Bertrand's Ballot Theorem ${ }^{\text {T }}$

Karol Pąk
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok
Poland

Abstract

Summary. In this article we formalize the Bertrand's Ballot Theorem based on [17]. Suppose that in an election we have two candidates: A that receives n votes and B that receives k votes, and additionally $n \geqslant k$. Then this theorem states that the probability of the situation where A maintains more votes than B throughout the counting of the ballots is equal to $(n-k) /(n+k)$.

This theorem is item \#30 from the "Formalizing 100 Theorems" list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.

MSC: 60C05 03B35

Keywords: ballot theorem; probability
MML identifier: BALLOT_1, version: 8.1.03 5.23.1210
The notation and terminology used in this paper have been introduced in the following articles: [24, [1] [14, [15, [18, 4], 5], 10, [21, [6], 12], 3], 11], [25], [26], 16], 8], [13, [23], and [9].

1. Preliminaries

From now on D, D_{1}, D_{2} denote non empty sets, d, d_{1}, d_{2} denote finite 0 -sequences of D, and n, k, i, j denote natural numbers.

Now we state the propositions:
(1) $\quad \operatorname{XFS} 2 \mathrm{FS}(d \upharpoonright n)=\operatorname{XFS} 2 \mathrm{FS}(d) \upharpoonright n$.
(2) $\operatorname{rng} d=\operatorname{rng} \operatorname{XFS} 2 \mathrm{FS}(d)$.
(3) Let us consider a finite 0 -sequence d_{1} of D_{1} and a finite 0 -sequence d_{2} of D_{2}. If $d_{1}=d_{2}$, then $\operatorname{XFS} 2 F S\left(d_{1}\right)=\operatorname{XFS} 2 F S\left(d_{2}\right)$.

[^0](4) If $\operatorname{XFS} 2 F S\left(d_{1}\right)=\operatorname{XFS} 2 F S\left(d_{2}\right)$, then $d_{1}=d_{2}$. Proof: For every i such that $i<\operatorname{len} d_{1}$ holds $d_{1}(i)=d_{2}(i)$ by [2, (13), (11)].
(5) Let us consider a finite sequence d of elements of D. Then $\operatorname{XFS} 2 F S(\operatorname{FS} 2 \operatorname{XFS}(d))=d$.
(6) Let us consider a finite sequence f and objects x, y. Suppose
(i) $\operatorname{rng} f \subseteq\{x, y\}$, and
(ii) $x \neq y$.

Then $\overline{\overline{f^{-1}(\{x\})}}+\overline{\overline{f^{-1}(\{y\})}}=\operatorname{len} f$.
(7) Let us consider functions f, g. Suppose f is one-to-one. Let us consider an object x. If $x \in \operatorname{dom} f$, then $\operatorname{Coim}(f \cdot g, f(x))=\operatorname{Coim}(g, x)$. Proof: Set $f_{3}=f \cdot g$. $\operatorname{Coim}\left(f_{3}, f(x)\right) \subseteq \operatorname{Coim}(g, x)$ by [6, (11), (12)].
(8) Let us consider a real number r and a real-valued finite sequence f. Suppose $\operatorname{rng} f \subseteq\{0, r\}$. Then $\sum f=r \cdot \overline{\overline{f^{-1}(\{r\})}}$. Proof: Define \mathcal{P} [natural number] \equiv for every real-valued finite sequence f such that len $f=\$_{1}$ and $\operatorname{rng} f \subseteq\{0, r\}$ holds $\sum f=r \cdot \overline{\overline{f^{-1}(\{r\})}} . \mathcal{P}[0]$ by [8, (72)]. For every n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1$] by [22, (55)], [8, (74)], [25, (70)], [2, (11)]. For every $n, \mathcal{P}[n]$ from [2, Sch. 2].

2. Properties of Elections

In the sequel A, B denote objects, v denotes an element of $\{A, B\}^{n+k}$, and f, g denote finite sequences.

Let us consider A, n, B, and k. The functor $\operatorname{Election}(A, n, B, k)$ yielding a subset of $\{A, B\}^{n+k}$ is defined by
(Def. 1) $v \in i t$ if and only if $\overline{\overline{v^{-1}(\{A\})}}=n$.
Let us note that Election (A, n, B, k) is finite. Now we state the propositions:
(9) Election $(A, n, A, 0)=\{n \mapsto A\}$. Proof: Election $(A, n, A, 0) \subseteq\{n \mapsto A\}$ by [19, (29)], [9, (33)], [21, (9)].
(10) If $k>0$, then $\operatorname{Election}(A, n, A, k)$ is empty.

Let us consider A and n. Let k be a non empty natural number. Let us observe that $\operatorname{Election}(A, n, A, k)$ is empty. Now we state the proposition:
(11) $\operatorname{Election}(A, n, B, k)=\operatorname{Choose}(\operatorname{Seg}(n+k), n, A, B)$. Proof: Election $(A, n$, $B, k) \subseteq \operatorname{Choose}(\operatorname{Seg}(n+k), n, A, B)$ by [7, (2)].
Let us assume that $A \neq B$. Now we state the propositions:
(12) $v \in \operatorname{Election}(A, n, B, k)$ if and only if $\overline{\overline{v^{-1}(\{B\})}}=k$. The theorem is a consequence of (6).
(13) $\overline{\overline{\operatorname{Election}}(A, n, B, k)}=\binom{n+k}{n}$. The theorem is a consequence of (11).

