Fubini's Theorem on Measure

Noboru Endou
National Institute of Technology, Gifu College
2236-2 Kamimakuwa, Motosu, Gifu, Japan

Abstract

Summary. The purpose of this article is to show Fubini's theorem on measure [16, [4, [7, [15], 18. Some theorems have the possibility of slight generalization, but we have priority to avoid the complexity of the description. First of all, for the product measure constructed in 14, we show some theorems. Then we introduce the section which plays an important role in Fubini's theorem, and prove the relevant proposition. Finally we show Fubini's theorem on measure.

MSC: 28A35 03B35
Keywords: Fubini's theorem; product measure
MML identifier: MEASUR11, version: 8.1 .05 5.40.1286

1. Preliminaries

Now we state the propositions:
(1) Let us consider a disjoint valued finite sequence F, and natural numbers n, m. If $n<m$, then $\bigcup \operatorname{rng}(F \upharpoonright n)$ misses $F(m)$.
(2) Let us consider a finite sequence F, and natural numbers m, n. Suppose $m \leqslant n$. Then len $(F \upharpoonright m) \leqslant \operatorname{len}(F \upharpoonright n)$.
(3) Let us consider a finite sequence F, and a natural number n. Then $\bigcup \operatorname{rng}(F \upharpoonright n) \cup F(n+1)=\bigcup \operatorname{rng}(F \upharpoonright(n+1))$. The theorem is a consequence of (2).
(4) Let us consider a disjoint valued finite sequence F, and a natural number n. Then $\bigcup(F \upharpoonright n)$ misses $F(n+1)$.
(5) Let us consider a set P, and a finite sequence F. Suppose P is \cup-closed and $\emptyset \in P$ and for every natural number n such that $n \in \operatorname{dom} F$ holds $F(n) \in P$. Then $\bigcup F \in P$.

Proof: Define \mathcal{P} [natural number] $\equiv \bigcup \operatorname{rng}\left(F \upharpoonright \$_{1}\right) \in P$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [2, (13)], [3, (59)], [19, (55)], [3, (82)]. For every natural number $k, \mathcal{P}[k]$ from [2, Sch. 2].
Let A, X be sets. Observe that the functor $\chi_{A, X}$ yields a function from X into $\overline{\mathbb{R}}$. Let X be a non empty set, S be a σ-field of subsets of X, and F be a finite sequence of elements of S. Let us observe that the functor $\cup F$ yields an element of S. Let F be a sequence of S. Let us note that the functor $\bigcup F$ yields an element of S. Let F be a finite sequence of elements of $X \rightarrow \overline{\mathbb{R}}$ and x be an element of X. The functor $F \# x$ yielding a finite sequence of elements of $\overline{\mathbb{R}}$ is defined by
(Def. 1) $\quad \operatorname{dom}$ it $=\operatorname{dom} F$ and for every element n of \mathbb{N} such that $n \in \operatorname{dom}$ it holds $i t(n)=F(n)(x)$.
Now we state the proposition:
(6) Let us consider a non empty set X, a non empty family S of subsets of X, a finite sequence f of elements of S, and a finite sequence F of elements of $X \rightarrow \overline{\mathbb{R}}$. Suppose $\operatorname{dom} f=\operatorname{dom} F$ and f is disjoint valued and for every natural number n such that $n \in \operatorname{dom} F$ holds $F(n)=\chi_{f(n), X}$. Let us consider an element x of X. Then $\chi_{\bigcup_{f, X}}(x)=\sum(F \# x)$.

2. Product Measure and Product σ-measure

Now we state the proposition:
(7) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, and a σ-field S_{2} of subsets of X_{2}. Then $\sigma\left(\right.$ DisUnion MeasRect $\left.\left(S_{1}, S_{2}\right)\right)=$ $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$.
Let X_{1}, X_{2} be non empty sets, S_{1} be a σ-field of subsets of X_{1}, S_{2} be a σ-field of subsets of X_{2}, M_{1} be a σ-measure on S_{1}, and M_{2} be a σ-measure on S_{2}. The functor $\operatorname{ProdMeas}\left(M_{1}, M_{2}\right)$ yielding an induced measure of $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$ and ProdpreMeas $\left(M_{1}, M_{2}\right)$ is defined by
(Def. 2) for every set E such that $E \in$ the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$ for every disjoint valued finite sequence F of elements of MeasRect $\left(S_{1}, S_{2}\right)$ such that $E=\bigcup F$ holds $i t(E)=\sum\left(\operatorname{ProdpreMeas}\left(M_{1}, M_{2}\right) \cdot F\right)$.
The functor Prod σ-Meas $\left(M_{1}, M_{2}\right)$ yielding an induced σ-measure of $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$ and ProdMeas $\left(M_{1}, M_{2}\right)$ is defined by the term
(Def. 3) σ-Meas(the Caratheodory measure determined by $\left.\operatorname{ProdMeas}\left(M_{1}, M_{2}\right)\right) \upharpoonright \sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$.
Now we state the propositions:
(8) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, and a σ-measure M_{2} on S_{2}. Then Prod σ-Meas $\left(M_{1}, M_{2}\right)$ is a σ-measure on $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. The theorem is a consequence of (7).
(9) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a set sequence F_{1} of S_{1}, a set sequence F_{2} of S_{2}, and a natural number n. Then $F_{1}(n) \times F_{2}(n)$ is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. The theorem is a consequence of (7).
(10) Let us consider sets X_{1}, X_{2}, a sequence F_{1} of subsets of X_{1}, a sequence F_{2} of subsets of X_{2}, and a natural number n. Suppose F_{1} is non descending and F_{2} is non descending. Then $F_{1}(n) \times F_{2}(n) \subseteq F_{1}(n+1) \times F_{2}(n+1)$.
(11) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, an element A of S_{1}, and an element B of S_{2}. Then (ProdMeas $\left.\left(M_{1}, M_{2}\right)\right)(A \times$ $B)=M_{1}(A) \cdot M_{2}(B)$.
(12) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, a set sequence F_{1} of S_{1}, a set sequence F_{2} of S_{2}, and a natural number n. Then $\left(\operatorname{ProdMeas}\left(M_{1}, M_{2}\right)\right)\left(F_{1}(n) \times F_{2}(n)\right)=M_{1}\left(F_{1}(n)\right) \cdot M_{2}\left(F_{2}(n)\right)$. The theorem is a consequence of (11).
(13) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, a finite sequence F_{1} of elements of S_{1}, a finite sequence F_{2} of elements of S_{2}, and a natural number n. Suppose $n \in \operatorname{dom} F_{1}$ and $n \in \operatorname{dom} F_{2}$. Then $\left(\operatorname{ProdMeas}\left(M_{1}, M_{2}\right)\right)\left(F_{1}(n) \times F_{2}(n)\right)=M_{1}\left(F_{1}(n)\right) \cdot M_{2}\left(F_{2}(n)\right)$.
(14) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, and a subset E of $X_{1} \times X_{2}$. Then (the Caratheodory measure determined by $\left.\operatorname{ProdMeas}\left(M_{1}, M_{2}\right)\right)(E)=\inf \operatorname{Svc}\left(\operatorname{ProdMeas}\left(M_{1}, M_{2}\right), E\right)$.
(15) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, and a σ-measure M_{2} on S_{2}. Then $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right) \subseteq \sigma$-Field(the Caratheodory measure determined by $\left.\operatorname{ProdMeas}\left(M_{1}, M_{2}\right)\right)$. The theorem is a consequence of (7).
(16) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, an element A of S_{1}, and an element B of S_{2}. Suppose $E=A \times B$. Then $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E)=M_{1}(A)$. $M_{2}(B)$. The theorem is a consequence of (15) and (11).
(17) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1},
a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, a set sequence F_{1} of S_{1}, a set sequence F_{2} of S_{2}, and a natural number n. Then $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)\left(F_{1}(n) \times F_{2}(n)\right)=M_{1}\left(F_{1}(n)\right) \cdot M_{2}\left(F_{2}(n)\right)$. The theorem is a consequence of (9), (15), and (12).
(18) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, and elements E_{1}, E_{2} of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose E_{1} misses E_{2}. Then $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)\left(E_{1} \cup E_{2}\right)=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)\left(E_{1}\right)+$ $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)\left(E_{2}\right)$. The theorem is a consequence of (8).
(19) Let us consider sets X_{1}, X_{2}, A, B, a sequence F_{1} of subsets of X_{1}, a sequence F_{2} of subsets of X_{2}, and a sequence F of subsets of $X_{1} \times X_{2}$. Suppose F_{1} is non descending and $\lim F_{1}=A$ and F_{2} is non descending and $\lim F_{2}=B$ and for every natural number $n, F(n)=F_{1}(n) \times F_{2}(n)$. Then $\lim F=A \times B$. The theorem is a consequence of (10).

3. SEctions

Let X be a set, Y be a non empty set, E be a subset of $X \times Y$, and x be a set. The functor $\operatorname{Xection}(E, x)$ yielding a subset of Y is defined by the term
(Def. 4) $\quad\{y$, where y is an element of $Y:\langle x, y\rangle \in E\}$.
Let X be a non empty set, Y be a set, and y be a set.
The functor Ysection (E, y) yielding a subset of X is defined by the term
(Def. 5) $\quad\{x$, where x is an element of $X:\langle x, y\rangle \in E\}$.
Now we state the propositions:
(20) Let us consider a set X, a non empty set Y, subsets E_{1}, E_{2} of $X \times Y$, and a set p. Suppose $E_{1} \subseteq E_{2}$. Then $\mathrm{X} \operatorname{section}\left(E_{1}, p\right) \subseteq \mathrm{X} \operatorname{section}\left(E_{2}, p\right)$.
(21) Let us consider a non empty set X, a set Y, subsets E_{1}, E_{2} of $X \times Y$, and a set p. Suppose $E_{1} \subseteq E_{2}$. Then Ysection $\left(E_{1}, p\right) \subseteq \operatorname{Ysection}\left(E_{2}, p\right)$.
(22) Let us consider non empty sets X, Y, a subset A of X, a subset B of Y, and a set p. Then
(i) if $p \in A$, then $\mathrm{X} \operatorname{section}(A \times B, p)=B$, and
(ii) if $p \notin A$, then $\mathrm{X} \operatorname{section}(A \times B, p)=\emptyset$, and
(iii) if $p \in B$, then $\operatorname{Ysection}(A \times B, p)=A$, and
(iv) if $p \notin B$, then $\operatorname{Ysection}(A \times B, p)=\emptyset$.
(23) Let us consider non empty sets X, Y, a subset E of $X \times Y$, and a set p. Then
(i) if $p \notin X$, then $\operatorname{Xsection}(E, p)=\emptyset$, and
(ii) if $p \notin Y$, then $\operatorname{Ysection}(E, p)=\emptyset$.
(24) Let us consider non empty sets X, Y, and a set p. Then
(i) $\mathrm{Xsection}\left(\emptyset_{X \times Y}, p\right)=\emptyset$, and
(ii) $\operatorname{Ysection}\left(\emptyset_{X \times Y}, p\right)=\emptyset$, and
(iii) if $p \in X$, then $\operatorname{Xsection}\left(\Omega_{X \times Y}, p\right)=Y$, and
(iv) if $p \in Y$, then $Y \operatorname{section}\left(\Omega_{X \times Y}, p\right)=X$.

