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The Correspondence Between n-dimensional
Euclidean Space and the Product of n Real
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Summary. In the article we prove that a family of open n-hypercubes
is a basis of n-dimensional Euclidean space. The equality of the space and the
product of n real lines has been proven.
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The terminology and notation used in this paper have been introduced in the
following papers: [2], [6], [10], [4], [7], [18], [8], [13], [1], [3], [5], [15], [16], [17],
[21], [22], [9], [19], [20], [11], [14], and [12].

For simplicity, we use the following convention: x, y are sets, i, n are natural
numbers, r, s are real numbers, and f1, f2 are n-long real-valued finite sequences.

Let s be a real number and let r be a non positive real number. One can
check the following observations:

∗ ]s− r, s+ r[ is empty,

∗ [s− r, s+ r[ is empty, and

∗ ]s− r, s+ r] is empty.

Let s be a real number and let r be a negative real number. Observe that
[s− r, s+ r] is empty.

Let f be an empty yielding function and let us consider x. Observe that f(x)
is empty.

Let us consider i. Observe that i 7→ 0 is empty yielding.
Let f be an n-long complex-valued finite sequence. One can check the follo-

wing observations:
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∗ −f is n-long,

∗ f−1 is n-long,

∗ f2 is n-long, and

∗ |f | is n-long.

Let g be an n-long complex-valued finite sequence. One can verify the following
observations:

∗ f + g is n-long,

∗ f − g is n-long,

∗ f g is n-long, and

∗ f/g is n-long.

Let c be a complex number and let f be an n-long complex-valued finite
sequence. One can check the following observations:

∗ c+ f is n-long,

∗ f − c is n-long, and

∗ c f is n-long.

Let f be a real-valued function. Note that {f} is real-functions-membered.
Let g be a real-valued function. One can verify that {f, g} is real-functions-
membered.

Let D be a set and let us consider n. Note that Dn is finite sequence-
membered.

Let us consider n. Note that Rn is finite sequence-membered.
Let us consider n. Observe that Rn is real-functions-membered.
Let us consider x, y and let f be an n-long finite sequence. Observe that

f +· (x, y) is n-long.
One can prove the following three propositions:

(1) For every n-long finite sequence f such that f is empty holds n = 0.

(2) For every n-long real-valued finite sequence f holds f ∈ Rn.
(3) For all complex-valued functions f , g holds |f − g| = |g − f |.
Let us consider f1, f2. The functor max-diff-index(f1, f2) yields a natural

number and is defined as follows:

(Def. 1) max-diff-index(f1, f2) is the element of |f1 − f2|−1({sup rng|f1 − f2|}).
Let us note that the functor max-diff-index(f1, f2) is commutative.

One can prove the following propositions:

(4) If n 6= 0, then max-diff-index(f1, f2) ∈ dom f1.

(5) |f1 − f2|(x) ≤ |f1 − f2|(max-diff-index(f1, f2)).

One can verify that the metric space of real numbers is real-membered.
Let us observe that (E0)top is trivial.
Let us consider n. Observe that En is constituted finite sequences.
Let us consider n. One can verify that every point of En is real-valued.
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Let us consider n. One can check that every point of En is n-long.
The following two propositions are true:

(6) The open set family of E0 = {∅, {∅}}.
(7) For every subset B of E0 holds B = ∅ or B = {∅}.
In the sequel e, e1 are points of En.
Let us consider n, e. The functor @e yields a point of (En)top and is defined

by:

(Def. 2) @e = e.

Let us consider n, e and let r be a non positive real number. Observe that
Ball(e, r) is empty.

Let us consider n, e and let r be a positive real number. Note that Ball(e, r)
is non empty.

We now state three propositions:

(8) For all points p1, p2 of EnT such that i ∈ dom p1 holds (p1(i)− p2(i))2 ≤∑2(p1 − p2).

(9) Let n be an element of N and a, o, p be elements of EnT. If a ∈ Ball(o, r),
then for every set x holds |(a− o)(x)| < r and |a(x)− o(x)| < r.

(10) For all points a, o of En such that a ∈ Ball(o, r) and for every set x holds
|(a− o)(x)| < r and |a(x)− o(x)| < r.

