Cousin's Lemma

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Summary. We formalize, in two different ways, that "the n-dimensional Euclidean metric space is a complete metric space" (version 1. with the results obtained in [13], [26], 25] and version 2., the results obtained in [13, [14, (registrations) [24]).

With the Cantor's theorem - in complete metric space (proof by Karol Pąk in [22]), we formalize "The Nested Intervals Theorem in 1-dimensional Euclidean metric space".

Pierre Cousin's proof in 1892 [18] the lemma, published in 1895 [9] states that:
"Soit, sur le plan YOX, une aire connexe S limitée par un contour fermé simple ou complexe; on suppose qu'à chaque point de S ou de son périmètre correspond un cercle, de rayon non nul, ayant ce point pour centre : il est alors toujours possible de subdiviser S en régions, en nombre fini et assez petites pour que chacune d'elles soit complétement intérieure au cercle correspondant à un point convenablement choisi dans S ou sur son périmètre."
(In the plane YOX let S be a connected area bounded by a closed contour, simple or complex; one supposes that at each point of S or its perimeter there is a circle, of non-zero radius, having this point as its centre; it is then always possible to subdivide S into regions, finite in number and sufficiently small for each one of them to be entirely inside a circle corresponding to a suitably chosen point in S or on its perimeter) [23].

Cousin's Lemma, used in Henstock and Kurzweil integral 29] (generalized Riemann integral), state that: "for any gauge δ, there exists at least one δ-fine tagged partition". In the last section, we formalize this theorem. We use the suggestions given to the Cousin's Theorem p. 11 in [5 and with notations: 4], [29], 19], 28] and 12].

MSC: 54D30 03B35
Keywords: Cousin's lemma; Cousin's theorem; nested intervals theorem

```
MML identifier: COUSIN version: 8.1.04 5.36.1267
```


1. Preliminaries

Now we state the proposition:
(1) Let us consider non empty, increasing finite sequences p, q of elements of \mathbb{R}. Suppose $p(\operatorname{len} p)<q(1)$. Then $p^{\frown} q$ is a non empty, increasing finite sequence of elements of \mathbb{R}.
Let us consider real numbers a, b. Now we state the propositions:
(2) If $1<a$ and $0<b<1$, then $\log _{a} b<0$.
(3) If $1<a$ and $1<b$, then $0<\log _{a} b$.

Let us consider a finite sequence p and a natural number i.
Let us assume that $i \in \operatorname{dom} p$. Now we state the propositions:
(4) (i) $i=1$, or
(ii) $1<i$.
(5) (i) $i=\operatorname{len} p$, or
(ii) $i<\operatorname{len} p$.

Now we state the propositions:
(6) Let us consider an object x. Then $\Pi\langle\{x\}\rangle=\{\langle x\rangle\}$.
(7) Let us consider an element x of \mathcal{R}^{1}. Then there exists a real number r_{3} such that $x=\left\langle r_{3}\right\rangle$.
(8) Let us consider a real number a. Then $\langle a\rangle$ is a point of \mathcal{E}^{1}.
(9) Let us consider real numbers a, b. If $a \leqslant b$, then $a \leqslant \frac{a+b}{2} \leqslant b$.
(10) Let us consider real numbers a, b, c. If $a \leqslant b<c$, then $a<\frac{b+c}{2}$.

Let us consider real numbers a, b. Now we state the propositions:
(11) If $a<b$, then $\frac{a+b}{2}<b$.
(12) If $a \leqslant b$, then $[a, b]$ is a non empty, compact subset of \mathbb{R}.
(13) Let us consider a finite sequence f. Suppose $2 \leqslant \operatorname{len} f$. Then $f_{l 1}\left(\operatorname{len} f_{11}\right)=f(\operatorname{len} f)$.

2. \mathcal{E}^{n} is Complete - Proof Version 1

From now on n denotes a natural number, s_{1} denotes a sequence of \mathcal{E}^{n}, and s_{2} denotes a sequence of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$.

Now we state the propositions:
(14) Let us consider elements x, y of \mathcal{E}^{n}, and points g, h of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. If $x=g$ and $y=h$, then $\rho(x, y)=\|g-h\|$.
(15) (i) s_{1} is a sequence of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and
(ii) s_{2} is a sequence of \mathcal{E}^{n}.

Proof: s_{1} is a sequence of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ by [10, (67), (22)]. s_{2} is a sequence of \mathcal{E}^{n} by [10, (22), (67)].
Let us assume that $s_{1}=s_{2}$. Now we state the propositions:
(16) s_{1} is Cauchy if and only if s_{2} is Cauchy sequence by norm. The theorem is a consequence of (14).
(17) s_{1} is convergent if and only if s_{2} is convergent. The theorem is a consequence of (14).
(18) Let us consider a sequence S_{1} of \mathcal{E}^{n}. If S_{1} is Cauchy, then S_{1} is convergent. The theorem is a consequence of (15), (16), and (17).
(19) \mathcal{E}^{n} is complete.