The theorem is a consequence of (22).
(25) Let us consider non empty sets X, Y, a subset E of $X \times Y$, and a set p. Then
(i) if $p \in X$, then $\mathrm{X} \operatorname{section}(X \times Y \backslash E, p)=Y \backslash \mathrm{X} \operatorname{section}(E, p)$, and
(ii) if $p \in Y$, then $\operatorname{Ysection}(X \times Y \backslash E, p)=X \backslash \operatorname{Ysection}(E, p)$.

Let us consider non empty sets X, Y, subsets E_{1}, E_{2} of $X \times Y$, and a set p.
(26) (i) $\operatorname{Xsection}\left(E_{1} \cup E_{2}, p\right)=\mathrm{X} \operatorname{section}\left(E_{1}, p\right) \cup \mathrm{X} \operatorname{section}\left(E_{2}, p\right)$, and
(ii) $\operatorname{Ysection}\left(E_{1} \cup E_{2}, p\right)=\operatorname{Ysection}\left(E_{1}, p\right) \cup \operatorname{Ysection}\left(E_{2}, p\right)$.
(i) $\mathrm{X} \operatorname{section}\left(E_{1} \cap E_{2}, p\right)=\mathrm{X} \operatorname{section}\left(E_{1}, p\right) \cap \mathrm{X} \operatorname{section}\left(E_{2}, p\right)$, and
(ii) $\operatorname{Ysection}\left(E_{1} \cap E_{2}, p\right)=\operatorname{Ysection}\left(E_{1}, p\right) \cap \operatorname{Ysection}\left(E_{2}, p\right)$.

Now we state the propositions:
(28) Let us consider a set X, a non empty set Y, a finite sequence F of elements of $2^{X \times Y}$, a finite sequence F_{4} of elements of 2^{Y}, and a set p. Suppose $\operatorname{dom} F=\operatorname{dom} F_{4}$ and for every natural number n such that $n \in \operatorname{dom} F_{4}$ holds $F_{4}(n)=\mathrm{X} \operatorname{section}(F(n), p)$. Then Xsection $(\bigcup \operatorname{rng} F, p)=\bigcup \operatorname{rng} F_{4}$.
(29) Let us consider a non empty set X, a set Y, a finite sequence F of elements of $2^{X \times Y}$, a finite sequence F_{3} of elements of 2^{X}, and a set p. Suppose $\operatorname{dom} F=\operatorname{dom} F_{3}$ and for every natural number n such that $n \in \operatorname{dom} F_{3}$ holds $F_{3}(n)=\operatorname{Ysection}(F(n), p)$. Then Ysection $(\bigcup \operatorname{rng} F, p)=\bigcup \operatorname{rng} F_{3}$.
Let us consider a set X, a non empty set Y, a set p, a sequence F of subsets of $X \times Y$, and a sequence F_{4} of subsets of Y. Now we state the propositions:
(30) If for every natural number $n, F_{4}(n)=\operatorname{Xection}(F(n), p)$, then $\mathrm{Xsection}(\bigcup \operatorname{rng} F, p)=\bigcup \operatorname{rng} F_{4}$.
(31) If for every natural number $n, F_{4}(n)=\operatorname{Xsection}(F(n), p)$, then Xsection $(\bigcap \operatorname{rng} F, p)=\bigcap \operatorname{rng} F_{4}$.
Let us consider a non empty set X, a set Y, a set p, a sequence F of subsets of $X \times Y$, and a sequence F_{3} of subsets of X. Now we state the propositions:
(32) If for every natural number $n, F_{3}(n)=\operatorname{Ysection}(F(n), p)$, then $\operatorname{Ysection}(\bigcup \operatorname{rng} F, p)=\bigcup \operatorname{rng} F_{3}$.
(33) If for every natural number $n, F_{3}(n)=\operatorname{Ysection}(F(n), p)$, then Ysection $(\bigcap \operatorname{rng} F, p)=\bigcap \operatorname{rng} F_{3}$.
(34) Let us consider non empty sets X, Y, sets x, y, and a subset E of $X \times$ Y. Then
(i) $\chi_{E, X \times Y}(x, y)=\chi_{\text {Xsection }(E, x), Y}(y)$, and
(ii) $\chi_{E, X \times Y}(x, y)=\chi_{\text {Ysection }(E, y), X}(x)$.
(35) Let us consider non empty sets X, Y, subsets E_{1}, E_{2} of $X \times Y$, and a set p. Suppose E_{1} misses E_{2}. Then
(i) $\mathrm{X} \operatorname{section}\left(E_{1}, p\right)$ misses $\mathrm{X} \operatorname{section}\left(E_{2}, p\right)$, and
(ii) $\operatorname{Ysection}\left(E_{1}, p\right)$ misses $\operatorname{Ysection}\left(E_{2}, p\right)$.
(36) Let us consider non empty sets X, Y, a disjoint valued finite sequence F of elements of $2^{X \times Y}$, and a set p. Then
(i) there exists a disjoint valued finite sequence F_{4} of elements of 2^{X} such that $\operatorname{dom} F=\operatorname{dom} F_{4}$ and for every natural number n such that $n \in \operatorname{dom} F_{4}$ holds $F_{4}(n)=\operatorname{Ysection}(F(n), p)$, and
(ii) there exists a disjoint valued finite sequence F_{3} of elements of 2^{Y} such that $\operatorname{dom} F=\operatorname{dom} F_{3}$ and for every natural number n such that $n \in \operatorname{dom} F_{3}$ holds $F_{3}(n)=X \operatorname{section}(F(n), p)$.
Proof: There exists a disjoint valued finite sequence F_{4} of elements of 2^{X} such that dom $F=\operatorname{dom} F_{4}$ and for every natural number n such that $n \in \operatorname{dom} F_{4}$ holds $F_{4}(n)=\operatorname{Ysection}(F(n), p)$ by (35), [19, (29)]. There exists a disjoint valued finite sequence F_{3} of elements of 2^{Y} such that $\operatorname{dom} F=\operatorname{dom} F_{3}$ and for every natural number n such that $n \in \operatorname{dom} F_{3}$ holds $F_{3}(n)=\mathrm{Xsection}(F(n), p)$ by (35), [19, (29)].
(37) Let us consider non empty sets X, Y, a disjoint valued sequence F of subsets of $X \times Y$, and a set p. Then
(i) there exists a disjoint valued sequence F_{4} of subsets of X such that for every natural number $n, F_{4}(n)=\operatorname{Ysection}(F(n), p)$, and
(ii) there exists a disjoint valued sequence F_{3} of subsets of Y such that for every natural number $n, F_{3}(n)=\mathrm{Xsection}(F(n), p)$.
Proof: There exists a disjoint valued sequence F_{4} of subsets of X such that for every natural number $n, F_{4}(n)=\operatorname{Ysection}(F(n), p)$. Define \mathcal{A} (natural number $)=\mathrm{X} \operatorname{section}\left(F\left(\$_{1}\right), p\right)$. Consider F_{3} being a sequence of subsets of Y such that for every element n of $\mathbb{N}, F_{3}(n)=\mathcal{A}(n)$ from [11, Sch. 4].
(38) Let us consider non empty sets X, Y, sets x, y, and subsets E_{1}, E_{2} of $X \times Y$. Suppose E_{1} misses E_{2}. Then
(i) $\chi_{E_{1} \cup E_{2}, X \times Y}(x, y)=\chi_{\mathrm{Xsection}\left(E_{1}, x\right), Y}(y)+\chi_{\mathrm{X} \operatorname{section}\left(E_{2}, x\right), Y}(y)$, and
(ii) $\chi_{E_{1} \cup E_{2}, X \times Y}(x, y)=\chi_{\text {Ysection }\left(E_{1}, y\right), X}(x)+\chi_{\mathrm{Ysection}\left(E_{2}, y\right), X}(x)$.

The theorem is a consequence of (35), (34), and (26).
(39) Let us consider a set X, a non empty set Y, a set x, a sequence E of subsets of $X \times Y$, and a sequence G of subsets of Y. Suppose E is non descending and for every natural number $n, G(n)=X \operatorname{section}(E(n), x)$. Then G is non descending. The theorem is a consequence of (20).
(40) Let us consider a non empty set X, a set Y, a set x, a sequence E of subsets of $X \times Y$, and a sequence G of subsets of X. Suppose E is non descending and for every natural number $n, G(n)=\operatorname{Ysection}(E(n), x)$. Then G is non descending. The theorem is a consequence of (21).
(41) Let us consider a set X, a non empty set Y, a set x, a sequence E of subsets of $X \times Y$, and a sequence G of subsets of Y. Suppose E is non ascending and for every natural number $n, G(n)=X \operatorname{section}(E(n), x)$. Then G is non ascending. The theorem is a consequence of (20).
(42) Let us consider a non empty set X, a set Y, a set x, a sequence E of subsets of $X \times Y$, and a sequence G of subsets of X. Suppose E is non ascending and for every natural number $n, G(n)=\operatorname{Ysection}(E(n), x)$. Then G is non ascending. The theorem is a consequence of (21).
(43) Let us consider a set X, a non empty set Y, a sequence E of subsets of $X \times Y$, and a set x. Suppose E is non descending. Then there exists a sequence G of subsets of Y such that
(i) G is non descending, and
(ii) for every natural number $n, G(n)=\mathrm{X} \operatorname{section}(E(n), x)$.

Proof: Define \mathcal{F} (natural number) $=\operatorname{Xsection}\left(E\left(\$_{1}\right), x\right)$. Consider G being a function from \mathbb{N} into 2^{Y} such that for every element n of $\mathbb{N}, G(n)=$ $\mathcal{F}(n)$ from [11, Sch. 4]. For every natural number $n, G(n)=$ Xsection $(E(n), x)$.
(44) Let us consider a non empty set X, a set Y, a sequence E of subsets of $X \times Y$, and a set x. Suppose E is non descending. Then there exists a sequence G of subsets of X such that
(i) G is non descending, and
(ii) for every natural number $n, G(n)=\operatorname{Ysection}(E(n), x)$.

Proof: Define \mathcal{F} (natural number) $=\operatorname{Ysection}\left(E\left(\$_{1}\right), x\right)$. Consider G being a function from \mathbb{N} into 2^{X} such that for every element n of $\mathbb{N}, G(n)=$ $\mathcal{F}(n)$ from [11, Sch. 4]. For every natural number $n, G(n)=$ Ysection $(E(n), x)$.
(45) Let us consider a set X, a non empty set Y, a sequence E of subsets of $X \times Y$, and a set x. Suppose E is non ascending. Then there exists a sequence G of subsets of Y such that
(i) G is non ascending, and
(ii) for every natural number $n, G(n)=\mathrm{X} \operatorname{section}(E(n), x)$.

