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Summary. We have been working on the formalization of the probability
and the randomness. In [I5] and [I6], we formalized some theorems concerning
the real-valued random variables and the product of two probability spaces. In
this article, we present the generalized formalization of [I5] and [I6]. First, we
formalize the random variables of arbitrary set and prove the equivalence between
random variable on ¥, Borel sets and a real-valued random variable on 3. Next,
we formalize the product of countably infinite probability spaces.
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The notation and terminology used in this paper have been introduced in the

following articles: [1], [14], [12], [4], [11], [18], [7], [8], [5], [2], [3], [9], [13], [22],
[15], [16], [20], [21), [17], [19], [6], and [10].

1. RANDOM VARIABLES

In this paper €2, €21, {22 denote non empty sets, X denotes a o-field of subsets
of 2, S; denotes a o-field of subsets of €21, and S5 denotes a o-field of subsets
of QQ.

Now we state the proposition:

(1) Let us consider a non empty set B and a function f. Then f~1(B) =
U{f %(Y) where Y is an element of B : not contradiction}.

Let us consider a function f from €27 into 29, a sequence B of subsets of {29,

and a sequence D of subsets of €2;. Now we state the propositions:

The 1st author was supported by JSPS KAKENHI 21240001, and the 2nd author was
supported by JSPS KAKENHI 22300285.
© 2013 University of Bialystok

CC-BY-SA License ver. 3.0 or later
33 ISSN 1426-2630(Print), 1898-9934(Online)


https://core.ac.uk/display/83088166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.degruyter.com/view/j/forma
http://fm.mizar.org/miz/random_3.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

34 HIROYUKI OKAZAKI AND YASUNARI SHIDAMA

(2) If for every element n of N, D(n) = f~1(B(n)), then f~*(UB) = UD.
(3) If for every element n of N, D(n) = f~1(B(n)), then f~!(Intersection B) =
Intersection D.

Now we state the propositions:

(4) Let us consider a function F' from 2 into R and a real number r. Suppose
F is a real-valued random variable on ¥. Then F~!(]—o0,7[) € ¥. PROOF:
Consider X being an element of ¥ such that X = Q and F' is measurable
on X. For every element z, z € F~!(]—oo,r[) iff z € Qx N LE-dom(F, ).
O

(5) Let us consider a function F' from 2 into R. Suppose F' is a real-valued
random variable on ¥. Then {z where x is an element of the Borel sets
: F~Y(z) is element of X} is a o-field of subsets of R. The theorem is a
consequence of (4) and (3). PROOF: Set S = {x where x is an element of
the Borel sets : F~!(z) is an element of ¥}. For every element x such that
z € S holds z € the Borel sets. Set rg = the element of R. Reconsider
yo = halfline(rg) as an element of the Borel sets. For every subset A of R
such that A € S holds A° € S. For every sequence A of subsets of R such
that rng A; C S holds Intersection Ay € S. [

Let us consider a function f from €2 into R. Now we state the propositions:

(6) Suppose f is a real-valued random variable on 3. Then {x where z is
an element of the Borel sets : f~!(z) is an element of ¥} = the Borel sets.

(7) f is random variable on ¥ and the Borel sets if and only if f is a real-
valued random variable on 3.

(8) The set of random variables on ¥ and the Borel sets = the real-valued
random variables set on X.

Let us consider 21, 2, S1, and So. Let F' be a function from €2y into 2s.
We say that F is (S7, Sz)-random variable-like if and only if

(Def. 1) F is random variable on S; and Ss.

Observe that there exists a function from 2y into 9 which is (S, S2)-
random variable-like.

A random variable of S and S is an (57, S2)-random variable-like function
from €27 into 29. Now we state the proposition:

(9) Let us consider a function f from €2 into R. Then f is a random variable
of ¥ and the Borel sets if and only if f is a real-valued random variable
on .