3. Properties of Dominated Elections

Let us consider A, n, B, and k. Let v be a finite sequence. We say that v is an (A, n, B, k)-dominated-election if and only if
(Def. 2) (i) $v \in \operatorname{Election}(A, n, B, k)$, and
(ii) for every i such that $i>0$ holds $\overline{\overline{\left(v\lceil i)^{-1}(\{A\})\right.}}>\overline{\overline{(v \upharpoonright i)^{-1}(\{B\})}}$.

Let us assume that f is an (A, n, B, k)-dominated-election. Now we state the propositions:
(14) $A \neq B$.
(15) $n>k$. The theorem is a consequence of (14) and (12).

Now we state the propositions:
(16) If $A \neq B$ and $n>0$, then $n \mapsto A$ is an ($A, n, B, 0$)-dominated-election.
(17) If f is an (A, n, B, k)-dominated-election and $i<n-k$, then $f \wedge(i \mapsto B)$ is an $(A, n, B,(k+i))$-dominated-election. The theorem is a consequence of (14) and (12).
(18) Suppose f is an (A, n, B, k)-dominated-election and g is an $(A, i, B$, j)-dominated-election. Then $f^{\wedge} g$ is an $(A,(n+i), B,(k+j))$-dominatedelection. The theorem is a consequence of (14), (12), and (15).
Let us consider A, n, B, and k. The functor DominatedElection (A, n, B, k) yielding a subset of $\operatorname{Election}(A, n, B, k)$ is defined by
(Def. 3) $f \in i t$ if and only if f is an (A, n, B, k)-dominated-election.
(19) If $A=B$ or $n \leqslant k$, then DominatedElection (A, n, B, k) is empty. The theorem is a consequence of (14) and (15).
(20) If $n>k$ and $A \neq B$, then $n \mapsto A^{\wedge}(k \mapsto B) \in \operatorname{DominatedElection~}(A, n, B$, $k)$. The theorem is a consequence of (17) and (16).
(21) If $A \neq B$, then $\overline{\overline{\text { DominatedElection }(A, n, B, k)}}=$
$\overline{\overline{\text { DominatedElection }(0, n, 1, k)}}$. Proof: Set $T=[A \longmapsto 0, B \longmapsto 1]$. Define \mathcal{P} [object, object $] \equiv$ for every f such that $f=\$_{1}$ holds $T \cdot f=\$_{2}$. For every object x such that $x \in \operatorname{DominatedElection}(A, n, B, k)$ there exists an object y such that $y \in \operatorname{DominatedElection}(0, n, 1, k)$ and $\mathcal{P}[x, y]$ by [25, (27), (26)], [5, (92)], (7). Consider C being a function from DominatedElection (A, n, B, k) into DominatedElection $(0, n, 1, k)$ such that for every object x such that $x \in \operatorname{DominatedElection}(A, n, B, k)$ holds $\mathcal{P}[x, C(x)]$ from [7. Sch. 1]. DominatedElection $(0, n, 1, k) \subseteq \operatorname{rng} C$ by [25, (27), (26)], [5, (92)], (7).
(22) Let us consider a finite sequence p of elements of \mathbb{N}. Then p is a $(0, n, 1$, $k)$-dominated-election if and only if p is an $(n+k)$-tuple of $\{0,1\}$ and $n>0$ and $\sum p=k$ and for every i such that $i>0$ holds $2 \cdot \sum(p \upharpoonright i)<i$. Proof: If p is a $(0, n, 1, k)$-dominated-election, then p is an $(n+k)$-tuple of $\{0,1\}$
and $n>0$ and $\sum p=k$ and for every i such that $i>0$ holds $2 \cdot \sum(p \upharpoonright i)<i$ $\operatorname{by}(8),(12),(15),[25,(70)] . \overline{\underline{1 \cdot \overline{p^{-1}(\{1\})}}}=k \cdot \underline{\overline{p^{-1}(\{1\})}}+\overline{\overline{p^{-1}(\{0\})}}=\operatorname{len} p$. $1 \cdot \overline{\overline{(p \upharpoonright i)^{-1}(\{1\})}}=\sum(p \upharpoonright i) \cdot \overline{\overline{(p \upharpoonright i)^{-1}(\{1\})}}+\overline{\overline{(p \upharpoonright i)^{-1}(\{0\})}}=\operatorname{len}(p \upharpoonright i)$.
(23) If f is an (A, n, B, k)-dominated-election, then $f(1)=A$. The theorem is a consequence of (15).
(24) Let us consider a finite 0 -sequence d of \mathbb{N}. Then $d \in \operatorname{Domin}_{0}(n+k, k)$ if and only if $\langle 0\rangle{ }^{\sim} \operatorname{XFS} 2 F S(d) \in$ DominatedElection $(0, n+1,1, k)$. Proof: Set $X_{1}=\operatorname{XFS} 2 F S(d)$. Set $Z=\langle 0\rangle$. Set $Z_{1}=Z^{\wedge} X_{1}$. Reconsider $D=d$ as a finite 0 -sequence of \mathbb{R}. $\operatorname{XFS} 2 F S(d)=\operatorname{XFS} 2 F S(D)$. If $d \in \operatorname{Domin}_{0}(n+k, k)$, then $Z_{1} \in \operatorname{DominatedElection}(0, n+1,1, k)$ by [15, (20)], (2), 4, (31), (22)]. Z_{1} is an $(n+1+k)$-tuple of $\{0,1\}$. For every k such that $k \leqslant \operatorname{dom} d$ holds $2 \cdot \sum(d \upharpoonright k) \leqslant k$ by [20, (14)], [8, (76)], (1), (3). d is dominated by 0 . $\sum d=k$.
(25) $\overline{\overline{\operatorname{Domin}_{0}(n+k, k)}}=\overline{\overline{\text { DominatedElection(0, } n+1,1, k)}}$. Proof: Set $D=$ $\operatorname{Domin}_{0}(n+k, k)$. Set $B=$ DominatedElection $(0, n+1,1, k)$. Set $Z=\langle 0\rangle$. Define $\mathcal{F}[$ object, object $] \equiv$ for every finite 0 -sequence d of \mathbb{N} such that $d=\$_{1}$ holds $\$_{2}=Z^{\wedge} \operatorname{XFS} 2 \mathrm{FS}(d)$. For every object x such that $x \in D$ there exists an object y such that $y \in B$ and $\mathcal{F}[x, y]$. Consider f being a function from D into B such that for every object x such that $x \in D$ holds $\mathcal{F}[x, f(x)]$ from [7, Sch. 1].
(26) $\overline{\overline{\operatorname{Domin}_{0}(n+k, k)}}=\overline{\overline{\text { DominatedElection }(0, n+1,1, k)}}$. Proof: Set $D=$ $\operatorname{Domin}_{0}(n+k, k)$. Set $B=$ DominatedElection $(0, n+1,1, k)$. Set $Z=\langle 0\rangle$. Define \mathcal{F} [object, object] \equiv for every finite 0 -sequence d of \mathbb{N} such that $d=\$_{1}$ holds $\$_{2}=Z^{\wedge} \operatorname{XFS} 2 \mathrm{FS}(d)$. For every object x such that $x \in D$ there exists an object y such that $y \in B$ and $\mathcal{F}[x, y]$. Consider f being a function from D into B such that for every object x such that $x \in D$ holds $\mathcal{F}[x, f(x)]$ from [7, Sch. 1].
(27) If $A \neq B$ and $n>k$, then $\overline{\overline{\text { DominatedElection }(A, n, B, k)}}=\frac{n-k}{n+k} \cdot\binom{n+k}{k}$. The theorem is a consequence of (21) and (26).