Proof: Define \mathcal{F} (natural number) $=\operatorname{Xsection}\left(E\left(\$_{1}\right), x\right)$. Consider G being a function from \mathbb{N} into 2^{Y} such that for every element n of $\mathbb{N}, G(n)=$ $\mathcal{F}(n)$ from [11, Sch. 4]. For every natural number $n, G(n)=$ Xsection $(E(n), x)$.
(46) Let us consider a non empty set X, a set Y, a sequence E of subsets of $X \times Y$, and a set x. Suppose E is non ascending. Then there exists a sequence G of subsets of X such that
(i) G is non ascending, and
(ii) for every natural number $n, G(n)=\operatorname{Ysection}(E(n), x)$.

Proof: Define \mathcal{F} (natural number) $=\operatorname{Ysection}\left(E\left(\$_{1}\right), x\right)$. Consider G being a function from \mathbb{N} into 2^{X} such that for every element n of $\mathbb{N}, G(n)=$ $\mathcal{F}(n)$ from [11, Sch. 4]. For every natural number $n, G(n)=$ Ysection $(E(n), x)$.

4. Measurable Sections

Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, and a set K. Now we state the propositions:
(47) Suppose $K=\left\{C\right.$, where C is a subset of $X_{1} \times X_{2}$: for every set p, Xsection $\left.(C, p) \in S_{2}\right\}$. Then
(i) the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right) \subseteq K$, and
(ii) K is a σ-field of subsets of $X_{1} \times X_{2}$.

Proof: For every set x, $\mathrm{Xsection}\left(\emptyset_{X_{1} \times X_{2}}, x\right) \in S_{2}$ by (24), [5, (7)]. For every subset C of $X_{1} \times X_{2}$ such that $C \in K$ holds $C^{c} \in K$ by [17, (5), (6)], (25), (23).
(48) Suppose $K=\left\{C\right.$, where C is a subset of $X_{1} \times X_{2}$: for every set p, Ysection $\left.(C, p) \in S_{1}\right\}$. Then
(i) the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right) \subseteq K$, and
(ii) K is a σ-field of subsets of $X_{1} \times X_{2}$.

Proof: For every set y, Ysection $\left(\emptyset_{X_{1} \times X_{2}}, y\right) \in S_{1}$ by (24), [5, (7)]. For every subset C of $X_{1} \times X_{2}$ such that $C \in K$ holds $C^{\text {c }} \in K$ by [17, (5), (6)], (25), (23).
(49) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, and an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Then
(i) for every set $p, \mathrm{X} \operatorname{section}(E, p) \in S_{2}$, and
(ii) for every set $p, \operatorname{Ysection}(E, p) \in S_{1}$.

The theorem is a consequence of (47) and (48).
Let X_{1}, X_{2} be non empty sets, S_{1} be a σ-field of subsets of X_{1}, S_{2} be a σ field of subsets of X_{2}, E be an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, and x be a set. The functor MeasurableXsection (E, x) yielding an element of S_{2} is defined by the term
(Def. 6) $\quad \mathrm{Xsection}(E, x)$.
Let y be a set. The functor MeasurableYsection (E, y) yielding an element of S_{1} is defined by the term
(Def. 7) Ysection (E, y).
Now we state the propositions:
(50) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ field S_{2} of subsets of X_{2}, a finite sequence F of elements of σ (MeasRect $\left(S_{1}\right.$, S_{2}), a finite sequence F_{4} of elements of S_{2}, and a set p. Suppose dom $F=$ dom F_{4} and for every natural number n such that $n \in \operatorname{dom} F_{4}$ holds $F_{4}(n)=\operatorname{MeasurableXsection}(F(n), p)$. Then MeasurableXsection $(\cup F, p)=$ $\cup F_{4}$. The theorem is a consequence of (28).
(51) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ field S_{2} of subsets of X_{2}, a finite sequence F of elements of σ (MeasRect $\left(S_{1}\right.$, S_{2}), a finite sequence F_{3} of elements of S_{1}, and a set p. Suppose $\operatorname{dom} F=$ dom F_{3} and for every natural number n such that $n \in \operatorname{dom} F_{3}$ holds $F_{3}(n)=\operatorname{MeasurableYsection}(F(n), p)$. Then MeasurableYsection $(\bigcup F, p)=$ $\cup F_{3}$. The theorem is a consequence of (29).
(52) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, an element A of S_{1}, an element B of S_{2}, and an element x of X_{1}. Then $M_{2}(B) \cdot \chi_{A, X_{1}}(x)=$ $\int \operatorname{curry}\left(\chi_{A \times B, X_{1} \times X_{2}}, x\right) \mathrm{d} M_{2}$.
Proof: For every element y of $X_{2},\left(\operatorname{curry}\left(\chi_{A \times B, X_{1} \times X_{2}}, x\right)\right)(y)=\chi_{A, X_{1}}(x)$. $\chi_{B, X_{2}}(y)$.
(53) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, an element E of
$\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, an element A of S_{1}, an element B of S_{2}, and an element x of X_{1}. Suppose $E=A \times B$. Then M_{2} (MeasurableXsection $\left.(E, x)\right)=$ $M_{2}(B) \cdot \chi_{A, X_{1}}(x)$. The theorem is a consequence of (22).
(54) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, an element A of S_{1}, an element B of S_{2}, and an element y of X_{2}. Then $M_{1}(A) \cdot \chi_{B, X_{2}}(y)=$ $\int \operatorname{curry}^{\prime}\left(\chi_{A \times B, X_{1} \times X_{2}}, y\right) \mathrm{d} M_{1}$.
Proof: For every element x of $X_{1},\left(\operatorname{curry}^{\prime}\left(\chi_{A \times B, X_{1} \times X_{2}}, y\right)\right)(x)=\chi_{A, X_{1}}(x)$. $\chi_{B, X_{2}}(y)$.
(55) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, an element A of S_{1}, an element B of S_{2}, and an element y of X_{2}. Suppose $E=A \times B$. Then M_{1} (MeasurableYsection $\left.(E, y)\right)=$ $M_{1}(A) \cdot \chi_{B, X_{2}}(y)$. The theorem is a consequence of (22).

5. Finite Sequence of Functions

Let X, Y be non empty sets, G be a non empty set of functions from X to Y, F be a finite sequence of elements of G, and n be a natural number. Observe that the functor F_{n} yields an element of G. Let X be a set and F be a finite sequence of elements of $\overline{\mathbb{R}}^{X}$. We say that F is (without $+\infty$)-valued if and only if
(Def. 8) for every natural number n such that $n \in \operatorname{dom} F$ holds $F(n)$ is without $+\infty$.
We say that F is (without $-\infty$)-valued if and only if
(Def. 9) for every natural number n such that $n \in \operatorname{dom} F$ holds $F(n)$ is without $-\infty$.

Now we state the proposition:
(56) Let us consider a non empty set X. Then
(i) $\langle X \longmapsto 0\rangle$ is a finite sequence of elements of $\overline{\mathbb{R}}^{X}$, and
(ii) for every natural number n such that $n \in \operatorname{dom}\langle X \longmapsto 0\rangle$ holds $\langle X \longmapsto 0\rangle(n)$ is without $+\infty$, and
(iii) for every natural number n such that $n \in \operatorname{dom}\langle X \longmapsto 0\rangle$ holds $\langle X \longmapsto 0\rangle(n)$ is without $-\infty$.

Let X be a non empty set. One can verify that there exists a finite sequence of elements of $\overline{\mathbb{R}}^{X}$ which is (without $+\infty$)-valued and (without $-\infty$)-valued.
(57) Let us consider a non empty set X, a (without $+\infty$)-valued finite sequence F of elements of $\overline{\mathbb{R}}^{X}$, and a natural number n. If $n \in \operatorname{dom} F$, then $\left(F_{n}\right)^{-1}(\{+\infty\})=\emptyset$.
(58) Let us consider a non empty set X, a (without $-\infty$)-valued finite sequence F of elements of $\overline{\mathbb{R}}^{X}$, and a natural number n. If $n \in \operatorname{dom} F$, then $\left(F_{n}\right)^{-1}(\{-\infty\})=\emptyset$.
(59) Let us consider a non empty set X, and a finite sequence F of elements of $\overline{\mathbb{R}}^{X}$. Suppose F is (without $+\infty$)-valued or (without $-\infty$)-valued. Let us consider natural numbers n, m. If $n, m \in \operatorname{dom} F$, then $\operatorname{dom}\left(F_{n}+F_{m}\right)=X$. The theorem is a consequence of (57) and (58).
Let X be a non empty set and F be a finite sequence of elements of $\overline{\mathbb{R}}^{X}$. We say that F is summable if and only if
(Def. 10) $\quad F$ is (without $+\infty$)-valued or (without $-\infty$)-valued.
Observe that there exists a finite sequence of elements of $\overline{\mathbb{R}}^{X}$ which is summable.

Let F be a summable finite sequence of elements of $\overline{\mathbb{R}}^{X}$. The functor
$\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}$ yielding a finite sequence of elements of $\overline{\mathbb{R}}^{X}$ is defined by
(Def. 11) len $F=\operatorname{len} i t$ and $F(1)=i t(1)$ and for every natural number n such that $1 \leqslant n<\operatorname{len} F$ holds $i t(n+1)=i t_{n}+F_{n+1}$.
One can check that every finite sequence of elements of $\overline{\mathbb{R}}^{X}$ which is (without $+\infty$)-valued is also summable and every finite sequence of elements of $\overline{\mathbb{R}}^{X}$ which is (without $-\infty$)-valued is also summable.

Now we state the propositions:
(60) Let us consider a non empty set X, and a (without $+\infty$)-valued finite sequence F of elements of $\overline{\mathbb{R}}^{X}$. Then $\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}$ is (without $+\infty$)valued.
Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1} \in \operatorname{dom}\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}$, then $\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)$ is without $+\infty$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1$] by [19, (29)], [2, (14)], [19, (25)], [2, (13)]. For every natural number $n, \mathcal{P}[n]$ from [2, Sch. 2].
(61) Let us consider a non empty set X, and a (without $-\infty$)-valued finite sequence F of elements of $\overline{\mathbb{R}}^{X}$. Then $\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}$ is (without $-\infty$)valued.
Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1} \in \operatorname{dom}\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}$, then $\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)$ is without $-\infty$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1$] by [19, (29)], [2, (14)], [19, (25)], [2, (13)]. For every natural number $n, \mathcal{P}[n]$ from [2, Sch. 2].
(62) Let us consider a non empty set X, a set A, an extended real e, and a function f from X into $\overline{\mathbb{R}}$. Suppose for every element x of $X, f(x)=$ $e \cdot \chi_{A, X}(x)$. Then
(i) if $e=+\infty$, then $f=\bar{\chi}_{A, X}$, and
(ii) if $e=-\infty$, then $f=-\bar{\chi}_{A, X}$, and
(iii) if $e \neq+\infty$ and $e \neq-\infty$, then there exists a real number r such that $r=e$ and $f=r \cdot \chi_{A, X}$.
(63) Let us consider a non empty set X, a σ-field S of subsets of X, a partial function f from X to $\overline{\mathbb{R}}$, and an element A of S. Suppose f is measurable on A and $A \subseteq \operatorname{dom} f$. Then $-f$ is measurable on A.
Let X be a non empty set and f be a without $-\infty$ partial function from X to $\overline{\mathbb{R}}$. Observe that $-f$ is without $+\infty$.

