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Summary. This is the translation of the Mizar article containing readable
Mizar proofs of some axiomatic geometry theorems formulated by the great Polish
mathematician Alfred Tarski [8], and we hope to continue this work.1

The article is an extension and upgrading of the source code written by the
first author with the help of miz3 tool; his primary goal was to use proof checkers
to help teach rigorous axiomatic geometry in high school using Hilbert’s axioms.

This is largely a Mizar port of Julien Narboux’s Coq pseudo-code [6]. We
partially prove the theorem of [7] that Tarski’s (extremely weak!) plane geometry
axioms imply Hilbert’s axioms. Specifically, we obtain Gupta’s amazing proof
which implies Hilbert’s axiom I1 that two points determine a line.

The primary Mizar coding was heavily influenced by [9] on axioms of in-
cidence geometry. The original development was much improved using Mizar
adjectives instead of predicates only, and to use this machinery in full extent,
we have to construct some models of Tarski geometry. These are listed in the
second section, together with appropriate registrations of clusters. Also models
of Tarski’s geometry related to real planes were constructed.
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168 william richter, adam grabowski, and jesse alama

The notation and terminology used in this paper have been introduced in the
following articles: [2], [3], [5], [1], [11], [10], and [4].

1. Tarski’s Geometry Axioms

We consider Tarski planes which extend 1-sorted structures and are systems

〈〈a carrier, a betweenness, an equidistance〉〉

where the carrier is a set, the betweenness is a relation between (the carrier)×
(the carrier) and the carrier, the equidistance is a relation between (the carrier)×
(the carrier) and (the carrier)× (the carrier).

Let S be a Tarski plane.
A point of S is an element of S. Let A, B, C be points of S. We say that

B lies between A and C if and only if

(Def. 1) 〈〈〈〈A, B〉〉, C〉〉 ∈ the betweenness of S.

Let A, B, C, D be points of S. We say that AB ∼= CD if and only if

(Def. 2) 〈〈〈〈A, B〉〉, 〈〈C, D〉〉〉〉 ∈ the equidistance of S.

Let A, B, C, X, Y, Z be points of S. We say that 4ABC ∼= 4XY Z if and
only if

(Def. 3) (i) AB ∼= XY , and

(ii) AC ∼= XZ, and

(iii) BC ∼= Y Z.

Let A, B, C, D be points of S. We say that A, B, C, D are ordered if and
only if

(Def. 4) (i) B lies between A and C, and

(ii) B lies between A and D, and

(iii) C lies between A and D, and

(iv) C lies between B and D.

We say that S satisfies the axiom of congruence symmetry if and only if

(Def. 5) Let us consider points A, B of S. Then AB ∼= BA.

We say that S satisfies the axiom of congruence equivalence relation if and
only if

(Def. 6) Let us consider points A, B, P , Q, R, S of S. Suppose

(i) AB ∼= PQ, and

(ii) AB ∼= RS.

Then PQ ∼= RS.

We say that S satisfies the axiom of congruence identity if and only if
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Tarski geometry axioms 169

(Def. 7) Let us consider points A, B, C of S. If AB ∼= CC, then A = B.

We say that S satisfies the axiom of segment construction if and only if

(Def. 8) Let us consider points A, Q, B, C of S. Then there exists a point X of
S such that

(i) A lies between Q and X, and

(ii) AX ∼= BC.

We say that S satisfies the axiom of SAS if and only if

(Def. 9) Let us consider points A, B, C, X, A1, B1, C1, X1 of S. Suppose

(i) A 6= B, and

(ii) 4ABC ∼= 4A1B1C1, and

(iii) B lies between A and X, and

(iv) B1 lies between A1 and X1, and

(v) BX ∼= B1X1.

Then CX ∼= C1X1.

We say that S satisfies the axiom of betweenness identity if and only if

(Def. 10) Let us consider points A, B of S. If B lies between A and A, then A = B.

We say that S satisfies the axiom of Pasch if and only if

(Def. 11) Let us consider points A, B, P , Q, Z of S. Suppose

(i) P lies between A and Z, and

(ii) Q lies between B and Z.

Then there exists a point X of S such that

(iii) X lies between P and B, and

(iv) X lies between Q and A.

We say that S satisfies seven Tarski’s geometry axioms if and only if

(Def. 12) S satisfies the axiom of congruence symmetry, the axiom of congruence
equivalence relation, the axiom of congruence identity, the axiom of seg-
ment construction, the axiom of SAS, the axiom of betweenness identity,
and the axiom of Pasch.