Let f be a real-valued function and let r be a real number. The functor
Intervals(f, r) yields a function and is defined as follows:

(Def. 3) dom Intervals(f, r) = dom f and for every set x such that x ∈ dom f

holds (Intervals(f, r))(x) = ]f(x)− r, f(x) + r[.

Let us consider r. Note that Intervals(∅, r) is empty.
Let f be a real-valued finite sequence and let us consider r. One can check

that Intervals(f, r) is finite sequence-like.
Let us consider n, e, r. The functor OpenHypercube(e, r) yielding a subset

of (En)top is defined by:

(Def. 4) OpenHypercube(e, r) =
∏

Intervals(e, r).

Next we state the proposition

(11) If 0 < r, then e ∈ OpenHypercube(e, r).

Let n be a non zero natural number, let e be a point of En, and let r be a
non positive real number. Observe that OpenHypercube(e, r) is empty.

One can prove the following proposition

(12) For every point e of E0 holds OpenHypercube(e, r) = {∅}.
Let e be a point of E0 and let us consider r. Note that OpenHypercube(e, r)

is non empty.
Let us consider n, e and let r be a positive real number. One can check that

OpenHypercube(e, r) is non empty.
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One can prove the following propositions:

(13) If r ≤ s, then OpenHypercube(e, r) ⊆ OpenHypercube(e, s).

(14) If n 6= 0 or 0 < r and if e1 ∈ OpenHypercube(e, r), then for every set x
holds |(e1 − e)(x)| < r and |e1(x)− e(x)| < r.

(15) If n 6= 0 and e1 ∈ OpenHypercube(e, r), then
∑2(e1 − e) < n · r2.

(16) If n 6= 0 and e1 ∈ OpenHypercube(e, r), then ρ(e1, e) < r ·
√
n.

(17) If n 6= 0, then OpenHypercube(e, r√
n

) ⊆ Ball(e, r).

(18) If n 6= 0, then OpenHypercube(e, r) ⊆ Ball(e, r ·
√
n).

(19) If e1 ∈ Ball(e, r), then there exists a non zero element m of N such that
OpenHypercube(e1,

1
m) ⊆ Ball(e, r).

(20) If n 6= 0 and e1 ∈ OpenHypercube(e, r),
then r > |e1 − e|(max-diff-index(e1, e)).

(21) OpenHypercube(e1, r − |e1 − e|(max-diff-index(e1, e))) ⊆
OpenHypercube(e, r).

(22) Ball(e, r) ⊆ OpenHypercube(e, r).

Let us consider n, e, r. Observe that OpenHypercube(e, r) is open.
We now state two propositions:

(23) Let V be a subset of (En)top. Suppose V is open. Let e be a point of
En. If e ∈ V, then there exists a non zero element m of N such that
OpenHypercube(e, 1

m) ⊆ V.
(24) Let V be a subset of (En)top. Suppose that for every point e of En

such that e ∈ V there exists a real number r such that r > 0 and
OpenHypercube(e, r) ⊆ V. Then V is open.

Let us consider n, e. The functor OpenHypercubes e yields a family of subsets
of (En)top and is defined by:

(Def. 5) OpenHypercubes e = {OpenHypercube(e, 1
m) : m ranges over non zero

elements of N}.
Let us consider n, e. Observe that OpenHypercubes e is non empty, open,

and e-quasi-basis.
Next we state four propositions:

(25) For every 1-sorted yielding many sorted set J indexed by Seg n such that
J = Seg n 7−→ R1 holds RSegn =

∏
(the support of J).

(26) Let J be a topological space yielding many sorted set indexed by Seg n.
Suppose n 6= 0 and J = Seg n 7−→ R1. Let P1 be a family of subsets of
(En)top. If P1 = the product prebasis for J , then P1 is quasi-prebasis.

(27) Let J be a topological space yielding many sorted set indexed by Seg n.
Suppose J = Seg n 7−→ R1. Let P1 be a family of subsets of (En)top. If
P1 = the product prebasis for J , then P1 is open.

(28) (En)top =
∏

(Seg n 7−→ R1).
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