Let f be a without $+\infty$ partial function from X to $\overline{\mathbb{R}}$. One can check that $-f$ is without $-\infty$.

Let f_{1}, f_{2} be without $+\infty$ partial functions from X to $\overline{\mathbb{R}}$. Let us note that the functor $f_{1}+f_{2}$ yields a without $+\infty$ partial function from X to $\overline{\mathbb{R}}$. Let f_{1}, f_{2} be without $-\infty$ partial functions from X to $\overline{\mathbb{R}}$. Note that the functor $f_{1}+f_{2}$ yields a without $-\infty$ partial function from X to $\overline{\mathbb{R}}$. Let f_{1} be a without $+\infty$ partial function from X to $\overline{\mathbb{R}}$ and f_{2} be a without $-\infty$ partial function from X to $\overline{\mathbb{R}}$. One can verify that the functor $f_{1}-f_{2}$ yields a without $+\infty$ partial function from X to $\overline{\mathbb{R}}$. Let f_{1} be a without $-\infty$ partial function from X to $\overline{\mathbb{R}}$ and f_{2} be a without $+\infty$ partial function from X to $\overline{\mathbb{R}}$. Observe that the functor $f_{1}-f_{2}$ yields a without $-\infty$ partial function from X to $\overline{\mathbb{R}}$. Now we state the propositions:
(64) Let us consider a non empty set X, and partial functions f, g from X to $\overline{\mathbb{R}}$. Then
(i) $-(f+g)=-f+-g$, and
(ii) $-(f-g)=-f+g$, and
(iii) $-(f-g)=g-f$, and
(iv) $-(-f+g)=f-g$, and
(v) $-(-f+g)=f+-g$.
(65) Let us consider a non empty set X, a σ-field S of subsets of X, without $+\infty$ partial functions f, g from X to $\overline{\mathbb{R}}$, and an element A of S. Suppose f is measurable on A and g is measurable on A and $A \subseteq \operatorname{dom}(f+g)$. Then $f+g$ is measurable on A. The theorem is a consequence of (63) and (64).
(66) Let us consider a non empty set X, a σ-field S of subsets of X, an element A of S, a without $+\infty$ partial function f from X to $\overline{\mathbb{R}}$, and a without $-\infty$
partial function g from X to $\overline{\mathbb{R}}$. Suppose f is measurable on A and g is measurable on A and $A \subseteq \operatorname{dom}(f-g)$. Then $f-g$ is measurable on A. The theorem is a consequence of (63) and (64).
(67) Let us consider a non empty set X, a σ-field S of subsets of X, an element A of S, a without $-\infty$ partial function f from X to $\overline{\mathbb{R}}$, and a without $+\infty$ partial function g from X to $\overline{\mathbb{R}}$. Suppose f is measurable on A and g is measurable on A and $A \subseteq \operatorname{dom}(f-g)$. Then $f-g$ is measurable on A. The theorem is a consequence of (64), (63), and (65).
(68) Let us consider a non empty set X, a σ-field S of subsets of X, an element P of S, and a summable finite sequence F of elements of $\overline{\mathbb{R}}^{X}$. Suppose for every natural number n such that $n \in \operatorname{dom} F$ holds F_{n} is measurable on P. Let us consider a natural number n. Suppose $n \in \operatorname{dom} F$. Then $\left(\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{n}$ is measurable on P. The theorem is a consequence of (60), (65), and (61).

6. Some Properties of Integral

Now we state the propositions:
(69) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right.$), an element A of S_{1}, an element B of S_{2}, an element x of X_{1}, and an element y of X_{2}. Suppose $E=A \times$ B. Then
(i) $\int \operatorname{curry}\left(\chi_{E, X_{1} \times X_{2}}, x\right) \mathrm{d} M_{2}=M_{2}$ (MeasurableXsection $\left.(E, x)\right) \cdot \chi_{A, X_{1}}(x)$, and
(ii) $\int \operatorname{curry}^{\prime}\left(\chi_{E, X_{1} \times X_{2}}, y\right) \mathrm{d} M_{1}=M_{1}($ MeasurableYsection $(E, y)) \cdot \chi_{B, X_{2}}(y)$. The theorem is a consequence of (52), (53), (54), and (55).
(70) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, and an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose $E \in$ the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$. Then there exists a disjoint valued finite sequence f of elements of $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$ and there exists a finite sequence A of elements of S_{1}.
There exists a finite sequence B of elements of S_{2} such that len $f=\operatorname{len} A$ and len $f=\operatorname{len} B$ and $E=\bigcup f$ and for every natural number n such that $n \in \operatorname{dom} f$ holds $\pi_{1}(f(n))=A(n)$ and $\pi_{2}(f(n))=B(n)$ and for every natural number n and for every sets x, y such that $n \in \operatorname{dom} f$ and $x \in X_{1}$ and $y \in X_{2}$ holds $\chi_{f(n), X_{1} \times X_{2}}(x, y)=\chi_{A(n), X_{1}}(x) \cdot \chi_{B(n), X_{2}}(y)$.

Proof: Consider E_{1} being a subset of $X_{1} \times X_{2}$ such that $E=E_{1}$ and there exists a disjoint valued finite sequence f of elements of MeasRect $\left(S_{1}, S_{2}\right)$ such that $E_{1}=\bigcup f$. Consider f being a disjoint valued finite sequence of elements of $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$ such that $E_{1}=\bigcup f$. Define \mathcal{S} [natural number, object $] \equiv \$_{2}=\pi_{1}\left(f\left(\$_{1}\right)\right)$. For every natural number i such that $i \in \operatorname{Seg} \operatorname{len} f$ there exists an element A_{1} of S_{1} such that $\mathcal{S}\left[i, A_{1}\right]$ by [12, (4)], [1, (9)], [5, (7)]. Consider A being a finite sequence of elements of S_{1} such that $\operatorname{dom} A=\operatorname{Seg}$ len f and for every natural number i such that $i \in \operatorname{Seg}$ len f holds $\mathcal{S}[i, A(i)]$ from [3, Sch. 5]. Define \mathcal{T} [natural number, object $] \equiv \$_{2}=\pi_{2}\left(f\left(\$_{1}\right)\right)$. For every natural number i such that $i \in \operatorname{Seg}$ len f there exists an element B_{1} of S_{2} such that $\mathcal{T}\left[i, B_{1}\right]$ by [12, (4)], [1, (9)], [5, (7)]. Consider B being a finite sequence of elements of S_{2} such that dom $B=\operatorname{Seg}$ len f and for every natural number i such that $i \in \operatorname{Seg}$ len f holds $\mathcal{T}[i, B(i)]$ from [3, Sch. 5]. For every natural number n such that $n \in \operatorname{dom} f$ holds $\pi_{1}(f(n))=A(n)$ and $\pi_{2}(f(n))=B(n)$. Consider A_{2} being an element of S_{1}, B_{2} being an element of S_{2} such that $f(n)=A_{2} \times B_{2}$.
(71) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, an element x of X_{1}, an element y of X_{2}, an element U of S_{1}, and an element V of S_{2}. Then
(i) $M_{1}($ MeasurableYsection $(E, y) \cap U)=$ $\int \operatorname{curry}^{\prime}\left(\chi_{E \cap\left(U \times X_{2}\right), X_{1} \times X_{2}}, y\right) \mathrm{d} M_{1}$, and
(ii) $M_{2}(\operatorname{MeasurableXsection}(E, x) \cap V)=$ $\int \operatorname{curry}\left(\chi_{E \cap\left(X_{1} \times V\right), X_{1} \times X_{2}}, x\right) \mathrm{d} M_{2}$.
The theorem is a consequence of (34), (27), and (22).
(72) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right.$), an element x of X_{1}, and an element y of X_{2}. Then
(i) $M_{1}(\operatorname{MeasurableYsection}(E, y))=\int \operatorname{curry}^{\prime}\left(\chi_{E, X_{1} \times X_{2}}, y\right) \mathrm{d} M_{1}$, and
(ii) $M_{2}(\operatorname{MeasurableX} \operatorname{section}(E, x))=\int \operatorname{curry}\left(\chi_{E, X_{1} \times X_{2}}, x\right) \mathrm{d} M_{2}$.

The theorem is a consequence of (71).
(73) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, a disjoint valued finite sequence f of elements of $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$, an element x of X_{1}, a natural number n, an element E_{2} of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, an element A_{2} of S_{1}, and an element B_{2} of S_{2}. Suppose $n \in \operatorname{dom} f$ and $f(n)=E_{2}$ and $E_{2}=A_{2} \times$
B_{2}. Then $\int \operatorname{curry}\left(\chi_{f(n), X_{1} \times X_{2}}, x\right) \mathrm{d} M_{2}=M_{2}\left(\right.$ MeasurableXsection $\left.\left(E_{2}, x\right)\right)$. $\chi_{A_{2}, X_{1}}(x)$.
(74) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ field S_{2} of subsets of X_{2}, and an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose $E \in$ the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$ and $E \neq \emptyset$. Then there exists a disjoint valued finite sequence f of elements of $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$ and there exists a finite sequence A of elements of S_{1} and there exists a finite sequence B of elements of S_{2}.
There exists a summable finite sequence X_{3} of elements of $\overline{\mathbb{R}}^{X_{1} \times X_{2}}$ such that $E=\bigcup f$ and $\operatorname{len} f \in \operatorname{dom} f$ and $\operatorname{len} f=\operatorname{len} A$ and $\operatorname{len} f=\operatorname{len} B$ and len $f=\operatorname{len} X_{3}$ and for every natural number n such that $n \in \operatorname{dom} f$ holds $f(n)=A(n) \times B(n)$ and for every natural number n such that $n \in \operatorname{dom} X_{3}$ holds $X_{3}(n)=\chi_{f(n), X_{1} \times X_{2}}$ and $\left(\sum_{\alpha=0}^{\kappa} X_{3}(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\operatorname{len} X_{3}\right)=$ $\chi_{E, X_{1} \times X_{2}}$ and for every natural number n and for every sets x, y such that $n \in \operatorname{dom} X_{3}$ and $x \in X_{1}$ and $y \in X_{2}$ holds $X_{3}(n)(x, y)=\chi_{A(n), X_{1}}(x)$. $\chi_{B(n), X_{2}}(y)$.
For every element x of $X_{1}, \operatorname{curry}\left(\chi_{E, X_{1} \times X_{2}}, x\right)=$
$\operatorname{curry}\left(\left(\left(\sum_{\alpha=0}^{\kappa} X_{3}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\text {len } X_{3}}, x\right)$ and for every element y of X_{2},
$\operatorname{curry}^{\prime}\left(\chi_{E, X_{1} \times X_{2}}, y\right)=\operatorname{curry}^{\prime}\left(\left(\left(\sum_{\alpha=0}^{\kappa} X_{3}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} X_{3}}, y\right)$.
Proof: Consider f being a disjoint valued finite sequence of elements of MeasRect $\left(S_{1}, S_{2}\right), A$ being a finite sequence of elements of S_{1}, B being a finite sequence of elements of S_{2} such that len $f=\operatorname{len} A$ and len $f=$ len B and $E=\bigcup f$ and for every natural number n such that $n \in$ $\operatorname{dom} f$ holds $\pi_{1}(f(n))=A(n)$ and $\pi_{2}(f(n))=B(n)$ and for every natural number n and for every sets x, y such that $n \in \operatorname{dom} f$ and $x \in X_{1}$ and $y \in X_{2}$ holds $\chi_{f(n), X_{1} \times X_{2}}(x, y)=\chi_{A(n), X_{1}}(x) \cdot \chi_{B(n), X_{2}}(y)$. Define $\mathcal{F}($ set $)=\chi_{f\left(\S_{1}\right), X_{1} \times X_{2}}$. Consider X_{3} being a finite sequence such that len $X_{3}=\operatorname{len} f$ and for every natural number n such that $n \in \operatorname{dom} X_{3}$ holds $X_{3}(n)=\mathcal{F}(n)$ from [3, Sch. 2]. Define \mathcal{P} [natural number] \equiv if $\$_{1} \in \operatorname{dom} f$, then $\left(\sum_{\alpha=0}^{\kappa} X_{3}(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)=\chi_{\bigcup\left(f \mid \Phi_{1}\right), X_{1} \times X_{2}}$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [9, (20)], [3, (39)], [13, (25)], [2, (14)]. For every natural number $n, \mathcal{P}[n]$ from [2, Sch. 2]. For every natural number n such that $n \in \operatorname{dom} f$ holds $f(n)=A(n) \times$ $B(n)$ by [12, (4)], [13, (90)], [1, (9)]. For every natural number n and for every sets x, y such that $n \in \operatorname{dom} X_{3}$ and $x \in X_{1}$ and $y \in X_{2}$ holds $X_{3}(n)(x, y)=\chi_{A(n), X_{1}}(x) \cdot \chi_{B(n), X_{2}}(y)$. For every element x of X_{1}, $\operatorname{curry}\left(\chi_{E, X_{1} \times X_{2}}, x\right)=\operatorname{curry}\left(\left(\left(\sum_{\alpha=0}^{\kappa} X_{3}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} X_{3}}, x\right)$.
(75) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, and a finite sequence F of elements of $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$. Then $\cup F \in \sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$.

Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant \operatorname{len} F$, then $\bigcup \operatorname{rng}(F \upharpoonright \$ 1) \in$ $\sigma\left(\right.$ MeasRect $\left.\left(S_{1}, S_{2}\right)\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [2, (11)], [19, (25)], [8, (11)], [3, (59)]. For every natural number $k, \mathcal{P}[k]$ from [2, Sch. 2].
(76) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, and an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose $E \in$ the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$ and $E \neq \emptyset$.
Then there exists a disjoint valued finite sequence F of elements of MeasRect $\left(S_{1}, S_{2}\right)$ and there exists a finite sequence A of elements of S_{1} and there exists a finite sequence B of elements of S_{2} and there exists a summable finite sequence C of elements of $\overline{\mathbb{R}}^{X_{1} \times X_{2}}$ and there exists a summable finite sequence I of elements of $\overline{\mathbb{R}}^{X_{1}}$ and there exists a summable finite sequence J of elements of $\overline{\mathbb{R}}^{X_{2}}$ such that $E=\bigcup F$ and len $F \in \operatorname{dom} F$ and len $F=\operatorname{len} A$ and len $F=\operatorname{len} B$ and len $F=\operatorname{len} C$ and len $F=\operatorname{len} I$ and len $F=\operatorname{len} J$ and for every natural number n such that $n \in \operatorname{dom} C$ holds $C(n)=\chi_{F(n), X_{1} \times X_{2}}$ and $\left(\left(\sum_{\alpha=0}^{\kappa} C(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} C}=\chi_{E, X_{1} \times X_{2}}$.
For every element x of X_{1} and for every natural number n such that $n \in$ dom I holds $I(n)(x)=\int \operatorname{curry}\left(C_{n}, x\right) \mathrm{d} M_{2}$ and for every natural number n and for every element P of S_{1} such that $n \in \operatorname{dom} I$ holds I_{n} is measurable on P and for every element x of $X_{1}, \int \operatorname{curry}\left(\left(\left(\sum_{\alpha=0}^{\kappa} C(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} C}, x\right) \mathrm{d} M_{2}=$ $\left(\left(\sum_{\alpha=0}^{\kappa} I(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} I}(x)$ and for every element y of X_{2} and for every natural number n such that $n \in \operatorname{dom} J$ holds $J(n)(y)=\int \operatorname{curry}^{\prime}\left(C_{n}, y\right) \mathrm{d} M_{1}$ and for every natural number n and for every element P of S_{2} such that $n \in \operatorname{dom} J$ holds J_{n} is measurable on P and for every element y of X_{2}, $\int \operatorname{curry}^{\prime}\left(\left(\left(\sum_{\alpha=0}^{\kappa} C(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} C}, y\right) \mathrm{d} M_{1}=\left(\left(\sum_{\alpha=0}^{\kappa} J(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} J}(y)$.
Proof: Consider F being a disjoint valued finite sequence of elements of MeasRect $\left(S_{1}, S_{2}\right), A$ being a finite sequence of elements of S_{1}, B being a finite sequence of elements of S_{2}, C being a summable finite sequence of elements of $\overline{\mathbb{R}}^{X_{1} \times X_{2}}$ such that $E=\bigcup F$ and len $F \in \operatorname{dom} F$ and len $F=\operatorname{len} A$ and $\operatorname{len} F=\operatorname{len} B$ and len $F=\operatorname{len} C$ and for every natural number n such that $n \in \operatorname{dom} F$ holds $F(n)=A(n) \times B(n)$ and for every natural number n such that $n \in \operatorname{dom} C$ holds $C(n)=\chi_{F(n), X_{1} \times X_{2}}$ and $\left(\sum_{\alpha=0}^{\kappa} C(\alpha)\right)_{\kappa \in \mathbb{N}}(\operatorname{len} C)=\chi_{E, X_{1} \times X_{2}}$ and for every natural number n and for every sets x, y such that $n \in \operatorname{dom} C$ and $x \in X_{1}$ and $y \in X_{2}$ holds $C(n)(x, y)=\chi_{A(n), X_{1}}(x) \cdot \chi_{B(n), X_{2}}(y)$ and for every element x of X_{1}, $\operatorname{curry}\left(\chi_{E, X_{1} \times X_{2}}, x\right)=\operatorname{curry}\left(\left(\left(\sum_{\alpha=0}^{\kappa} C(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} C}, x\right)$ and for every element y of X_{2}, curry $^{\prime}\left(\chi_{E, X_{1} \times X_{2}}, y\right)=\operatorname{curry}^{\prime}\left(\left(\left(\sum_{\alpha=0}^{\kappa} C(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} C}, y\right)$. Define \mathcal{S} [natural number, object] \equiv there exists a function f from X_{1} into $\overline{\mathbb{R}}$ such that $f=\$_{2}$ and for every element x of $X_{1}, f(x)=\int \operatorname{curry}\left(C_{\$_{1}}, x\right) \mathrm{d} M_{2}$.

For every natural number n such that $n \in \operatorname{Seg} \operatorname{len} F$ there exists an object z such that $\mathcal{S}[n, z]$. Consider I being a finite sequence such that dom $I=\operatorname{Seg}$ len F and for every natural number n such that $n \in \operatorname{Seg}$ len F holds $\mathcal{S}[n, I(n)]$ from [3, Sch. 1]. For every element x of X_{1} and for every natural number n such that $n \in \operatorname{dom} I$ holds $I(n)(x)=\int \operatorname{curry}\left(C_{n}, x\right) \mathrm{d} M_{2}$ by [12, (4)]. Define \mathcal{T} [natural number, object] \equiv there exists a function f from X_{2} into $\overline{\mathbb{R}}$ such that $f=\$_{2}$ and for every element x of X_{2}, $f(x)=\int \operatorname{curry}^{\prime}\left(C_{\Phi_{1}}, x\right) \mathrm{d} M_{1}$. For every natural number n such that $n \in$ Seg len F there exists an object z such that $\mathcal{T}[n, z]$. Consider J being a finite sequence such that $\operatorname{dom} J=\operatorname{Seg} \operatorname{len} F$ and for every natural number n such that $n \in \operatorname{Seg}$ len F holds $\mathcal{T}[n, J(n)$] from [3, Sch. 1]. For every element x of X_{2} and for every natural number n such that $n \in \operatorname{dom} J$ holds $J(n)(x)=\int \operatorname{curry}^{\prime}\left(C_{n}, x\right) \mathrm{d} M_{1}$ by [12, (4)]. For every natural number n and for every element P of S_{1} such that $n \in \operatorname{dom} I$ holds I_{n} is measurable on P by [12, (4)], (69), (22). For every element x of X_{1}, $\int \operatorname{curry}\left(\left(\left(\sum_{\alpha=0}^{\kappa} C(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} C}, x\right) \mathrm{d} M_{2}=\left(\left(\sum_{\alpha=0}^{\kappa} I(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} I}(x)$ by [19, $(24),(25)],[2, ~(13)],[9,(20)]$. For every natural number n and for every element P of S_{2} such that $n \in \operatorname{dom} J$ holds J_{n} is measurable on P by [12, (4)], (69), (22). For every element x of $X_{2}, \int \operatorname{curry}^{\prime}\left(\left(\left(\sum_{\alpha=0}^{\kappa} C(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} C}, x\right)$ $\mathrm{d} M_{1}=\left(\left(\sum_{\alpha=0}^{\kappa} J(\alpha)\right)_{\kappa \in \mathbb{N}}\right)_{\operatorname{len} J}(x)$ by [19, (24), (25)], [2, (13)], [9, (20)].
Let X_{1}, X_{2} be non empty sets, S_{1} be a σ-field of subsets of X_{1}, S_{2} be a σ field of subsets of X_{2}, F be a set sequence of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, and n be a natural number. One can verify that the functor $F(n)$ yields an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Let F be a function from $\mathbb{N} \times \sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$ into $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right), n$ be an element of \mathbb{N}, and E be an element of
$\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Let us observe that the functor $F(n, E)$ yields an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Now we state the propositions:
(77) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, and an element V of S_{2}. Suppose $E \in$ the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$. Then there exists a function F from X_{1} into $\overline{\mathbb{R}}$ such that
(i) for every element x of $X_{1}, F(x)=M_{2}$ (MeasurableXsection $(E, x) \cap$ $V)$, and
(ii) for every element P of S_{1}, F is measurable on P.

The theorem is a consequence of (22), (27), (24), (76), (71), and (68).
(78) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, and an element V of S_{1}.

Suppose $E \in$ the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$. Then there exists a function F from X_{2} into $\overline{\mathbb{R}}$ such that
(i) for every element x of $X_{2}, F(x)=M_{1}($ MeasurableYsection $(E, x) \cap$ $V)$, and
(ii) for every element P of S_{2}, F is measurable on P.

