probability P
on S such that F (x) = P .

Let us note that there exists a function which is S-probability valued.
LetX, Y be non empty sets. One can verify that there exists an S-probability

valued function which is X-defined.
One can verify that there exists an X-defined S-probability valued function

which is total.
Let Y be a non empty set. Let us note that every function which is S-

probability valued is also S-measure valued.
Let F be a function. We say that F is S-random variable family if and only

if

(Def. 5) Let us consider a set x. Suppose x ∈ domF . Then there exists a real-
valued random variable Z on S such that F (x) = Z.

Observe that there exists a function which is S-random variable family.
Now we state the propositions:

(10) Let us consider an element y of S2. Suppose y 6= ∅. Then {z where
z is an element of Ω1 : F (z) is an element of y} = F−1(y). Proof: Set
D = {z where z is an element of Ω1 : F (z) is an element of y}. For every
element x, x ∈ D iff x ∈ F−1(y). �

(11) Let us consider a random variable F of S1 and S2. Then

(i) {x where x is a subset of Ω1 : there exists an element y of S2 such
that x = F−1(y)} ⊆ S1, and

(ii) {x where x is a subset of Ω1 : there exists an element y of S2 such
that x = F−1(y)} is a σ-field of subsets of Ω1.

The theorem is a consequence of (3). Proof: Set S = {x where x is
a subset of Ω1 : there exists an element y of S2 such that x = F−1(y)}.
For every element x such that x ∈ S holds x ∈ S1. For every subset A of
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Ω1 such that A ∈ S holds Ac ∈ S. For every sequence A1 of subsets of Ω1

such that rngA1 ⊆ S holds IntersectionA1 ∈ S. �

Let us consider Ω1, Ω2, S1, and S2. Let M be a measure on S1 and F be
a random variable of S1 and S2. The functor the image measure of F and M

yielding a measure on S2 is defined by

(Def. 6) Let us consider an element y of S2. Then it(y) = M(F−1(y)).

Let M be a σ-measure on S1. Note that the image measure of F and M is
σ-additive.

Now we state the proposition:

(12) Let us consider a probability P on S1 and a random variable F of S1

and S2. Then (the image measure of F and P2MP )(Ω2) = 1.

Let us consider Ω1, Ω2, S1, and S2. Let P be a probability on S1 and F

be a random variable of S1 and S2. The functor probability(F, P ) yielding a
probability on S2 is defined by the term

(Def. 7) M2P the image measure of F and P2MP .

Now we state the propositions:

(13) Let us consider a probability P on S1 and a random variable F of S1

and S2. Then probability(F, P ) = the image measure of F and P2MP .
The theorem is a consequence of (12).

(14) Let us consider a probability P on S1, a random variable F of S1 and
S2, and a set y. If y ∈ S2, then (probability(F, P ))(y) = P (F−1(y)). The
theorem is a consequence of (13).

(15) Every function from Ω1 into Ω2 is a random variable of the trivial σ-field
of Ω1 and the trivial σ-field of Ω2.

(16) Let us consider a non empty set S. Then every non empty finite sequence
of elements of S is a random variable of the trivial σ-field of Seg lenF and
the trivial σ-field of S. The theorem is a consequence of (15).

(17) Let us consider finite non empty sets V , S, a random variable G of
the trivial σ-field of V and the trivial σ-field of S, and a set y. Suppose
y ∈ the trivial σ-field of S. Then (probability(G, the trivial probability of

V ))(y) = G−1(y)

V
. The theorem is a consequence of (14).

(18) Let us consider a finite non empty set S, a non empty finite sequence s
of elements of S, and a set x. Suppose x ∈ S. Then there exists a random
variable G of the trivial σ-field of Seg len s and the trivial σ-field of S such
that

(i) G = s, and

(ii) (probability(G, the trivial probability of Seg len s))({x}) = ProbD(x, s).

The theorem is a consequence of (16) and (17).
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2. Product of Probability Spaces

Let D be a non-empty many sorted set indexed by N and n be a natural
number. One can check that D(n) is non empty.

Let S, F be many sorted sets indexed by N. We say that F is σ-field S-
sequence-like if and only if

(Def. 8) Let us consider a natural number n. Then F (n) is a σ-field of subsets of
S(n).

Let S be a many sorted set indexed by N. Let us observe that there exists a
many sorted set indexed by N which is σ-field S-sequence-like.

