

Cousin's Lemma

Roland Coghetto Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. We formalize, in two different ways, that "the *n*-dimensional Euclidean metric space is a complete metric space" (version 1. with the results obtained in [13], [26], [25] and version 2., the results obtained in [13], [14], (*registrations*) [24]).

With the Cantor's theorem - in complete metric space (proof by Karol Pąk in [22]), we formalize "The Nested Intervals Theorem in 1-dimensional Euclidean metric space".

Pierre Cousin's proof in 1892 $\left[18\right]$ the lemma, published in 1895 $\left[9\right]$ states that:

"Soit, sur le plan YOX, une aire connexe S limitée par un contour fermé simple ou complexe; on suppose qu'à chaque point de S ou de son périmètre correspond un cercle, de rayon non nul, ayant ce point pour centre : il est alors toujours possible de subdiviser S en régions, en nombre fini et assez petites pour que chacune d'elles soit complétement intérieure au cercle correspondant à un point convenablement choisi dans S ou sur son périmètre."

(In the plane YOX let S be a connected area bounded by a closed contour, simple or complex; one supposes that at each point of S or its perimeter there is a circle, of non-zero radius, having this point as its centre; it is then always possible to subdivide S into regions, finite in number and sufficiently small for each one of them to be entirely inside a circle corresponding to a suitably chosen point in Sor on its perimeter) [23].

Cousin's Lemma, used in Henstock and Kurzweil integral [29] (generalized Riemann integral), state that: "for any gauge δ , there exists at least one δ -fine tagged partition". In the last section, we formalize this theorem. We use the suggestions given to the Cousin's Theorem p.11 in [5] and with notations: [4], [29], [19], [28] and [12].

MSC: 54D30 03B35

Keywords: Cousin's lemma; Cousin's theorem; nested intervals theorem

107

C 2016 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online) MML identifier: COUSIN, version: 8.1.04 5.36.1267

1. Preliminaries

Now we state the proposition:

(1) Let us consider non empty, increasing finite sequences p, q of elements of \mathbb{R} . Suppose $p(\operatorname{len} p) < q(1)$. Then $p \cap q$ is a non empty, increasing finite sequence of elements of \mathbb{R} .

Let us consider real numbers a, b. Now we state the propositions:

- (2) If 1 < a and 0 < b < 1, then $\log_a b < 0$.
- (3) If 1 < a and 1 < b, then $0 < \log_a b$.

Let us consider a finite sequence p and a natural number i.

Let us assume that $i \in \text{dom } p$. Now we state the propositions:

(4) (i)
$$i = 1$$
, or

(ii) 1 < i.

(5) (i)
$$i = \text{len } p$$
, or

(ii) $i < \operatorname{len} p$.

Now we state the propositions:

- (6) Let us consider an object x. Then $\prod \langle \{x\} \rangle = \{\langle x \rangle \}$.
- (7) Let us consider an element x of \mathcal{R}^1 . Then there exists a real number r_3 such that $x = \langle r_3 \rangle$.
- (8) Let us consider a real number a. Then $\langle a \rangle$ is a point of \mathcal{E}^1 .
- (9) Let us consider real numbers a, b. If $a \leq b$, then $a \leq \frac{a+b}{2} \leq b$.
- (10) Let us consider real numbers a, b, c. If $a \le b < c$, then $a < \frac{b+c}{2}$. Let us consider real numbers a, b. Now we state the propositions:
- (11) If a < b, then $\frac{a+b}{2} < b$.
- (12) If $a \leq b$, then [a, b] is a non empty, compact subset of \mathbb{R} .
- (13) Let us consider a finite sequence f. Suppose $2 \leq \text{len } f$. Then $f_{\downarrow 1}(\text{len } f_{\downarrow 1}) = f(\text{len } f)$.

2. \mathcal{E}^n is Complete - Proof Version 1

From now on n denotes a natural number, s_1 denotes a sequence of \mathcal{E}^n , and s_2 denotes a sequence of $\langle \mathcal{E}^n, \| \cdot \| \rangle$.

Now we state the propositions:

- (14) Let us consider elements x, y of \mathcal{E}^n , and points g, h of $\langle \mathcal{E}^n, \| \cdot \| \rangle$. If x = g and y = h, then $\rho(x, y) = \|g h\|$.
- (15) (i) s_1 is a sequence of $\langle \mathcal{E}^n, \| \cdot \| \rangle$, and

(ii) s_2 is a sequence of \mathcal{E}^n .

PROOF: s_1 is a sequence of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ by [10, (67), (22)]. s_2 is a sequence of \mathcal{E}^n by [10, (22), (67)]. \Box

Let us assume that $s_1 = s_2$. Now we state the propositions:

- (16) s_1 is Cauchy if and only if s_2 is Cauchy sequence by norm. The theorem is a consequence of (14).
- (17) s_1 is convergent if and only if s_2 is convergent. The theorem is a consequence of (14).
- (18) Let us consider a sequence S_1 of \mathcal{E}^n . If S_1 is Cauchy, then S_1 is convergent. The theorem is a consequence of (15), (16), and (17).
- (19) \mathcal{E}^n is complete.