The theorem is a consequence of (22), (27), (24), (76), (71), and (68).
(79) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, and an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose $E \in$ the field generated by MeasRect $\left(S_{1}, S_{2}\right)$. Let us consider an element B of S_{2}. Then $E \in\{E$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: there exists a function F from X_{1} into $\overline{\mathbb{R}}$ such that for every element x of $X_{1}, F(x)=M_{2}$ (MeasurableXsection $\left.(E, x) \cap B\right)$ and for every element V of S_{1}, F is measurable on $\left.V\right\}$. The theorem is a consequence of (77).
(80) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, and an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose $E \in$ the field generated by MeasRect $\left(S_{1}, S_{2}\right)$. Let us consider an element B of S_{1}. Then $E \in\{E$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: there exists a function F from X_{2} into $\overline{\mathbb{R}}$ such that for every element x of $X_{2}, F(x)=M_{1}$ (MeasurableYsection $(E, x) \cap B$) and for every element V of S_{2}, F is measurable on $\left.V\right\}$. The theorem is a consequence of (78).
(81) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, and an element B of S_{2}. Then the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right) \subseteq\{E$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: there exists a function F from X_{1} into $\overline{\mathbb{R}}$ such that for every element x of $X_{1}, F(x)=$
M_{2} (MeasurableXsection $(E, x) \cap B$) and for every element V of S_{1}, F is measurable on $V\}$. The theorem is a consequence of (7) and (79).
(82) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, and an element B of S_{1}. Then the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right) \subseteq\{E$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: there exists a function F from X_{2} into $\overline{\mathbb{R}}$ such that for every element y of $X_{2}, F(y)=$ M_{1} (MeasurableYsection $(E, y) \cap B$) and for every element V of S_{2}, F is measurable on $V\}$. The theorem is a consequence of (7) and (80).

7. σ-Finite Measure

Let X be a non empty set, S be a σ-field of subsets of X, and M be a σ measure on S. We say that M is σ-finite if and only if
(Def. 12) there exists a set sequence E of S such that for every natural number n, $M(E(n))<+\infty$ and $\cup E=X$.
Now we state the propositions:
(83) Let us consider a non empty set X, a σ-field S of subsets of X, and a σ-measure M on S. Then M is σ-finite if and only if there exists a set sequence F of S such that F is non descending and for every natural number $n, M(F(n))<+\infty$ and $\lim F=X$.
(84) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P of S, and an induced measure M of S and P. Then $M=$ (the Caratheodory measure determined by $M) \upharpoonright($ the field generated by $S)$.

8. Fubini's Theorem on Measure

Now we state the propositions:
(85) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, and an element B of S_{2}. Suppose $M_{2}(B)<+\infty$. Then $\{E$, where E is an element of $\sigma\left(\right.$ MeasRect $\left.\left(S_{1}, S_{2}\right)\right)$: there exists a function F from X_{1} into $\overline{\mathbb{R}}$ such that for every element x of $X_{1}, F(x)=M_{2}$ (MeasurableXsection $(E, x) \cap B$) and for every element V of S_{1}, F is measurable on V \} is a monotone class of $X_{1} \times X_{2}$.
Proof: Set $Z=\left\{E\right.$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: there exists a function F from X_{1} into $\overline{\mathbb{R}}$ such that for every element x of $X_{1}, F(x)=M_{2}$ (MeasurableXsection $\left.(E, x) \cap B\right)$ and for every element V of S_{1}, F is measurable on $\left.V\right\}$. For every sequence A_{1} of subsets of $X_{1} \times$ X_{2} such that A_{1} is monotone and rng $A_{1} \subseteq Z$ holds $\lim A_{1} \in Z$ by [10, (3)], [5, (35)], [21, (63)], [12, (45)].
(86) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, and an element B of S_{1}. Suppose $M_{1}(B)<+\infty$. Then $\{E$, where E is an element of $\sigma\left(\right.$ MeasRect $\left.\left(S_{1}, S_{2}\right)\right)$: there exists a function F from X_{2} into $\overline{\mathbb{R}}$ such that for every element y of $X_{2}, F(y)=M_{1}$ (MeasurableYsection $\left.(E, y) \cap B\right)$ and for every element V of S_{2}, F is measurable on V \} is a monotone class of $X_{1} \times X_{2}$.

Proof: Set $Z=\left\{E\right.$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: there exists a function F from X_{2} into $\overline{\mathbb{R}}$ such that for every element y of $X_{2}, F(y)=M_{1}$ (MeasurableYsection $\left.(E, y) \cap B\right)$ and for every element V of S_{2}, F is measurable on $\left.V\right\}$. For every sequence A_{1} of subsets of $X_{1} \times$ X_{2} such that A_{1} is monotone and $\operatorname{rng} A_{1} \subseteq Z$ holds $\lim A_{1} \in Z$ by [10, (3)], [5, (35)], [21, (63)], [12, (45)].
(87) Let us consider a non empty set X, a field F of subsets of X, and a sequence L of subsets of X. Suppose $\operatorname{rng} L$ is a monotone class of X and $F \subseteq \operatorname{rng} L$. Then
(i) $\sigma(F)=$ monotone-class (F), and
(ii) $\sigma(F) \subseteq \operatorname{rng} L$.
(88) Let us consider a non empty set X, a field F of subsets of X, and a family K of subsets of X. Suppose K is a monotone class of X and $F \subseteq K$. Then
(i) $\sigma(F)=$ monotone-class (F), and
(ii) $\sigma(F) \subseteq K$.
(89) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, and an element B of S_{2}. Suppose $M_{2}(B)<+\infty$. Then $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right) \subseteq\{E$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: there exists a function F from X_{1} into $\overline{\mathbb{R}}$ such that for every element x of $X_{1}, F(x)=$ M_{2} (MeasurableXsection $(E, x) \cap B$) and for every element V of S_{1}, F is measurable on $V\}$. The theorem is a consequence of (85), (81), (7), and (88).
(90) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, and an element B of S_{1}. Suppose $M_{1}(B)<+\infty$. Then $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right) \subseteq\{E$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: there exists a function F from X_{2} into $\overline{\mathbb{R}}$ such that for every element y of $X_{2}, F(y)=$ M_{1} (MeasurableYsection $(E, y) \cap B$) and for every element V of S_{2}, F is measurable on $V\}$. The theorem is a consequence of (86), (82), (7), and (88).
(91) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, and an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose M_{2} is σ-finite. Then there exists a function F from X_{1} into $\overline{\mathbb{R}}$ such that
(i) for every element x of $X_{1}, F(x)=M_{2}($ MeasurableXsection $(E, x))$, and
(ii) for every element V of S_{1}, F is measurable on V.

Proof: Consider B being a set sequence of S_{2} such that B is non descending and for every natural number $n, M_{2}(B(n))<+\infty$ and $\lim B=$ X_{2}. Define $\mathcal{P}[$ natural number, object $] \equiv$ there exists a function f_{1} from X_{1} into $\overline{\mathbb{R}}$ such that $\$_{2}=f_{1}$ and for every element x of $X_{1}, f_{1}(x)=$ $M_{2}\left(\right.$ MeasurableXsection $\left.(E, x) \cap B\left(\$_{1}\right)\right)$ and for every element V of S_{1}, f_{1} is measurable on V. For every element n of \mathbb{N}, there exists an element f of $X_{1} \rightarrow \overline{\mathbb{R}}$ such that $\mathcal{P}[n, f]$ by (89), [12, (45)]. Consider f being a function from \mathbb{N} into $X_{1} \rightarrow \overline{\mathbb{R}}$ such that for every element n of $\mathbb{N}, \mathcal{P}[n, f(n)]$ from [11, Sch. 3]. For every natural number $n, f(n)$ is a function from X_{1} into $\overline{\mathbb{R}}$ and for every element x of $X_{1}, f(n)(x)=M_{2}$ (MeasurableXsection $(E, x) \cap$ $B(n))$ and for every element V of $S_{1}, f(n)$ is measurable on V. For every natural numbers $n, m, \operatorname{dom}(f(n))=\operatorname{dom}(f(m))$. For every element x of X_{1} such that $x \in X_{1}$ holds $f \# x$ is convergent by [5, (11), (31)], [20, (7), (37)]. Reconsider $F=\lim f$ as a function from X_{1} into $\overline{\mathbb{R}}$. For every element x of $X_{1}, F(x)=M_{2}$ (MeasurableXsection (E, x)) by [21, (80)], [22, (92)], (49), [5, (11)].
(92) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, and an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose M_{1} is σ-finite. Then there exists a function F from X_{2} into $\overline{\mathbb{R}}$ such that
(i) for every element y of $X_{2}, F(y)=M_{1}$ (MeasurableYsection (E, y)), and
(ii) for every element V of S_{2}, F is measurable on V.

Proof: Consider B being a set sequence of S_{1} such that B is non descending and for every natural number $n, M_{1}(B(n))<+\infty$ and $\lim B=$ X_{1}. Define \mathcal{P} [natural number, object] \equiv there exists a function f_{1} from X_{2} into $\overline{\mathbb{R}}$ such that $\$_{2}=f_{1}$ and for every element y of $X_{2}, f_{1}(y)=$ M_{1} (MeasurableYsection $\left.(E, y) \cap B\left(\$_{1}\right)\right)$ and for every element V of S_{2}, f_{1} is measurable on V. For every element n of \mathbb{N}, there exists an element f of $X_{2} \rightarrow \overline{\mathbb{R}}$ such that $\mathcal{P}[n, f]$ by (90), [12, (45)]. Consider f being a function from \mathbb{N} into $X_{2} \rightarrow \overline{\mathbb{R}}$ such that for every element n of $\mathbb{N}, \mathcal{P}[n, f(n)]$ from [11, Sch. 3]. For every natural number $n, f(n)$ is a function from X_{2} into $\overline{\mathbb{R}}$ and for every element y of $X_{2}, f(n)(y)=M_{1}($ MeasurableYsection $(E, y) \cap B(n))$ and for every element V of $S_{2}, f(n)$ is measurable on V. For every natural numbers $n, m, \operatorname{dom}(f(n))=\operatorname{dom}(f(m))$. For every element y of X_{2} such that $y \in X_{2}$ holds $f \# y$ is convergent by [5, (11), (31)], [20, (7), (37)]. Reconsider $F=\lim f$ as a function from X_{2} into $\overline{\mathbb{R}}$. For every element y of $X_{2}, F(y)=M_{1}(M e a s u r a b l e Y \operatorname{section}(E, y))$ by [21, (80)], [22, (92)], (49), [5, (11)].