Let D be a many sorted set indexed by N. A σ-field sequence of D is a σ-field
D-sequence-like many sorted set indexed by N. Let S be a σ-field sequence of
D and n be a natural number. Note that the functor S(n) yields a σ-field of
subsets of D(n). Let D be a non-empty many sorted set indexed by N. Let M be
a many sorted set indexed by N. We say that M is S-probability sequence-like
if and only if

(Def. 9) Let us consider a natural number n. Then M(n) is a probability on S(n).

Observe that there exists a many sorted set indexed by N which is S-
probability sequence-like.

A probability sequence of S is an S-probability sequence-like many sorted set
indexed by N. Let P be a probability sequence of S and n be a natural number.
One can verify that the functor P (n) yields a probability on S(n). Let D be a
many sorted set indexed by N. The functor the product domain D yielding a
many sorted set indexed by N is defined by

(Def. 10) (i) it(0) = D(0), and

(ii) for every natural number i, it(i+ 1) = it(i)×D(i+ 1).

Now we state the proposition:

(19) Let us consider a many sorted set D indexed by N. Then

(i) (the product domain D)(0) = D(0), and

(ii) (the product domain D)(1) = D(0)×D(1), and

(iii) (the product domain D)(2) = D(0)×D(1)×D(2), and

(iv) (the product domain D)(3) = D(0)×D(1)×D(2)×D(3).

Let D be a non-empty many sorted set indexed by N. Let us note that the
product domain D is non-empty.

Let D be a finite-yielding many sorted set indexed by N. One can check that
the product domain D is finite-yielding.

Let us consider Ω and Σ. Let P be a set. Assume P is a probability on Σ.
The functor modetrans(P,Σ) yielding a probability on Σ is defined by the term

(Def. 11) P .
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Let D be a finite-yielding non-empty many sorted set indexed by N. The
functor the trivial σ-field sequence D yielding a σ-field sequence of D is defined
by

(Def. 12) Let us consider a natural number n. Then it(n) = the trivial σ-field of
D(n).

Let P be a probability sequence of the trivial σ-field sequence D and n be a
natural number. One can check that the functor P (n) yields a probability on the
trivial σ-field of D(n). The functor ProductProbability(P,D) yielding a many
sorted set indexed by N is defined by

(Def. 13) (i) it(0) = P (0), and

(ii) for every natural number i, it(i+ 1) =
Product-Probability((the product domain D)(i), D(i+1),modetrans
(it(i), the trivial σ-field of (the product domain D)(i)), P (i+ 1)).

Let us consider a finite-yielding non-empty many sorted set D indexed by N,
a probability sequence P of the trivial σ-field sequence D, and a natural number
n. Now we state the propositions:

(20) (ProductProbability(P,D))(n) is a probability on the trivial σ-field of
(the product domain D)(n).

(21) There exists a probability P4 on the trivial σ-field of (the product
domain D)(n) such that

(i) P4 = (ProductProbability(P,D))(n), and

(ii) (ProductProbability(P,D))(n+1) = Product-Probability((the product
domain D)(n), D(n+ 1), P4, P (n+ 1)).

Now we state the proposition:

(22) Let us consider a finite-yielding non-empty many sorted set D indexed
by N and a probability sequence P of the trivial σ-field sequence D. Then

(i) (ProductProbability(P,D))(0) = P (0), and

(ii) (ProductProbability(P,D))(1) =
Product-Probability(D(0), D(1), P (0), P (1)), and

(iii) there exists a probability P1 on the trivial σ-field of D(0)×D(1) such
that P1 = (ProductProbability(P,D))(1) and (ProductProbability(P,
D))(2) = Product-Probability(D(0)×D(1), D(2), P1, P (2)), and

(iv) there exists a probability P2 on the trivial σ-field of D(0) ×D(1) ×
D(2) such that P2 = (ProductProbability(P,D))(2) and
(ProductProbability(P,D))(3) = Product-Probability(D(0)×D(1)×
D(2), D(3), P2, P (3)), and

(v) there exists a probability P3 on the trivial σ-field of D(0) ×D(1) ×
D(2)×D(3) such that P3 = (ProductProbability(P,D))(3) and
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Random variables and product of probability spaces 39

(ProductProbability(P,D))(4) = Product-Probability(D(0)×D(1)×
D(2)×D(3), D(4), P3, P (4)).

The theorem is a consequence of (19) and (21).
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