3. \mathcal{E}^n is Complete - Proof Version 2

Now we state the propositions:

- (20) The distance by norm of $\langle \mathcal{E}^n, \| \cdot \| \rangle = \rho^n$. The theorem is a consequence of (14).
- (21) MetricSpaceNorm $\langle \mathcal{E}^n, \| \cdot \| \rangle = \mathcal{E}^n$. The theorem is a consequence of (20).
- (22) \mathcal{E}^n is complete. The theorem is a consequence of (21).

Let n be a natural number. Let us note that \mathcal{E}^n is complete.

4. The Nested Intervals Theorem (1-dimensional Euclidean Space)

Let a, b be sequences of real numbers. The functor IntervalSeq(a, b) yielding a sequence of subsets of \mathcal{R}^1 is defined by

(Def. 1) for every natural number $i, it(i) = \prod \langle [a(i), b(i)] \rangle$.

Now we state the propositions:

(23) Let us consider sequences a, b of real numbers, and a natural number i. Then $(\text{IntervalSeq}(a, b))(i) = \prod \langle [a(i), b(i)] \rangle$.

- (24) Let us consider sequences a, b of real numbers. Then IntervalSeq(a, b) is a sequence of subsets of \mathcal{E}^1 .
- (25) $\prod \langle \mathbb{R} \rangle = \mathcal{R}^1.$
- (26) Let us consider real numbers a, b, and points x_1 , x_2 of \mathcal{E}^1 . Suppose $x_1 = \langle a \rangle$ and $x_2 = \langle b \rangle$. Then $\rho(x_1, x_2) = |a b|$.
- (27) Let us consider real numbers $a, b, and a subset S \text{ of } \mathcal{E}^1$. Suppose $a \leq b$ and $S = \prod \langle [a,b] \rangle$. Let us consider points x, y of \mathcal{E}^1 . If $x, y \in S$, then $\rho(x,y) \leq b-a$. PROOF: Set $s = \prod \langle [a,b] \rangle$. For every points x, y of \mathcal{E}^1 such that $x, y \in s$ holds $\rho(x,y) \leq b-a$ by (6), [10, (67), (22)], (7). \Box
- (28) Let us consider real numbers $a, b, and a subset S \text{ of } \mathcal{E}^1$. If $a \leq b$ and $S = \prod \langle [a,b] \rangle$, then S is bounded. PROOF: Set $s = \prod \langle [a,b] \rangle$. There exists a real number r such that 0 < r and for every points x, y of \mathcal{E}^1 such that $x, y \in s$ holds $\rho(x, y) \leq r$ by (6), [10, (67), (22)], (7). \Box

Let us consider sequences a, b of real numbers.

Let us assume that for every natural number $i, a(i) \leq b(i)$ and $a(i) \leq a(i+1)$ and $b(i+1) \leq b(i)$. Now we state the propositions:

(29) IntervalSeq(a, b) is a non-empty, pointwise bounded, closed sequence of subsets of \mathcal{E}^1 .

PROOF: Reconsider s = IntervalSeq(a, b) as a sequence of subsets of \mathcal{E}^1 . s is non-empty by (23), [1, (26)], [3, (2)]. s is pointwise bounded by (23), (6), [10, (67), (22)]. s is closed by (23), [10, (67), (22)], (25). \Box

- (30) IntervalSeq(a, b) is non ascending. The theorem is a consequence of (23).
- (31) Let us consider real numbers a, b, x. If $a \leq x \leq b$, then $\langle x \rangle \in \prod \langle [a, b] \rangle$. PROOF: Reconsider $P = \langle x \rangle$ as a point of \mathcal{E}^1 . There exists a function g such that g = P and dom $g = \operatorname{dom}\langle [a, b] \rangle$ and for every object y such that $y \in \operatorname{dom}\langle [a, b] \rangle$ holds $g(y) \in \langle [a, b] \rangle \langle y \rangle$ by [3, (2)]. \Box
- (32) Let us consider real numbers a, b, and a subset S of \mathcal{E}^1 . If $a \leq b$ and $S = \prod \langle [a,b] \rangle$, then $\emptyset S = b a$. The theorem is a consequence of (28), (31), (27), (8), and (26).
- (33) Let us consider sequences a, b of real numbers. Suppose for every natural number $i, a(i) \leq b(i)$ and a is non-decreasing and b is non-increasing. Then
 - (i) a is convergent, and
 - (ii) b is convergent.
- (34) Let us consider sequences a, b of real numbers. Suppose $a(0) \leq b(0)$ and for every natural number i, a(i+1) = a(i) and $b(i+1) = \frac{a(i)+b(i)}{2}$ or

 $a(i+1) = \frac{a(i)+b(i)}{2}$ and b(i+1) = b(i). Let us consider a natural number *i*. Then $a(i) \leq b(i)$.