Let F be a function. We say that F' is random variable family-like if and
only if

(Def. 2) Let us consider a set x. Suppose z € dom F'. Then there exist non empty
sets 21, {29 and there exists a o-field S of subsets of {2; and there exists



RANDOM VARIABLES AND PRODUCT OF PROBABILITY SPACES

a o-field Sy of subsets of (2o and there exists a random variable f of S;
and So such that F(z) = f.
One can verify that there exists a function which is random variable family-
like.
A random variable family is a random variable family-like function. In this
paper F' denotes a random variable of S; and Ss.
Let Y be a non empty set, S be a o-field of subsets of Y, and F' be a function.
We say that F'is S-measure valued if and only if

(Def. 3) Let us consider a set z. If z € dom F', then there exists a o-measure M
on S such that F'(z) = M.
Note that there exists a function which is S-measure valued.
Let F be a function. We say that F' is S-probability valued if and only if
(Def. 4) Let us consider a set z. If € dom F', then there exists a probability P
on S such that F'(z) = P.
Let us note that there exists a function which is S-probability valued.
Let X, Y be non empty sets. One can verify that there exists an S-probability
valued function which is X-defined.
One can verify that there exists an X-defined S-probability valued function
which is total.
Let Y be a non empty set. Let us note that every function which is S-
probability valued is also S-measure valued.
Let F' be a function. We say that F' is S-random variable family if and only
if
(Def. 5) Let us consider a set x. Suppose z € dom F. Then there exists a real-
valued random variable Z on S such that F'(z) = Z.
Observe that there exists a function which is S-random variable family.
Now we state the propositions:

(10) Let us consider an element y of Se. Suppose y # (). Then {z where
z is an element of Q1 : F(2) is an element of y} = F~!(y). PROOF: Set
D = {z where z is an element of ; : F(z) is an element of y}. For every
element x, x € D iff z € F~1(y). O

(11) Let us consider a random variable F' of S; and S3. Then

(i) {x where z is a subset of €; : there exists an element y of Sy such
that x = F~1(y)} C S, and

(ii) {x where x is a subset of §}; : there exists an element y of Sy such
that x = F~1(y)} is a o-field of subsets of €.

The theorem is a consequence of (3). PROOF: Set S = {z where z is
a subset of Q1 : there exists an element y of Sy such that x = F~1(y)}.
For every element = such that x € S holds x € Sy. For every subset A of
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Q4 such that A € S holds A° € S. For every sequence A; of subsets of 24
such that rng A; C S holds Intersection A; € S. [J
Let us consider 21, 5, S1, and Ss. Let M be a measure on S; and F' be
a random variable of S; and S3. The functor the image measure of F' and M
yielding a measure on Ss is defined by
(Def. 6) Let us consider an element y of Sa. Then it(y) = M(F~1(y)).
Let M be a o-measure on S7. Note that the image measure of F' and M is
o-additive.
Now we state the proposition:

(12) Let us consider a probability P on S; and a random variable F' of S;

and Sz. Then (the image measure of F' and P2M P)();) = 1.
Let us consider 1, 9, S1, and So. Let P be a probability on S; and F
be a random variable of S; and S;. The functor probability(F, P) yielding a
probability on Sy is defined by the term
(Def. 7) M2P the image measure of F' and P2M P.
Now we state the propositions:

(13) Let us consider a probability P on S; and a random variable F' of S}
and S2. Then probability(F, P) = the image measure of F' and P2M P.
The theorem is a consequence of (12).

(14) Let us consider a probability P on Sp, a random variable F' of S; and
So, and a set y. If y € S, then (probability(F, P))(y) = P(F~!(y)). The
theorem is a consequence of (13).

(15) Every function from §2; into Q3 is a random variable of the trivial o-field
of 1 and the trivial o-field of €.

(16) Let us consider a non empty set S. Then every non empty finite sequence
of elements of S is a random variable of the trivial o-field of Seglen F' and
the trivial o-field of S. The theorem is a consequence of (15).

(17) Let us consider finite non empty sets V', S, a random variable G of
the trivial o-field of V' and the trivial o-field of S, and a set y. Suppose
y € the trivial o-field of S. Then (probability (G, the trivial probability of

V)y) = % The theorem is a consequence of (14).

(18) Let us consider a finite non empty set S, a non empty finite sequence s
of elements of S, and a set x. Suppose x € S. Then there exists a random
variable GG of the trivial o-field of Seglen s and the trivial o-field of .S such
that

(i) G=s, and
(ii) (probability(G, the trivial probability of Seglen s))({z}) = Probp(z, s).
The theorem is a consequence of (16) and (17).
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2. PRODUCT OF PROBABILITY SPACES

Let D be a non-empty many sorted set indexed by N and n be a natural
number. One can check that D(n) is non empty.

Let S, F' be many sorted sets indexed by N. We say that F' is o-field S-
sequence-like if and only if

(Def. 8) Let us consider a natural number n. Then F(n) is a o-field of subsets of
S(n).