3. \mathcal{E}^{n} is Complete - Proof Version 2

Now we state the propositions:
(20) The distance by norm of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle=\rho^{n}$. The theorem is a consequence of (14).
(21) MetricSpaceNorm $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle=\mathcal{E}^{n}$. The theorem is a consequence of (20).
(22) \mathcal{E}^{n} is complete. The theorem is a consequence of (21).

Let n be a natural number. Let us note that \mathcal{E}^{n} is complete.

4. The Nested Intervals Theorem (1-dimensional Euclidean Space)

Let a, b be sequences of real numbers. The functor $\operatorname{IntervalSeq}(a, b)$ yielding a sequence of subsets of \mathcal{R}^{1} is defined by
(Def. 1) for every natural number $i, i t(i)=\Pi\langle[a(i), b(i)]\rangle$.
Now we state the propositions:
(23) Let us consider sequences a, b of real numbers, and a natural number i. Then $(\operatorname{IntervalSeq}(a, b))(i)=\prod\langle[a(i), b(i)]\rangle$.
(24) Let us consider sequences a, b of real numbers. Then IntervalSeq (a, b) is a sequence of subsets of \mathcal{E}^{1}.
(25) $\quad \Pi\langle\mathbb{R}\rangle=\mathcal{R}^{1}$.
(26) Let us consider real numbers a, b, and points x_{1}, x_{2} of \mathcal{E}^{1}. Suppose $x_{1}=\langle a\rangle$ and $x_{2}=\langle b\rangle$. Then $\rho\left(x_{1}, x_{2}\right)=|a-b|$.
(27) Let us consider real numbers a, b, and a subset S of \mathcal{E}^{1}. Suppose $a \leqslant b$ and $S=\prod\langle[a, b]\rangle$. Let us consider points x, y of \mathcal{E}^{1}. If $x, y \in S$, then $\rho(x, y) \leqslant b-a$.
Proof: Set $s=\prod\langle[a, b]\rangle$. For every points x, y of \mathcal{E}^{1} such that $x, y \in s$ holds $\rho(x, y) \leqslant b-a$ by (6), [10, (67), (22)], (7).
(28) Let us consider real numbers a, b, and a subset S of \mathcal{E}^{1}. If $a \leqslant b$ and $S=\prod\langle[a, b]\rangle$, then S is bounded.
Proof: Set $s=\prod\langle[a, b]\rangle$. There exists a real number r such that $0<r$ and for every points x, y of \mathcal{E}^{1} such that $x, y \in s$ holds $\rho(x, y) \leqslant r$ by (6), [10, (67), (22)], (7).
Let us consider sequences a, b of real numbers.
Let us assume that for every natural number $i, a(i) \leqslant b(i)$ and $a(i) \leqslant a(i+1)$ and $b(i+1) \leqslant b(i)$. Now we state the propositions:
(29) IntervalSeq (a, b) is a non-empty, pointwise bounded, closed sequence of subsets of \mathcal{E}^{1}.
Proof: Reconsider $s=\operatorname{IntervalSeq}(a, b)$ as a sequence of subsets of \mathcal{E}^{1}. s is non-empty by (23), [1, (26)], [3, (2)]. s is pointwise bounded by (23), (6), [10, (67), (22)]. s is closed by (23), [10, (67), (22)], (25).
(30) IntervalSeq (a, b) is non ascending. The theorem is a consequence of (23).
(31) Let us consider real numbers a, b, x. If $a \leqslant x \leqslant b$, then $\langle x\rangle \in \Pi\langle[a, b]\rangle$.

Proof: Reconsider $P=\langle x\rangle$ as a point of \mathcal{E}^{1}. There exists a function g such that $g=P$ and $\operatorname{dom} g=\operatorname{dom}\langle[a, b]\rangle$ and for every object y such that $y \in \operatorname{dom}\langle[a, b]\rangle$ holds $g(y) \in\langle[a, b]\rangle(y)$ by [3, (2)].
(32) Let us consider real numbers a, b, and a subset S of \mathcal{E}^{1}. If $a \leqslant b$ and $S=\prod\langle[a, b]\rangle$, then $\varnothing S=b-a$. The theorem is a consequence of (28), (31), (27), (8), and (26).
(33) Let us consider sequences a, b of real numbers. Suppose for every natural number $i, a(i) \leqslant b(i)$ and a is non-decreasing and b is non-increasing. Then
(i) a is convergent, and
(ii) b is convergent.
(34) Let us consider sequences a, b of real numbers. Suppose $a(0) \leqslant b(0)$ and for every natural number $i, a(i+1)=a(i)$ and $b(i+1)=\frac{a(i)+b(i)}{2}$ or
$a(i+1)=\frac{a(i)+b(i)}{2}$ and $b(i+1)=b(i)$. Let us consider a natural number i. Then $a(i) \leqslant b(i)$.
Proof: Define \mathcal{P} [object $] \equiv$ there exists a natural number i such that $\$_{1}=i$ and $a(i) \leqslant b(i)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$ from [2, Sch. 2].
Let us consider sequences a, b of real numbers, a sequence S of subsets of \mathcal{E}^{1}, and a natural number i. Now we state the propositions:
(35) Suppose $a(0) \leqslant b(0)$ and $S=\operatorname{IntervalSeq}(a, b)$ and for every natural number $i, a(i+1)=a(i)$ and $b(i+1)=\frac{a(i)+b(i)}{2}$ or $a(i+1)=\frac{a(i)+b(i)}{2}$ and $b(i+1)=b(i)$. Then
(i) $a(i) \leqslant b(i)$, and
(ii) $a(i) \leqslant a(i+1)$, and
(iii) $b(i+1) \leqslant b(i)$, and
(iv) $(\varnothing S)(i)=b(i)-a(i)$.