2. Existence Proofs for Tarski Plane

We consider metric Tarski structures which extend metric structures and
Tarski planes and are systems

〈〈a carrier, a distance, a betweenness, an equidistance〉〉
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170 william richter, adam grabowski, and jesse alama

where the carrier is a set, the distance is a function from (the carrier)×(the car-
rier) into R, the betweenness is a relation between (the carrier) × (the carrier)
and the carrier, the equidistance is a relation between (the carrier)×(the carrier)
and (the carrier)× (the carrier).

Let M be a metric structure.
A Tarski extension of M is a metric Tarski structure and is defined by

(Def. 13) The metric structure of it = the metric structure of M.

Let M be a non empty metric structure. One can check that every Tarski
extension of M is non empty.

Let M be a non empty reflexive metric structure. Observe that every Tarski
extension of M is reflexive.

Let M be a non empty discernible metric structure. Note that every Tarski
extension of M is discernible.

Let M be a non empty symmetric metric structure. One can verify that
every Tarski extension of M is symmetric.

Let M be a non empty triangle metric structure. Observe that every Tarski
extension of M is triangle.

Let S be a metric structure and P , Q, R be elements of S. We say that Q
is between P and R if and only if

(Def. 14) ρ(P,R) = ρ(P,Q) + ρ(Q,R).

Let M be a metric Tarski structure. We say that M is naturally generated
if and only if

(Def. 15) (i) for every points A, B, C of M, B lies between A and C iff B is
between A and C, and

(ii) for every points A, B, C, D of M, AB ∼= CD iff ρ(A,B) = ρ(C,D).

Now we state the proposition:

(1) Let us consider metric structures M, N, elements X, Y of M, and ele-
ments A, B of N. Suppose

(i) the metric structure of M = the metric structure of N, and

(ii) X = A, and

(iii) Y = B.

Then ρ(X,Y ) = ρ(A,B).

Let N be a non empty metric structure. Let us note that there exists a
Tarski extension of N which is naturally generated and there exists a metric
space which is trivial and non empty.

The functor TrivialTarskiSpace yielding a metric Tarski structure is defined
by the term

(Def. 16) The naturally generated Tarski extension of the trivial non empty metric
space.
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Tarski geometry axioms 171

Note that TrivialTarskiSpace is trivial and non empty.
Now we state the proposition:

(2) Let us consider a trivial non empty metric space M and elements A, B,
C of M. Then A is between B and C.

Let us observe that TrivialTarskiSpace satisfies the axiom of congruence
symmetry, the axiom of congruence equivalence relation, the axiom of congru-
ence identity, the axiom of segment construction, the axiom of SAS, the axiom
of betweenness identity, and the axiom of Pasch and TrivialTarskiSpace satis-
fies seven Tarski’s geometry axioms and there exists a Tarski plane which is
non empty and satisfies seven Tarski’s geometry axioms and every Tarski pla-
ne which satisfies the axiom of congruence symmetry, the axiom of congruence
equivalence relation, the axiom of congruence identity, the axiom of segment
construction, the axiom of SAS, the axiom of betweenness identity, and the
axiom of Pasch satisfies also seven Tarski’s geometry axioms and every Tarski
plane which satisfies seven Tarski’s geometry axioms satisfies also the axiom of
congruence symmetry, the axiom of congruence equivalence relation, the axiom
of congruence identity, the axiom of segment construction, the axiom of SAS,
the axiom of betweenness identity, and the axiom of Pasch.

3. Proofs of Basic Properties

From now on S denotes Tarski plane and A, B, C, D, E, F , O, P , Q, R, S,
V , W , U , X, Y, Z, A′, B′, C ′, D′, X ′, Y ′, Z denote points of S.

Now we state the propositions:

(3) AB ∼= BA.

(4) If AB ∼= PQ and AB ∼= RS, then PQ ∼= RS.

(5) If AB ∼= CC, then A = B.

(6) There exists X such that

(i) A lies between Q and X, and

(ii) AX ∼= BC.

(7) Suppose A 6= B and 4ABC ∼= 4A′B′C ′ and B lies between A and X

and B′ lies between A′ and X ′ and BX ∼= B′X ′. Then CX ∼= C ′X ′.

(8) If B lies between A and A, then A = B.