Let S be a many sorted set indexed by N. Let us observe that there exists a
many sorted set indexed by N which is o-field S-sequence-like.

Let D be a many sorted set indexed by N. A o-field sequence of D is a o-field
D-sequence-like many sorted set indexed by N. Let S be a o-field sequence of
D and n be a natural number. Note that the functor S(n) yields a o-field of
subsets of D(n). Let D be a non-empty many sorted set indexed by N. Let M be
a many sorted set indexed by N. We say that M is S-probability sequence-like
if and only if

(Def. 9) Let us consider a natural number n. Then M (n) is a probability on S(n).

Observe that there exists a many sorted set indexed by N which is S-
probability sequence-like.

A probability sequence of S is an S-probability sequence-like many sorted set
indexed by N. Let P be a probability sequence of S and n be a natural number.
One can verify that the functor P(n) yields a probability on S(n). Let D be a
many sorted set indexed by N. The functor the product domain D yielding a
many sorted set indexed by N is defined by

(Def. 10) (i) t(0) = D(0), and
(ii) for every natural number 4, it(i + 1) = t(i) x D(i + 1).
Now we state the proposition:
(19) Let us consider a many sorted set D indexed by N. Then
(i) (the product domain D)(0) = D(0), and
(ii) (the product domain D)(1) = D(0) x D(1), and
(iii) (the product domain D)(2) = D(0) x D(1) x D(2), and
(iv) (the product domain D)(3) = D(0) x D(1) x D(2) x D(3).
Let D be a non-empty many sorted set indexed by N. Let us note that the
product domain D is non-empty.
Let D be a finite-yielding many sorted set indexed by N. One can check that
the product domain D is finite-yielding.

Let us consider 2 and ¥. Let P be a set. Assume P is a probability on X.
The functor modetrans(P, X)) yielding a probability on ¥ is defined by the term

(Def. 11)  P.

i
1
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Let D be a finite-yielding non-empty many sorted set indexed by N. The
functor the trivial o-field sequence D yielding a o-field sequence of D is defined
by

(Def. 12) Let us consider a natural number n. Then it(n) = the trivial o-field of
D(n).

Let P be a probability sequence of the trivial o-field sequence D and n be a
natural number. One can check that the functor P(n) yields a probability on the
trivial o-field of D(n). The functor ProductProbability (P, D) yielding a many
sorted set indexed by N is defined by

(Def. 13) (i) it(0) = P(0), and

(ii) for every natural number 4, it(i + 1) =
Product-Probability ((the product domain D)(i), D(i+ 1), modetrans
(it(7), the trivial o-field of (the product domain D)(7)), P(i + 1)).
Let us consider a finite-yielding non-empty many sorted set D indexed by N,
a probability sequence P of the trivial o-field sequence D, and a natural number
n. Now we state the propositions:

(20) (ProductProbability(P, D))(n) is a probability on the trivial o-field of
(the product domain D)(n).

(21) There exists a probability Py on the trivial o-field of (the product
domain D)(n) such that

(i) Py = (ProductProbability(P, D))(n), and
(ii) (ProductProbability(P, D))(n+1) = Product-Probability((the product
domain D)(n), D(n+ 1), Py, P(n+ 1)).
Now we state the proposition:

(22) Let us consider a finite-yielding non-empty many sorted set D indexed
by N and a probability sequence P of the trivial o-field sequence D. Then

(i) (ProductProbability(P, D))(0) = P(0), and

(ii) (ProductProbability(P, D))(1) =
Product-Probability (D(0), D(1), P(0), P(1)), and

(iii) there exists a probability P; on the trivial o-field of D(0) x D(1) such
that P; = (ProductProbability (P, D))(1) and (ProductProbability (P,
D))(2) = Product-Probability (D(0) x D(1), D(2), P1, P(2)), and

(iv) there exists a probability P» on the trivial o-field of D(0) x D(1) x
D(2) such that P» = (ProductProbability (P, D))(2) and
(ProductProbability (P, D))(3) = Product-Probability (D(0) x D(1) x
D(2),D(3), P, P(3)), and

(v) there exists a probability P3 on the trivial o-field of D(0) x D(1) x
D(2) x D(3) such that P3 = (ProductProbability(P, D))(3) and
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(ProductProbability (P, D))(4) = Product-Probability (D(0) x D(1) x

The theorem is a consequence of (19) and (21).
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