Let X_{1}, X_{2} be non empty sets, S_{1} be a σ-field of subsets of X_{1}, S_{2} be a σ-field of subsets of X_{2}, M_{2} be a σ-measure on S_{2}, and E be an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Assume M_{2} is σ-finite. The functor $\operatorname{Yvol}\left(E, M_{2}\right)$ yielding a non-negative function from X_{1} into $\overline{\mathbb{R}}$ is defined by
(Def. 13) for every element x of $X_{1}, i t(x)=M_{2}$ (MeasurableXsection (E, x)) and for every element V of S_{1}, it is measurable on V.
Let M_{1} be a σ-measure on S_{1}. Assume M_{1} is σ-finite. The functor $\operatorname{Xvol}\left(E, M_{1}\right)$ yielding a non-negative function from X_{2} into $\overline{\mathbb{R}}$ is defined by
(Def. 14) for every element y of $X_{2}, i t(y)=M_{1}(\operatorname{MeasurableYsection}(E, y))$ and for every element V of S_{2}, it is measurable on V.
Now we state the propositions:
(93) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, and elements E_{1}, E_{2} of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose M_{2} is σ-finite and E_{1} misses E_{2}. Then $\mathrm{Yvol}\left(E_{1} \cup E_{2}, M_{2}\right)=\operatorname{Yvol}\left(E_{1}, M_{2}\right)+\operatorname{Yvol}\left(E_{2}, M_{2}\right)$.
Proof: For every element x of X_{1} such that $x \in \operatorname{dom} \operatorname{Yvol}\left(E_{1} \cup E_{2}, M_{2}\right)$ holds $\left(\operatorname{Yvol}\left(E_{1} \cup E_{2}, M_{2}\right)\right)(x)=\left(\operatorname{Yvol}\left(E_{1}, M_{2}\right)+\mathrm{Y} \operatorname{vol}\left(E_{2}, M_{2}\right)\right)(x)$ by (26), (35), [5, (30)].
(94) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, and elements E_{1}, E_{2} of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose M_{1} is σ-finite and E_{1} misses E_{2}. Then $\mathrm{Xvol}\left(E_{1} \cup E_{2}, M_{1}\right)=\mathrm{Xvol}\left(E_{1}, M_{1}\right)+\mathrm{Xvol}\left(E_{2}, M_{1}\right)$.
Proof: For every element x of X_{2} such that $x \in \operatorname{dom} \operatorname{Xvol}\left(E_{1} \cup E_{2}, M_{1}\right)$ holds $\left(\mathrm{Xvol}\left(E_{1} \cup E_{2}, M_{1}\right)\right)(x)=\left(\mathrm{X} \operatorname{vol}\left(E_{1}, M_{1}\right)+\mathrm{X} \operatorname{vol}\left(E_{2}, M_{1}\right)\right)(x)$ by (26), (35), [5, (30)].

Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, and elements E_{1}, E_{2} of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Now we state the propositions:
(95) Suppose M_{2} is σ-finite and E_{1} misses E_{2}. Then $\int \operatorname{Yvol}\left(E_{1} \cup E_{2}, M_{2}\right) \mathrm{d} M_{1}=$ $\int \mathrm{Y} \operatorname{vol}\left(E_{1}, M_{2}\right) \mathrm{d} M_{1}+\int \mathrm{Y} \operatorname{vol}\left(E_{2}, M_{2}\right) \mathrm{d} M_{1}$. The theorem is a consequence of (93).
(96) Suppose M_{1} is σ-finite and E_{1} misses E_{2}. Then $\int \operatorname{Xvol}\left(E_{1} \cup E_{2}, M_{1}\right) \mathrm{d} M_{2}=$ $\int \operatorname{Xvol}\left(E_{1}, M_{1}\right) \mathrm{d} M_{2}+\int \operatorname{Xvol}\left(E_{2}, M_{1}\right) \mathrm{d} M_{2}$. The theorem is a consequence of (94).
Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, an element A of S_{1}, and an element B of S_{2}. Now we state the propositions:
(97) Suppose $E=A \times B$ and M_{2} is σ-finite. Then
(i) if $M_{2}(B)=+\infty$, then $\operatorname{Yvol}\left(E, M_{2}\right)=\bar{\chi}_{A, X_{1}}$, and
(ii) if $M_{2}(B) \neq+\infty$, then there exists a real number r such that $r=$ $M_{2}(B)$ and $\operatorname{Yvol}\left(E, M_{2}\right)=r \cdot \chi_{A, X_{1}}$.
The theorem is a consequence of (53).
(98) Suppose $E=A \times B$ and M_{1} is σ-finite. Then
(i) if $M_{1}(A)=+\infty$, then $\operatorname{Xvol}\left(E, M_{1}\right)=\bar{\chi}_{B, X_{2}}$, and
(ii) if $M_{1}(A) \neq+\infty$, then there exists a real number r such that $r=$ $M_{1}(A)$ and $\operatorname{Xvol}\left(E, M_{1}\right)=r \cdot \chi_{B, X_{2}}$.
The theorem is a consequence of (55).
(99) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, an element A of S, and a real number r. If $r \geqslant 0$, then $\int r \cdot \chi_{A, X} \mathrm{~d} M=r \cdot M(A)$.
Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, a finite sequence F of elements of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, and a natural number n. Now we state the propositions:
(100) Suppose M_{2} is σ-finite and F is a finite sequence of elements of MeasRect $\left(S_{1}, S_{2}\right)$. Then $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(F(n))=\int \operatorname{Yvol}\left(F(n), M_{2}\right) \mathrm{d} M_{1}$. The theorem is a consequence of (16), (97), and (99).
(101) Suppose M_{1} is σ-finite and F is a finite sequence of elements of MeasRect $\left(S_{1}, S_{2}\right)$. Then $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(F(n))=\int \operatorname{Xvol}\left(F(n), M_{1}\right) \mathrm{d} M_{2}$. The theorem is a consequence of (16), (98), and (99).
Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, a disjoint valued finite sequence F of elements of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, and a natural number n. Now we state the propositions:
(102) Suppose M_{2} is σ-finite and F is a finite sequence of elements of MeasRect $\left(S_{1}, S_{2}\right)$. Then $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(\cup F)=\int \operatorname{Yvol}\left(\cup F, M_{2}\right) \mathrm{d} M_{1}$.
Proof: Define \mathcal{P} [natural number] $\equiv\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)\left(\bigcup\left(F \upharpoonright \$_{1}\right)\right)=$ $\int \mathrm{Yvol}\left(\cup\left(F \upharpoonright \$_{1}\right), M_{2}\right) \mathrm{d} M_{1} . \mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [2, (13)], [3, (59)], [19, (55)], [3, (82)]. For every natural number $k, \mathcal{P}[k]$ from [2, Sch. 2].
(103) Suppose M_{1} is σ-finite and F is a finite sequence of elements of MeasRect $\left(S_{1}, S_{2}\right)$. Then $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(\cup F)=\int \operatorname{Xvol}\left(\cup F, M_{1}\right) \mathrm{d} M_{2}$.
Proof: Define \mathcal{P} [natural number] $\equiv\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)\left(\bigcup\left(F \upharpoonright \$_{1}\right)\right)=$ $\int \operatorname{Xvol}\left(\bigcup\left(F \upharpoonright \$_{1}\right), M_{1}\right) \mathrm{d} M_{2}$. $\mathcal{P}[0]$. For every natural number k such that
$\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [2, (13)], [3, (59)], [19, (55)], [3, (82)]. For every natural number $k, \mathcal{P}[k]$ from [2, Sch. 2].
Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, an element V of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, an element A of S_{1}, and an element B of S_{2}. Now we state the propositions:
(104) Suppose $E \in$ the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$ and M_{2} is σ finite. Then suppose $V=A \times B$. Then $E \in\{E$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right): \int \operatorname{Yvol}\left(E \cap V, M_{2}\right) \mathrm{d} M_{1}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)$ $(E \cap V)\}$. The theorem is a consequence of (102).
(105) Suppose $E \in$ the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$ and M_{1} is σ finite. Then suppose $V=A \times B$. Then $E \in\{E$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right): \int \operatorname{Xvol}\left(E \cap V, M_{1}\right) \mathrm{d} M_{2}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)$ $(E \cap V)\}$. The theorem is a consequence of (103).
Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, an element V of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, an element A of S_{1}, and an element B of S_{2}. Now we state the propositions:
(106) Suppose M_{2} is σ-finite and $V=A \times B$. Then the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right) \subseteq\left\{E\right.$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: $\left.\int \operatorname{Yvol}\left(E \cap V, M_{2}\right) \mathrm{d} M_{1}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E \cap V)\right\}$. The theorem is a consequence of (7) and (104).
(107) Suppose M_{1} is σ-finite and $V=A \times B$. Then the field generated by $\operatorname{MeasRect}\left(S_{1}, S_{2}\right) \subseteq\left\{E\right.$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: $\left.\int \operatorname{Xvol}\left(E \cap V, M_{1}\right) \mathrm{d} M_{2}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E \cap V)\right\}$. The theorem is a consequence of (7) and (105).
(108) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, elements E, V of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, a set sequence P of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, and an element x of X_{1}. Suppose P is non descending and $\lim P=E$. Then there exists a sequence K of subsets of S_{2} such that
(i) K is non descending, and
(ii) for every natural number $n, K(n)=$ MeasurableXsection $(P(n), x) \cap$ MeasurableXsection (V, x), and

The theorem is a consequence of (43), (49), and (30).
(109) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, elements E, V
of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, a set sequence P of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, and an element y of X_{2}. Suppose P is non descending and $\lim P=E$. Then there exists a sequence K of subsets of S_{1} such that
(i) K is non descending, and
(ii) for every natural number $n, K(n)=$ MeasurableYsection $(P(n), y) \cap$ MeasurableYsection (V, y), and
(iii) $\lim K=\operatorname{MeasurableYsection}(E, y) \cap \operatorname{MeasurableYsection}(V, y)$.

The theorem is a consequence of (44), (49), and (32).
(110) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, elements E, V of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, a set sequence P of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, and an element x of X_{1}. Suppose P is non ascending and $\lim P=E$. Then there exists a sequence K of subsets of S_{2} such that
(i) K is non ascending, and
(ii) for every natural number $n, K(n)=$ MeasurableXsection $(P(n), x) \cap$ MeasurableXsection (V, x), and

The theorem is a consequence of (45), (49), and (31).
(111) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, elements E, V of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, a set sequence P of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, and an element y of X_{2}. Suppose P is non ascending and $\lim P=E$. Then there exists a sequence K of subsets of S_{1} such that
(i) K is non ascending, and
(ii) for every natural number $n, K(n)=$ MeasurableYsection $(P(n), y) \cap$ MeasurableYsection (V, y), and

The theorem is a consequence of (46), (49), and (33).
Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, an element V of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$, an element A of S_{1}, and an element B of S_{2}. Now we state the propositions:
(112) Suppose M_{2} is σ-finite and $V=A \times B$ and $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(V)<$ $+\infty$ and $M_{2}(B)<+\infty$. Then $\left\{E\right.$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}\right.\right.$, $\left.\left.\left.S_{2}\right)\right): \int \operatorname{Yvol}\left(E \cap V, M_{2}\right) \mathrm{d} M_{1}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E \cap V)\right\}$ is a monotone class of $X_{1} \times X_{2}$.