(9) If P lies between A and Z and Q lies between B and Z, then there exists
X such that X lies between P and B and X lies between Q and A.

(10) AB ∼= AB. The theorem is a consequence of (3) and (4).

(11) If AB ∼= CD, then CD ∼= AB. The theorem is a consequence of (10)
and (4).
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(12) If AB ∼= PQ and PQ ∼= RS, then AB ∼= RS. The theorem is a consequ-
ence of (11) and (4).

(13) (i) A lies between A and A, and

(ii) AA ∼= BB.
The theorem is a consequence of (6) and (5).

(14) A lies between Q and A. The theorem is a consequence of (6) and (5).

(15) If A 6= B and B lies between A and X and B lies between A and Y

and BX ∼= BY , then X = Y. The theorem is a consequence of (10), (5),
and (7).

(16) If P lies between A and Z, then P lies between Z and A. The theorem
is a consequence of (14), (9), and (8).

(17) A lies between A and Q.

(18) If B lies between A and C and A lies between B and C, then A = B.
The theorem is a consequence of (9) and (8).

(19) If B lies between A and D and C lies between B and D, then B lies
between A and C. The theorem is a consequence of (9), (8), and (16).

Let us assume that B 6= C and B lies between A and C and C lies between
B and D. Now we state the propositions:

(20) C lies between A and D. The theorem is a consequence of (6), (16), (19),
and (15).

(21) A, B, C, D are ordered. The theorem is a consequence of (20) and (16).

Let us assume that B lies between A and D and C lies between B and D.
Now we state the propositions:

(22) A, B, C, D are ordered. The theorem is a consequence of (14), (19),
and (21).

(23) A, B, C, D are ordered. The theorem is a consequence of (19), (14),
(17), and (21).

Now we state the propositions:

(24) If B lies between A and C and B′ lies between A′ and C ′ and AB ∼= A′B′

and BC ∼= B′C ′, then AC ∼= A′C ′. The theorem is a consequence of (3),
(12), (5), (11), (13), and (7).

(25) If AB ∼= CD, then BA ∼= DC. The theorem is a consequence of (3)
and (12).

(26) If A 6= B and B lies between A and X and B lies between A and Y and
AX ∼= AY , then X = Y. The theorem is a consequence of (6), (11), (5),
(16), (21), and (15).

(27) If B lies between A and C and B′ lies between A′ and C ′ and AB ∼= A′B′

and AC ∼= A′C ′, then BC ∼= B′C ′. The theorem is a consequence of (5),
(11), (6), (24), (12), and (26).
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(28) If O 6= A, then there exists X and there exists Y such that O lies between
B and X and O lies between A and Y and4XY O ∼= 4ABO. The theorem
is a consequence of (6), (25), (3), (11), (16), and (7).

(29) If B lies between A and C and C lies between A and D, then A, B, C,
D are ordered. The theorem is a consequence of (16) and (23).

(30) If A 6= B and B lies between A and C and B lies between A and D,
then there exists X such that A, B, C, X are ordered and A, B, D, X are
ordered. The theorem is a consequence of (6), (29), (16), (3), (12), (11),
(24), and (15).

(31) If A 6= B and B lies between A and C and B lies between A and D and
B 6= C and B 6= D, then B does not lie between C and D. The theorem
is a consequence of (30), (21), and (18).

(32) Suppose 4ABC ∼= 4A′B′C ′ and X lies between A and C and X ′ lies
between A′ and C ′ and CX ∼= C ′X ′. Then BX ∼= B′X ′. The theorem is a
consequence of (5), (11), (8), (6), (12), (25), (7), (16), and (19).

(33) Suppose C lies between B and D′ and D lies between B and C ′ and
CD′ ∼= CD and DC ′ ∼= CD and D′C ′ ∼= CD. Then there exists E such
that

(i) E lies between C and C ′, and

(ii) E lies between D and D′, and

(iii) CE ∼= C ′E, and

(iv) DE ∼= D′E.

The theorem is a consequence of (16), (9), (11), (10), (12), (32), and (3).

(34) Suppose E lies between D and D′ and CD′ ∼= CD and DE ∼= D′E and
C 6= D and E 6= D. Then there exists P and there exists R and there
exists Q such that R lies between P and Q and C lies between R and D′

and C lies between E and P and 4RCP ∼= 4RCQ and RC ∼= EC and
PR ∼= DE. The theorem is a consequence of (11), (5), (28), (12), (6), (16),
(25), (7), and (10).