The theorem is a consequence of (34), (9), (24), (23), and (32).
(36) Suppose $a(0)=b(0)$ and $S=\operatorname{IntervalSeq}(a, b)$ and for every natural number $i, a(i+1)=a(i)$ and $b(i+1)=\frac{a(i)+b(i)}{2}$ or $a(i+1)=\frac{a(i)+b(i)}{2}$ and $b(i+1)=b(i)$. Then
(i) $a(i)=a(0)$, and
(ii) $b(i)=b(0)$, and
(iii) $(\varnothing S)(i)=0$.

Proof: Define \mathcal{P} [natural number] $\equiv a\left(\$_{1}\right)=a(0)$ and $b\left(\$_{1}\right)=b(0)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$ from [2, Sch. 2].
(37) Let us consider sequences a, b of real numbers. Suppose for every natural number $i, a(i+1)=a(i)$ and $b(i+1)=\frac{a(i)+b(i)}{2}$ or $a(i+1)=\frac{a(i)+b(i)}{2}$ and $b(i+1)=b(i)$. Let us consider a natural number i, and a real number r. If $r=2^{i}$ and $r \neq 0$, then $b(i)-a(i) \leqslant \frac{b(0)-a(0)}{r}$.
Proof: Define \mathcal{P} [object $] \equiv$ there exists a natural number i and there exists a real number r such that $\$_{1}=i$ and $r=2^{i}$ and $r \neq 0$ and $b(i)-a(i) \leqslant \frac{b(0)-a(0)}{r} . \mathcal{P}[0]$ by [17, (4)]. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [17, (87), (6)]. For every natural number $k, \mathcal{P}[k]$ from [2, Sch. 2]. Consider i_{1} being a natural number, r_{1} being a real number such that $i=i_{1}$ and $r_{1}=2^{i_{1}}$ and $r_{1} \neq 0$ and $b\left(i_{1}\right)-a\left(i_{1}\right) \leqslant \frac{b(0)-a(0)}{r_{1}}$.
(38) Let us consider sequences a, b of real numbers, and a sequence S of subsets of \mathcal{E}^{1}. Suppose $a(0) \leqslant b(0)$ and $S=\operatorname{IntervalSeq}(a, b)$ and for every
natural number $i, a(i+1)=a(i)$ and $b(i+1)=\frac{a(i)+b(i)}{2}$ or $a(i+1)=$ $\frac{a(i)+b(i)}{2}$ and $b(i+1)=b(i)$. Then
(i) $\varnothing S$ is convergent, and
(ii) $\lim \varnothing S=0$.

The theorem is a consequence of $(36),(35),(34),(33),(3)$, and (37).
(39) Let us consider sequences a, b of real numbers. Suppose $a(0) \leqslant b(0)$ and for every natural number $i, a(i+1)=a(i)$ and $b(i+1)=\frac{a(i)+b(i)}{2}$ or $a(i+1)=\frac{a(i)+b(i)}{2}$ and $b(i+1)=b(i)$. Then $\bigcap \operatorname{IntervalSeq}(a, b)$ is not empty. The theorem is a consequence of (24), (35), (29), (30), and (38).
(40) Let us consider a real number r, and sequences a, b of real numbers. Suppose $0<r$ and $a(0) \leqslant b(0)$ and for every natural number $i, a(i+1)=$ $a(i)$ and $b(i+1)=\frac{a(i)+b(i)}{2}$ or $a(i+1)=\frac{a(i)+b(i)}{2}$ and $b(i+1)=b(i)$. Then there exists a real number c such that
(i) for every natural number $j, a(j) \leqslant c \leqslant b(j)$, and
(ii) there exists a natural number k such that $c-r<a(k)$ and $b(k)<c+r$. The theorem is a consequence of (39), (23), (24), (35), (29), and (38).