Proof: Set $Z=\left\{E\right.$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: $\left.\int \operatorname{Yvol}\left(E \cap V, M_{2}\right) \mathrm{d} M_{1}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E \cap V)\right\}$. For every sequence A_{1} of subsets of $X_{1} \times X_{2}$ such that A_{1} is monotone and $\operatorname{rng} A_{1} \subseteq Z$ holds $\lim A_{1} \in Z$ by [10, (3)], [5, (35)], [21, (63)], [12, (45)].
(113) \quad Suppose M_{1} is σ-finite and $V=A \times B$ and $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(V)<$ $+\infty$ and $M_{1}(A)<+\infty$. Then $\left\{E\right.$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}\right.\right.$, $\left.\left.\left.S_{2}\right)\right): \int \operatorname{Xvol}\left(E \cap V, M_{1}\right) \mathrm{d} M_{2}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E \cap V)\right\}$ is a monotone class of $X_{1} \times X_{2}$.
Proof: Set $Z=\left\{E\right.$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$: $\left.\int \operatorname{Xvol}\left(E \cap V, M_{1}\right) \mathrm{d} M_{2}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E \cap V)\right\}$. For every sequence A_{1} of subsets of $X_{1} \times X_{2}$ such that A_{1} is monotone and $\operatorname{rng} A_{1} \subseteq Z$ holds $\lim A_{1} \in Z$ by [10, (3)], [5, (35)], [21, (63)], [12, (45)].
(114) Suppose M_{2} is σ-finite and $V=A \times B$ and $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(V)<$ $+\infty$ and $M_{2}(B)<+\infty$. Then $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right) \subseteq\{E$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right): \int \operatorname{Yvol}\left(E \cap V, M_{2}\right) \mathrm{d} M_{1}=$ $\left.\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E \cap V)\right\}$. The theorem is a consequence of (112), (106), (7), and (88).
(115) Suppose M_{1} is σ-finite and $V=A \times B$ and $\left(\operatorname{Prod} \sigma\right.$-Meas $\left.\left(M_{1}, M_{2}\right)\right)(V)<$ $+\infty$ and $M_{1}(A)<+\infty$. Then $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right) \subseteq\{E$, where E is an element of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right): \int \operatorname{Xvol}\left(E \cap V, M_{1}\right) \mathrm{d} M_{2}=$
$\left.\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E \cap V)\right\}$. The theorem is a consequence of (113), (107), (7), and (88).
(116) Let us consider sets X, Y, a sequence A of subsets of X, a sequence B of subsets of Y, and a sequence C of subsets of $X \times Y$. Suppose A is non descending and B is non descending and for every natural number n, $C(n)=A(n) \times B(n)$. Then
(i) C is non descending and convergent, and
(ii) $\bigcup C=\bigcup A \times \bigcup B$.

Proof: For every natural numbers n, m such that $n \leqslant m$ holds $C(n) \subseteq$ $C(m)$ by [13, (96)].
(117) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, and an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose M_{1} is σ-finite and M_{2} is σ-finite. Then $\int \operatorname{Yvol}\left(E, M_{2}\right) \mathrm{d} M_{1}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E)$.
Proof: Consider A being a set sequence of S_{1} such that A is non descending and for every natural number $n, M_{1}(A(n))<+\infty$ and $\lim A=$ X_{1}. Consider B being a set sequence of S_{2} such that B is non descending and for every natural number $n, M_{2}(B(n))<+\infty$ and $\lim B=$
X_{2}. Define $\mathcal{C}($ element of $\mathbb{N})=A\left(\$_{1}\right) \times B\left(\$_{1}\right)$. Consider C being a function from \mathbb{N} into $2^{X_{1} \times X_{2}}$ such that for every element n of $\mathbb{N}, C(n)=$ $\mathcal{C}(n)$ from [11, Sch. 4]. For every natural number $n, C(n)=A(n) \times$ $B(n)$. For every natural number $n, C(n) \in \sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. For every natural numbers n, m such that $n \leqslant m$ holds $C(n) \subseteq C(m)$ by [13, (96)]. For every natural number $n,\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(C(n))<$ $+\infty$ by (16), [6, (51)]. Set $C_{1}=E \cap C$. For every object n such that $n \in \mathbb{N}$ holds $C_{1}(n) \in \sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. For every natural number n, $\int \operatorname{Yvol}\left(E \cap C(n), M_{2}\right) \mathrm{d} M_{1}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E \cap C(n))$. Define \mathcal{P} [element of \mathbb{N}, object $] \equiv \$_{2}=\operatorname{Yvol}\left(E \cap C\left(\$_{1}\right), M_{2}\right)$. For every element n of \mathbb{N}, there exists an element f of $X_{1} \rightarrow \mathbb{R}$ such that $\mathcal{P}[n, f]$ by [12, (45)]. Consider F being a function from \mathbb{N} into $X_{1} \rightarrow \overline{\mathbb{R}}$ such that for every element n of $\mathbb{N}, \mathcal{P}[n, F(n)]$ from [11, Sch. 3]. For every natural number $n, F(n)=\operatorname{Yvol}\left(E \cap C(n), M_{2}\right)$. Reconsider $X_{3}=X_{1}$ as an element of S_{1}. For every natural number n and for every element x of $X_{1},(F \# x)(n)=\left(\mathrm{Yvol}\left(E \cap C(n), M_{2}\right)\right)(x)$. For every natural numbers $n, m, \operatorname{dom}(F(n))=\operatorname{dom}(F(m))$. For every natural number $n, F(n)$ is measurable on X_{3}. For every natural numbers n, m such that $n \leqslant m$ for every element x of X_{1} such that $x \in X_{3}$ holds $F(n)(x) \leqslant F(m)(x)$ by (20), [5, (31)]. For every element x of X_{1} such that $x \in X_{3}$ holds $F \# x$ is convergent by [20, (7), (37)]. Consider I being a sequence of extended reals such that for every natural number $n, I(n)=\int F(n) \mathrm{d} M_{1}$ and I is convergent and $\int \lim F \mathrm{~d} M_{1}=\lim I$. For every element x of X_{1} such that $x \in \operatorname{dom} \lim F$ holds $(\lim F)(x)=\left(\operatorname{Yvol}\left(E, M_{2}\right)\right)(x)$ by (116), (108), (27), [10, (13)]. Set $J=E \cap C$. For every object n such that $n \in \mathbb{N}$ holds $J(n) \in \sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. $\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)$ is a σ-measure on $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. For every element n of $\mathbb{N}, I(n)=$ $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)_{*} J\right)(n)$ by [10, (13)].
(118) Fubini's theorem:

Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, and an element E of $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Suppose M_{1} is σ-finite and M_{2} is σ-finite. Then $\int \operatorname{Xvol}\left(E, M_{1}\right) \mathrm{d} M_{2}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E)$.
Proof: Consider A being a set sequence of S_{1} such that A is non descending and for every natural number $n, M_{1}(A(n))<+\infty$ and $\lim A=$ X_{1}. Consider B being a set sequence of S_{2} such that B is non descending and for every natural number $n, M_{2}(B(n))<+\infty$ and $\lim B=$ X_{2}. Define $\mathcal{C}($ element of $\mathbb{N})=A\left(\$_{1}\right) \times B\left(\$_{1}\right)$. Consider C being a function from \mathbb{N} into $2^{X_{1} \times X_{2}}$ such that for every element n of $\mathbb{N}, C(n)=$ $\mathcal{C}(n)$ from [11, Sch. 4]. For every natural number $n, C(n)=A(n) \times$
$B(n)$. For every natural number $n, C(n) \in \sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. For every natural numbers n, m such that $n \leqslant m$ holds $C(n) \subseteq C(m)$ by [13, (96)]. For every natural number $n,\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(C(n))<$ $+\infty$ by (16), [6, (51)]. Set $C_{1}=E \cap C$. For every object n such that $n \in \mathbb{N}$ holds $C_{1}(n) \in \sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. For every natural number n, $\int \operatorname{Xvol}\left(E \cap C(n), M_{1}\right) \mathrm{d} M_{2}=\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)\right)(E \cap C(n))$. Define \mathcal{P} [element of \mathbb{N}, object $\equiv \$_{2}=\mathrm{X} \operatorname{vol}\left(E \cap C(\$ 1), M_{1}\right)$. For every element n of \mathbb{N}, there exists an element f of $X_{2} \dot{\rightarrow} \overline{\mathbb{R}}$ such that $\mathcal{P}[n, f]$ by [12, (45)]. Consider F being a function from \mathbb{N} into $X_{2} \rightarrow \overline{\mathbb{R}}$ such that for every element n of $\mathbb{N}, \mathcal{P}[n, F(n)]$ from [11, Sch. 3]. For every natural number $n, F(n)=\mathrm{Xvol}\left(E \cap C(n), M_{1}\right)$. Reconsider $X_{3}=X_{2}$ as an element of S_{2}. For every natural number n and for every element x of $X_{2},(F \# x)(n)=\left(\mathrm{Xvol}\left(E \cap C(n), M_{1}\right)\right)(x)$. For every natural numbers $n, m, \operatorname{dom}(F(n))=\operatorname{dom}(F(m))$. For every natural number $n, F(n)$ is measurable on X_{3}. For every natural numbers n, m such that $n \leqslant m$ for every element x of X_{2} such that $x \in X_{3}$ holds $F(n)(x) \leqslant F(m)(x)$ by (21), [5, (31)]. For every element x of X_{2} such that $x \in X_{3}$ holds $F \# x$ is convergent by [20, (7), (37)]. Consider I being a sequence of extended reals such that for every natural number $n, I(n)=\int F(n) \mathrm{d} M_{2}$ and I is convergent and $\int \lim F \mathrm{~d} M_{2}=\lim I$. For every element x of X_{2} such that $x \in \operatorname{dom} \lim F$ holds $(\lim F)(x)=\left(\mathrm{X} \operatorname{vol}\left(E, M_{1}\right)\right)(x)$ by (116), (109), (27), [10, (13)]. Set $J=E \cap C$. For every object n such that $n \in \mathbb{N}$ holds $J(n) \in \sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. Prod $\sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)$ is a σ-measure on $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. For every element n of $\mathbb{N}, I(n)=$ $\left(\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{1}, M_{2}\right)_{*} J\right)(n)$ by [10, (13)].

References

[1] Grzegorz Bancerek. Curried and uncurried functions Formalized Mathematics, 1(3): 537-541, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Heinz Bauer. Measure and Integration Theory. Walter de Gruyter Inc., 2002.
[5] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[6] Józef Białas. Series of positive real numbers. Measure theory Formalized Mathematics, 2(1):173-183, 1991.
[7] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Bylinski. Some properties of restrictions of finite sequences Formalized Mathematics, 5(2):241-245, 1996.
[10] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[11] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[13] Czesław Bylinski. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[14] Noboru Endou. Product pre-measure. Formalized Mathematics, 24(1):69-79, 2016. doi 10.1515/forma-2016-0006.
[15] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2nd edition, 1999.
[16] P. R. Halmos. Measure Theory. Springer-Verlag, 1974.
[17] Andrzej Nędzusiak. σ-fields and probability, Formalized Mathematics, 1(2):401-407, 1990.
[18] M.M. Rao. Measure Theory and Integration. Marcel Dekker, 2nd edition, 2004.
[19] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
[20] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007. doi 10.2478/v10037-007-0026-3.
[21] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Limit of sequence of subsets. Formalized Mathematics, 13(2):347-352, 2005.
[22] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Some equations related to the limit of sequence of subsets. Formalized Mathematics, 13(3):407-412, 2005.

Received February 23, 2017