4. Main Theorem

(28) Bertrand's Ballot Theorem:

If $A \neq B$ and $n \geqslant k$, then $\mathrm{P}($ DominatedElection $(A, n, B, k))=\frac{n-k}{n+k}$. The theorem is a consequence of (13), (19), and (27).

References

[1] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Bylinski. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwał. Finite sets Formalized Mathematics, 1(1):165-167, 1990.
[11] Artur Korniłowicz. On the real valued functions Formalized Mathematics, 13(1):181-187, 2005.
[12] Rafał Kwiatek. Factorial and Newton coefficients Formalized Mathematics, 1(5):887-890, 1990.
[13] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[14] Karol Pąk. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399-406, 2005.
[15] Karol Pak. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153-159, 2006. doi $10.2478 / \mathrm{v} 10037-006-0019-7$.
[16] Jan Popiołek. Introduction to probability, Formalized Mathematics, 1(4):755-760, 1990.
[17] M. Renault. Four proofs of the ballot theorem. Mathematics Magazine, 80(5):345-352, December 2007.
[18] Andrzej Trybulec. Domains and their Cartesian products Formalized Mathematics, 1(1): 115-122, 1990.
[19] Andrzej Trybulec. Enumerated sets Formalized Mathematics, 1(1):25-34, 1990.
[20] Andrzej Trybulec. On the decomposition of finite sequences Formalized Mathematics, 5 (3):317-322, 1996.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
[22] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences Formalized Mathematics, 1(3):569-573, 1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[24] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences Formalized Mathematics, 9(4):825-829, 2001.
[25] Edmund Woronowicz. Relations and their basic properties Formalized Mathematics, 1 (1):73-83, 1990.
[26] Edmund Woronowicz. Relations defined on sets Formalized Mathematics, 1(1):181-186, 1990.

Received June 13, 2014

[^0]: ${ }^{1}$ The paper has been financed by the resources of the Polish National Science Centre granted by decision no DEC-2012/07/N/ST6/02147.
 (C) 2014 University of Białystok

 CC-BY-SA License ver. 3.0 or later
 ISSN 1426-2630(Print), 1898-9934(Online)