5. Tagged Partition

Now we state the propositions:
(41) Let us consider a non empty, closed interval subset I of \mathbb{R}. Then there exist real numbers a, b such that
(i) $a \leqslant b$, and
(ii) $I=[a, b]$.
(42) Let us consider non empty, closed interval subsets I_{1}, I_{2} of \mathbb{R}. Suppose $\sup I_{1}=\inf I_{2}$. Then there exist real numbers a, b, c such that
(i) $a \leqslant c \leqslant b$, and
(ii) $I_{1}=[a, c]$, and
(iii) $I_{2}=[c, b]$.

The theorem is a consequence of (41).
Let A be a non empty, closed interval subset of \mathbb{R} and D be a partition of A. The set of tagged partitions of D yielding a subset of \mathbb{R}^{*} is defined by
(Def. 2) for every object $x, x \in i t$ iff there exists a non empty, non-decreasing finite sequence s of elements of \mathbb{R} such that $x=s$ and $\operatorname{dom} s=\operatorname{dom} D$ and for every natural number i such that $i \in \operatorname{dom} s$ holds $s(i) \in \operatorname{divset}(D, i)$.

Now we state the propositions:
(43) Let us consider a non empty, closed interval subset A of \mathbb{R}, and a partition D of A. Then $D \in$ the set of tagged partitions of D.
Proof: For every natural number i such that $i \in \operatorname{dom} D$ holds $D(i) \in$ $\operatorname{divset}(D, i)$ by [15, (19)], (4).
(44) Let us consider real numbers a, b, and a non empty, closed interval subset I_{4} of \mathbb{R}. If $I_{4}=[a, b]$, then $\langle b\rangle$ is a partition of I_{4}.
Proof: $\langle b\rangle$ is a partition of I_{4} by [3, (39)], [15, (19)].
Let I be a non empty, closed interval subset of \mathbb{R} and φ be a positive yielding function from I into \mathbb{R}.

A tagged partition of I and φ is defined by
(Def. 3) there exists a partition D of I and there exists an element T of the set of tagged partitions of D such that it $=\langle D, T\rangle$.
Let T_{1} be a tagged partition of I and φ. We say that T_{1} is δ-fine if and only if
(Def. 4) there exists a partition D of I and there exists an element T of the set of tagged partitions of D such that $T_{1}=\langle D, T\rangle$ and for every natural number i such that $i \in \operatorname{dom} D$ holds $\operatorname{vol}(\operatorname{divset}(D, i)) \leqslant \varphi(T(i))$.

6. Partition Composition

Let us consider a real number r. Now we state the propositions:
(i) $\sup \{r\}=r$, and
(ii) $\inf \{r\}=r$.
(46) $\operatorname{vol}(\{r\})=0$. The theorem is a consequence of (45).
(47) Let us consider non empty, closed interval subsets I_{1}, I_{2} of \mathbb{R}, and a positive yielding function φ from I_{1} into \mathbb{R}. Suppose $I_{2} \subseteq I_{1}$. Then $\varphi \upharpoonright I_{2}$ is a positive yielding function from I_{2} into \mathbb{R}.
(48) Let us consider a non empty, closed interval subset I of \mathbb{R}, and a real number c. Suppose $c \in I$. Then
(i) $[\inf I, c]$ is a non empty, closed interval subset of \mathbb{R}, and
(ii) $[c, \sup I]$ is a non empty, closed interval subset of \mathbb{R}, and
(iii) $\sup [\inf I, c]=\inf [c, \sup I]$.