(35) If A 6= B and B lies between A and C and AP ∼= AQ and BP ∼= BQ,
then CP ∼= CQ. The theorem is a consequence of (10), (7), and (25).

(36) If X lies between A and C and AP ∼= AQ and CP ∼= CQ, then XP ∼=
XQ. The theorem is a consequence of (10), (25), and (32).

(37) If A 6= B and B lies between A and C and B lies between A and D,
then D lies between B and C or C lies between B and D. The theorem is
a consequence of (17), (14), (6), (29), (5), (11), (8), (21), (16), (3), (12),
(24), (15), (25), (7), (33), (34), (35), and (36).

Let us consider S, A, B, and C. We say that A, B and C are collinear if
and only if
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(Def. 17) (i) B lies between A and C, or

(ii) C lies between B and A, or

(iii) A lies between C and B.

Let us consider X. We say that X lies on the line passing through A and B
if and only if

(Def. 18) (i) A 6= B, and

(ii) B lies between A and X or X lies between B and A or A lies between
X and B.

Let us consider Y. We say that the line passing through A and B is equal to
the line passing through X and Y if and only if

(Def. 19) (i) A 6= B, and

(ii) X 6= Y, and

(iii) for every C, C lies on the line passing through A and B iff C lies on
the line passing through X and Y.

Now we state the propositions:

(38) If A 6= B and A 6= X and X lies on the line passing through A and B

and C lies on the line passing through A and B, then C lies on the line
passing through A and X. The theorem is a consequence of (16), (6), (11),
(5), (37), (21), (29), and (19).

(39) If A 6= B and A 6= X and X lies on the line passing through A and B,
then the line passing through A and B is equal to the line passing through
A and X. The theorem is a consequence of (38) and (16).

Let us assume that A 6= B. Now we state the propositions:

(40) the line passing through A and B is equal to the line passing through A
and B.

(41) the line passing through A and B is equal to the line passing through B
and A. The theorem is a consequence of (16).

Now we state the propositions:

(42) Suppose A 6= B and C 6= D and the line passing through A and B is
equal to the line passing through C and D. Then the line passing through
C and D is equal to the line passing through A and B.

(43) Suppose A 6= B and C 6= D and E 6= F and the line passing through A

and B is equal to the line passing through C and D and the line passing
through C and D is equal to the line passing through E and F . Then
the line passing through A and B is equal to the line passing through E

and F .

(44) If X lies on the line passing through A and B and the line passing
through A and B is equal to the line passing through C and D, then X

lies on the line passing through C and D.
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(45) If A 6= B and B 6= Y and Y lies on the line passing through A and B,
then the line passing through A and B is equal to the line passing through
Y and B. The theorem is a consequence of (41) and (39).

(46) Suppose A 6= B and X 6= Y and A lies on the line passing through X

and Y and B lies on the line passing through X and Y. Then the line
passing through X and Y is equal to the line passing through A and B.
The theorem is a consequence of (41), (39), and (45).

4. Construction of the Euclidean Example

The functor Tarski0Space yielding a metric Tarski structure is defined by
the term

(Def. 20) The naturally generated Tarski extension of �.

Note that Tarski0Space is reflexive symmetric and non empty.
Let M be a non empty metric structure. We say that M is close-everywhere

if and only if

(Def. 21) Let us consider elements A, B of M. Then ρ(A,B) = 0.

Let us note that Tarski0Space is close-everywhere and Tarski0Space satisfies
the axiom of congruence symmetry, the axiom of congruence equivalence rela-
tion, the axiom of segment construction, the axiom of SAS, and the axiom of
Pasch.

The functor TarskiSpace yielding a metric Tarski structure is defined by the
term

(Def. 22) The naturally generated Tarski extension of the metric space of real
numbers.

One can check that TarskiSpace is non empty and TarskiSpace is reflexive
symmetric and discernible and every element of TarskiSpace is real and every
element of the metric space of real numbers is real.

Now we state the proposition:

(47) Let us consider elements A, B, C of the metric space of real numbers.
If B ∈ [A,C], then B is between A and C. The theorem is a consequence
of (3).

Let us observe that TarskiSpace satisfies the axiom of congruence symmetry,
the axiom of congruence equivalence relation, the axiom of congruence identity,
the axiom of segment construction, and the axiom of betweenness identity.
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