The theorem is a consequence of (41).
Let I_{5}, I_{6} be non empty, closed interval subsets of \mathbb{R}, D_{4} be a partition of I_{5}, and D_{6} be a partition of I_{6}. Assume $\sup I_{5} \leqslant \inf I_{6}$. The functor $D_{4} \cdot D_{6}$
yielding a non empty, increasing finite sequence of elements of \mathbb{R} is defined by the term
(Def. 5) $\begin{cases}D_{4} \frown D_{6}, & \text { if } D_{6}(1) \neq \sup I_{5}, \\ D_{4} \frown D_{6 \mid 1}, & \text { otherwise. }\end{cases}$
Now we state the propositions:
(49) Let us consider non empty, closed interval subsets I_{5}, I_{6} of \mathbb{R}, a partition D_{4} of I_{5}, and a partition D_{6} of I_{6}. Suppose $\sup I_{5}=\inf I_{6}$ and len $D_{6}=1$ and $D_{6}(1)=\inf I_{6}$. Then $D_{4} \cdot D_{6}=D_{4}$.
(50) Let us consider non empty, closed interval subsets I_{1}, I_{2}, I of \mathbb{R}. Suppose $\sup I_{1} \leqslant \inf I_{2}$ and $\inf I \leqslant \inf I_{1}$ and $\sup I_{2} \leqslant \sup I$. Then $I_{1} \cup I_{2} \subseteq I$.
(51) Let us consider non empty, closed interval subsets I_{1}, I_{2}, I of \mathbb{R}, a partition D_{1} of I_{1}, and a partition D_{2} of I_{2}. Suppose $\sup I_{1} \leqslant \inf I_{2}$ and $I=\left[\inf I_{1}, \sup I_{2}\right]$. Then $D_{1} \cdot D_{2}$ is a partition of I. The theorem is a consequence of (50).
(52) Let us consider a non empty, closed interval subset I of \mathbb{R}, and a partition D of I. Then the set of tagged partitions of D is not empty.
(53) Let us consider a non empty, increasing finite sequence s of elements of \mathbb{R}, and a real number r. Suppose $s(\operatorname{len} s)<r$. Then $s^{\wedge}\langle r\rangle$ is a non empty, increasing finite sequence of elements of \mathbb{R}. The theorem is a consequence of (1).
(54) Let us consider non empty, increasing finite sequences s_{1}, s_{2} of elements of \mathbb{R}, and a real number r. Suppose $s_{1}\left(\operatorname{len} s_{1}\right)<r<s_{2}(1)$. Then $\left(s_{1}{ }^{\wedge}\right.$ $\langle r\rangle)^{\wedge} s_{2}$ is a non empty, increasing finite sequence of elements of \mathbb{R}. The theorem is a consequence of (53) and (1).
(55) Let us consider non empty, closed interval subsets I_{1}, I_{2}, I of \mathbb{R}. Suppose $\sup I_{1}=\inf I_{2}$ and $I=I_{1} \cup I_{2}$. Then
(i) $\inf I=\inf I_{1}$, and
(ii) $\sup I=\sup I_{2}$.
(56) Let us consider a non empty, closed interval subset I of \mathbb{R}, and a partition D of I. Then
(i) $\operatorname{divset}(D, 1)=[\inf I, D(1)]$, and
(ii) for every natural number j such that $j \in \operatorname{dom} D$ and $j \neq 1$ holds $\operatorname{divset}(D, j)=[D(j-1), D(j)]$.
Proof: For every natural number j such that $j \in$ dom D and $j \neq 1$ holds $\operatorname{divset}(D, j)=[D(j-1), D(j)]$ by [12, (4)].
(57) Let us consider a real number r, and finite sequences p, q of elements of \mathbb{R}. Then len $\left(\left(p^{\frown}\langle r\rangle\right)^{\wedge} q\right)=\operatorname{len} p+\operatorname{len} q+1$.
(58) Let us consider a non empty, closed interval subset I of \mathbb{R}, and a partition D of I. Then every element of the set of tagged partitions of D is not empty. The theorem is a consequence of (43).
(59) Let us consider a non empty, closed interval subset I of \mathbb{R}, a partition D of I, and an element T of the set of tagged partitions of D. Then $\operatorname{rng} T \subseteq \mathbb{R}$. The theorem is a consequence of (43).
Let I be a non empty, closed interval subset of \mathbb{R}, φ be a positive yielding function from I into \mathbb{R}, and T_{1} be a tagged partition of I and φ. The functor T_{1}-partition yielding a partition of I is defined by
(Def. 6) there exists a partition D of I and there exists an element T of the set of tagged partitions of D such that it $=D$ and $T_{1}=\langle D, T\rangle$.

7. Examples of Partitions

In the sequel r, s denote real numbers.
Now we state the proposition:
(60) Let us consider a function φ from $[r, s]$ into $] 0,+\infty[$. Suppose $r \leqslant s$. Then the set of all $] x-\varphi(x), x+\varphi(x)[\cap[r, s]$ where x is an element of $[r, s]$ is a family of subsets of $[r, s]_{\mathrm{T}}$.
Let us consider a function φ from $[r, s]$ into $] 0,+\infty[$ and a family S of subsets of $[r, s]_{\mathrm{T}}$.

Let us assume that $r \leqslant s$ and $S=$ the set of all $] x-\varphi(x), x+\varphi(x)[\cap$ $[r, s]$ where x is an element of $[r, s]$. Now we state the propositions:
(61) S is a cover of $[r, s]_{\mathrm{T}}$.

Proof: $[r, s] \subseteq \bigcup S$ by [8, (3)].
(62) S is open.

Proof: For every subset P of $[r, s]_{\mathrm{T}}$ such that $P \in S$ holds P is open by [11, (17)], [20, (35)], [11, (15), (9), (10)]. \square
(63) Suppose $S=$ the set of all $] x-\varphi(x), x+\varphi(x)[\cap[r, s]$ where x is an element of $[r, s]$. Then S is connected.
Proof: For every subset X of $[r, s]_{\mathrm{T}}$ such that $X \in S$ holds X is connected by [16, (43)].
(64) Let us consider a function φ from $[r, s]$ into $] 0,+\infty[$, and a family S of subsets of $[r, s]_{\mathrm{T}}$. Suppose $r \leqslant s$ and $S=$ the set of all $] x-\varphi(x), x+\varphi(x)[\cap$ $[r, s]$ where x is an element of $[r, s]$. Let us consider an interval cover I of S. Then
(i) I is a finite sequence of elements of $2^{\mathbb{R}}$, and
(ii) $\operatorname{rng} I \subseteq S$, and
(iii) $\bigcup \operatorname{rng} I=[r, s]$, and
(iv) for every natural number n such that $1 \leqslant n$ holds if $n \leqslant$ len I, then I_{n} is not empty and if $n+1 \leqslant$ len I, then $\inf I_{n} \leqslant \inf I_{n+1}$ and $\sup I_{n} \leqslant \sup I_{n+1}$ and $\inf I_{n+1}<\sup I_{n}$ and if $n+2 \leqslant$ len I, then $\sup I_{n} \leqslant \inf I_{n+2}$, and
(v) if $[r, s] \in S$, then $I=\langle[r, s]\rangle$, and
(vi) if $[r, s] \notin S$, then there exists a real number p such that $r<p \leqslant s$ and $I(1)=[r, p[$ and there exists a real number p such that $r \leqslant p<s$ and $I(\operatorname{len} I)=] p, s]$ and for every natural number n such that $1<$ $n<$ len I there exist real numbers p, q such that $r \leqslant p<q \leqslant s$ and $I(n)=] p, q[$.
The theorem is a consequence of (61), (62), and (63).
(65) Let us consider real numbers r, s, t, x. Then
(i) if $r \leqslant x-t$ and $x+t \leqslant s$, then $] x-t, x+t[\cap[r, s]=] x-t, x+t[$, and
(ii) if $r \leqslant x-t$ and $s<x+t$, then $] x-t, x+t[\cap[r, s]=] x-t, s]$, and
(iii) if $x-t<r$ and $x+t \leqslant s$, then $] x-t, x+t[\cap[r, s]=[r, x+t[$, and
(iv) if $x-t<r$ and $s<x+t$, then $] x-t, x+t[\cap[r, s]=[r, s]$.
(66) Let us consider real numbers r, s, t, x, and a subset X_{1} of \mathbb{R}. Suppose $0<t$ and $r \leqslant x \leqslant s$ and $\left.X_{1}=\right] x-t, x+t[\cap[r, s]$. Then
(i) if $r \leqslant x-t$ and $x+t \leqslant s$, then $\inf X_{1}=x-t$ and $\sup X_{1}=x+t$, and
(ii) if $r \leqslant x-t$ and $s<x+t$, then $\inf X_{1}=x-t$ and $\sup X_{1}=s$, and
(iii) if $x-t<r$ and $x+t \leqslant s$, then inf $X_{1}=r$ and $\sup X_{1}=x+t$, and
(iv) if $x-t<r$ and $s<x+t$, then $\inf X_{1}=r$ and $\sup X_{1}=s$.

The theorem is a consequence of (65).
Let us consider real numbers a, b, c, non empty, compact subsets I_{5}, I_{6} of \mathbb{R}, a partition D_{4} of I_{5}, a partition D_{6} of I_{6}, and natural numbers i, j.

Let us assume that $a \leqslant c \leqslant b$ and $I_{5}=[a, c]$ and $I_{6}=[c, b]$. Now we state the propositions:
(67) Suppose $i \in \operatorname{dom} D_{4}$ and $j \in \operatorname{dom} D_{6}$. Then
(i) if $i<\operatorname{len} D_{4}$, then $D_{4}(i)<D_{6}(j)$, and
(ii) if $i=\operatorname{len} D_{4}$ and $c<D_{6}(1)$, then $D_{4}(i)<D_{6}(j)$, and
(iii) if $D_{6}(1)=c$, then $D_{4}\left(\operatorname{len} D_{4}\right)=D_{6}(1)$.

Proof: If $i<\operatorname{len} D_{4}$, then $D_{4}(i)<D_{6}(j)$ by [3, (3)]. If $i=\operatorname{len} D_{4}$ and $c<D_{6}(1)$, then $D_{4}(i)<D_{6}(j)$ by [7, (6)], [3, (91)].
(68) If $i \in \operatorname{dom} D_{4}$ and $j \in \operatorname{dom} D_{6}$, then if $c<D_{6}(1)$, then $D_{4}(i)<D_{6}(j)$. The theorem is a consequence of (67).
(69) Let us consider real numbers a, b, c, and non empty, compact subsets I_{4}, I_{5}, I_{6} of \mathbb{R}. Suppose $a \leqslant c \leqslant b$ and $I_{4}=[a, b]$ and $I_{5}=[a, c]$ and $I_{6}=[c, b]$. Let us consider a partition D_{4} of I_{5}, and a partition D_{6} of I_{6}. Suppose $c<D_{6}(1)$. Then $D_{4}{ }^{\wedge} D_{6}$ is a partition of I_{4}.
Proof: Set $D_{5}=D_{4}{ }^{\wedge} D_{6}$. For every extended reals e_{1}, e_{2} such that e_{1}, $e_{2} \in \operatorname{dom} D_{5}$ and $e_{1}<e_{2}$ holds $D_{5}\left(e_{1}\right)<D_{5}\left(e_{2}\right)$ by [3, (25)], (68), [2, (11)], [3, (1)]. $\operatorname{rng} D_{5} \subseteq I_{4}$ by [3, (31)]. $D_{5}\left(\operatorname{len} D_{5}\right)=\sup I_{4}$ by [3, (3), (22)], [15, (19)].
(70) Let us consider real numbers a, b, and a non empty, closed interval subset I_{4} of \mathbb{R}. Suppose $a \leqslant b$ and $I_{4}=[a, b]$. Let us consider a partition D_{3} of I_{4}. If len $D_{3}=1$, then $D_{3}=\langle b\rangle$.
(71) Let us consider real numbers a, b, a non empty, compact subset I_{4} of \mathbb{R}, and a partition D_{3} of I_{4}. Suppose $2 \leqslant$ len D_{3}. Then $D_{3 \mid 1}$ is a partition of I_{4}.
Proof: Set $D=D_{3 〔 1} . D$ is a non empty, increasing finite sequence of elements of \mathbb{R} by [3, (60)]. $\operatorname{rng} D \subseteq I_{4}$ by [7, (33)]. $D(\operatorname{len} D)=\sup I_{4}$ by [3, (3)].
(72) Let us consider real numbers a, b. Suppose $a<b$. Then $\langle a, b\rangle$ is a non empty, increasing finite sequence of elements of \mathbb{R}.
Proof: Set $s=\langle a, b\rangle . s$ is increasing by [3, (44), (2)].
(73) Let us consider real numbers a, b, and a non empty, closed interval subset I_{4} of \mathbb{R}. Suppose $a<b$ and $I_{4}=[a, b]$. Then $\langle a, b\rangle$ is a partition of I_{4}. Proof: $\langle a, b\rangle$ is a partition of I_{4} by (72), [6, (127)], [3, (44)], [15, (19)].

8. Cousin's Lemma

Now we state the proposition:
(74) Let us consider real numbers a, b, and a positive yielding function φ from $[a, b]$ into \mathbb{R}. Suppose $a \leqslant b$. Then there exists a non empty, increasing finite sequence x of elements of \mathbb{R} and there exists a non empty finite sequence t of elements of \mathbb{R} such that $x(1)=a$ and $x(\operatorname{len} x)=b$ and $t(1)=a$ and $\operatorname{dom} x=\operatorname{dom} t$ and for every natural number i such that $i-1, i \in \operatorname{dom} t$ holds $t(i)-\varphi(t(i)) \leqslant x(i-1) \leqslant t(i)$ and for every natural number i such that $i \in \operatorname{dom} t$ holds $t(i) \leqslant x(i) \leqslant t(i)+\varphi(t(i))$.

Proof: Define \mathcal{P} [object] \equiv there exists a non empty, increasing finite sequence x of elements of \mathbb{R} and there exists a non empty finite sequence t of elements of \mathbb{R} such that $x(1)=a$ and $x(\operatorname{len} x)=\$_{1}$ and $t(1)=a$ and $\operatorname{dom} x=\operatorname{dom} t$ and for every natural number i such that $i-1, i \in \operatorname{dom} t$ holds $t(i)-\varphi(t(i)) \leqslant x(i-1) \leqslant t(i)$ and for every natural number i such that $i \in \operatorname{dom} t$ holds $t(i) \leqslant x(i) \leqslant t(i)+\varphi(t(i))$. Consider C being a set such that for every object $x, x \in C$ iff $x \in[a, b]$ and $\mathcal{P}[x]$. For every object x such that $x \in C$ holds x is real. Reconsider $c=\sup C$ as a real number. $c \in[a, b]$. Consider d being an element of $\overline{\mathbb{R}}$ such that $d \in C$ and $c-\varphi(c)<d$. Consider D_{0} being a non empty, increasing finite sequence of elements of \mathbb{R}, T_{0} being a non empty finite sequence of elements of \mathbb{R} such that $D_{0}(1)=a$ and $D_{0}\left(\operatorname{len} D_{0}\right)=d$ and $T_{0}(1)=a$ and dom $D_{0}=\operatorname{dom} T_{0}$ and for every natural number i such that $i-1$, $i \in \operatorname{dom} T_{0}$ holds $T_{0}(i)-\varphi\left(T_{0}(i)\right) \leqslant D_{0}(i-1) \leqslant T_{0}(i)$ and for every natural number i such that $i \in \operatorname{dom} T_{0}$ holds $T_{0}(i) \leqslant D_{0}(i) \leqslant T_{0}(i)+\varphi\left(T_{0}(i)\right)$. $c \in C$ and $\mathcal{P}[c]$ by (1), [27, (32)], [3, (22), (39), (1)]. $c=b$ by (1), [27, (32)], [3, (22), (39), (1)].
(75) Cousin's Lemma:

Let us consider a non empty, closed interval subset I of \mathbb{R}, and a positive yielding function φ from I into \mathbb{R}. Then there exists a tagged partition T_{1} of I and φ such that T_{1} is δ-fine.
Proof: Consider a, b being real numbers such that $a \leqslant b$ and $I=[a, b]$. Reconsider $r=\frac{1}{2}$ as a positive real number. Reconsider $\phi=r \cdot \varphi$ as a positive yielding function from I into \mathbb{R}. Consider x being a non empty, increasing finite sequence of elements of \mathbb{R}, t being a non empty finite sequence of elements of \mathbb{R} such that $x(1)=a$ and $x(\operatorname{len} x)=b$ and $t(1)=a$ and $\operatorname{dom} x=\operatorname{dom} t$ and for every natural number i such that $i-1, i \in \operatorname{dom} t$ holds $t(i)-\phi(t(i)) \leqslant x(i-1) \leqslant t(i)$ and for every natural number i such that $i \in \operatorname{dom} t$ holds $t(i) \leqslant x(i) \leqslant t(i)+\phi(t(i))$. Reconsider $D=x$ as a partition of I. Reconsider $T=t$ as an element of the set of tagged partitions of D. Reconsider $T_{1}=\langle D, T\rangle$ as a tagged partition of I and φ. T_{1} is δ-fine by [15, (19)], (4), [8, (3)], [21, (20)].

References

[1] Grzegorz Bancerek. König's theorem Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences Formalized Mathematics, 1(1):107-114, 1990.
[4] Robert G. Bartle. Return to the Riemann integral. American Mathematical Monthly, pages 625-632, 1996.
[5] Robert G. Bartle. A modern theory of integration, volume 32. American Mathematical Society Providence, 2001.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Some properties of restrictions of finite sequences Formalized Mathematics, 5(2):241-245, 1996.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[9] Pierre Cousin. Sur les fonctions de n variables complexes. Acta Mathematica, 19(1):1-61, 1895. doi 10.1007/BFUZ4UZ869
[10] Agata Darmochwał. The Euclidean space Formalized Mathematics, 2(4):599-603, 1991.
[11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts Formalized Mathematics, 2(4):605-608, 1991.
[12] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas Formalized Mathematıcs, 8(1):93-102, 1999.
[13] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
[14] Noboru Endou, Yasunari Shidama, and Katsumasa Okamura. Baire's category theorem and some spaces generated from real normed space. Formalized Mathematics, 14(4): 213-219, 2006. doi 10.2478/v10037-006-0024-x.
[15] Adam Grabowski and Yatsuka Nakamura. Some properties of real maps. Formalized Mathematics, 6(4):455-459, 1997.
[16] Artur Korniłowicz. Properties of connected subsets of the real line. Formalized Mathematics, 13(2):315-323, 2005.
[17] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[18] Bernard Maurey and Jean-Pierre Tacchi. La genèse du théorème de recouvrement de Borel Revue d'histoire des mathématiques, 11(2):163-204, 2005.
[19] Jean Mawhin. L'éternel retour des sommes de Riemann-Stieltjes dans l'évolution du calcul intégral. Bulletin de la Société Royale des Sciences de Liège, 70(4-6):345-364, 2001.
[20] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points Formalized Mathematıcs, 6(4):563-572, 1997.
[21] Robin Nittka. Conway's games and some of their basic properties. Formalized Mathematics, 19(2):73-81, 2011. doi 10.2478/v10037-011-0013-6.
[22] Karol Pak. Complete spaces. Formalized Mathematics, 16(1):35-43, 2008. doi 10.2478/v10037-008-0006-2
[23] Manya Raman-Sundström. A pedagogical history of compactness The American Mathematical Monthly, 122(7):619-635, 2015.
[24] Hideki Sakurai, Hisayoshi Kunimune, and Yasunari Shidama. Uniform boundedness principle. Formalized Mathematics, 16(1):19-21, 2008. doi 10.2478/v10037-008-0003-5
[25] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[26] Yasumasa Suzuki, Noboru Endou, and Yasunari Shidama. Banach space of absolute summable real sequences Formalized Mathematics, 11(4):377-380, 2003.
[27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences Formalized Mathematics, 1(3):569-573, 1990.
[28] Lee Peng Yee. The integral à la Henstock. Scientiae Mathematicae Japonicae, 67(1): 13-21, 2008.
[29] Lee Peng Yee and Rudolf Vyborny. Integral: an easy approach after Kurzweil and Henstock, volume 14. Cambridge University Press, 2000.

Received December 31, 2015