PROOF: Define $\mathcal{P}[\text{object}] \equiv$ there exists a natural number i such that $\$_1 = i$ and $a(i) \leq b(i)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number k, $\mathcal{P}[k]$ from [2, Sch. 2]. \Box

Let us consider sequences a, b of real numbers, a sequence S of subsets of \mathcal{E}^1 , and a natural number i. Now we state the propositions:

- (35) Suppose $a(0) \leq b(0)$ and S = IntervalSeq(a, b) and for every natural number i, a(i+1) = a(i) and $b(i+1) = \frac{a(i)+b(i)}{2}$ or $a(i+1) = \frac{a(i)+b(i)}{2}$ and b(i+1) = b(i). Then
 - (i) $a(i) \leq b(i)$, and
 - (ii) $a(i) \leq a(i+1)$, and
 - (iii) $b(i+1) \leq b(i)$, and
 - (iv) $(\emptyset S)(i) = b(i) a(i)$.

The theorem is a consequence of (34), (9), (24), (23), and (32).

- (36) Suppose a(0) = b(0) and S = IntervalSeq(a, b) and for every natural number i, a(i+1) = a(i) and $b(i+1) = \frac{a(i)+b(i)}{2}$ or $a(i+1) = \frac{a(i)+b(i)}{2}$ and b(i+1) = b(i). Then
 - (i) a(i) = a(0), and
 - (ii) b(i) = b(0), and
 - (iii) $(\emptyset S)(i) = 0.$

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv a(\$_1) = a(0)$ and $b(\$_1) = b(0)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number k, $\mathcal{P}[k]$ from [2, Sch. 2]. \Box

(37) Let us consider sequences a, b of real numbers. Suppose for every natural number i, a(i+1) = a(i) and $b(i+1) = \frac{a(i)+b(i)}{2}$ or $a(i+1) = \frac{a(i)+b(i)}{2}$ and b(i+1) = b(i). Let us consider a natural number i, and a real number r. If $r = 2^i$ and $r \neq 0$, then $b(i) - a(i) \leq \frac{b(0) - a(0)}{r}$. PROOF: Define $\mathcal{P}[\text{object}] \equiv$ there exists a natural number i and there

PROOF: Define $\mathcal{P}[\text{object}] \equiv$ there exists a natural number *i* and there exists a real number *r* such that $\$_1 = i$ and $r = 2^i$ and $r \neq 0$ and $b(i) - a(i) \leq \frac{b(0) - a(0)}{r}$. $\mathcal{P}[0]$ by [17, (4)]. For every natural number *k* such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [17, (87), (6)]. For every natural number *k*, $\mathcal{P}[k]$ from [2, Sch. 2]. Consider i_1 being a natural number, r_1 being a real number such that $i = i_1$ and $r_1 = 2^{i_1}$ and $r_1 \neq 0$ and $b(i_1) - a(i_1) \leq \frac{b(0) - a(0)}{r_1}$. \Box

(38) Let us consider sequences a, b of real numbers, and a sequence S of subsets of \mathcal{E}^1 . Suppose $a(0) \leq b(0)$ and S = IntervalSeq(a, b) and for every

natural number *i*, a(i + 1) = a(i) and $b(i + 1) = \frac{a(i) + b(i)}{2}$ or $a(i + 1) = \frac{a(i) + b(i)}{2}$ and b(i + 1) = b(i). Then

- (i) $\emptyset S$ is convergent, and
- (ii) $\lim \emptyset S = 0.$

The theorem is a consequence of (36), (35), (34), (33), (3), and (37).

- (39) Let us consider sequences a, b of real numbers. Suppose $a(0) \leq b(0)$ and for every natural number i, a(i+1) = a(i) and $b(i+1) = \frac{a(i)+b(i)}{2}$ or $a(i+1) = \frac{a(i)+b(i)}{2}$ and b(i+1) = b(i). Then \bigcap IntervalSeq(a, b) is not empty. The theorem is a consequence of (24), (35), (29), (30), and (38).
- (40) Let us consider a real number r, and sequences a, b of real numbers. Suppose 0 < r and $a(0) \leq b(0)$ and for every natural number i, a(i+1) = a(i) and $b(i+1) = \frac{a(i)+b(i)}{2}$ or $a(i+1) = \frac{a(i)+b(i)}{2}$ and b(i+1) = b(i). Then there exists a real number c such that
 - (i) for every natural number $j, a(j) \leq c \leq b(j)$, and
 - (ii) there exists a natural number k such that c-r < a(k) and b(k) < c+r.

The theorem is a consequence of (39), (23), (24), (35), (29), and (38).

5. TAGGED PARTITION

Now we state the propositions:

- (41) Let us consider a non empty, closed interval subset I of \mathbb{R} . Then there exist real numbers a, b such that
 - (i) $a \leq b$, and
 - (ii) I = [a, b].
- (42) Let us consider non empty, closed interval subsets I_1 , I_2 of \mathbb{R} . Suppose $\sup I_1 = \inf I_2$. Then there exist real numbers a, b, c such that
 - (i) $a \leq c \leq b$, and
 - (ii) $I_1 = [a, c]$, and
 - (iii) $I_2 = [c, b].$

The theorem is a consequence of (41).

Let A be a non empty, closed interval subset of \mathbb{R} and D be a partition of A. The set of tagged partitions of D yielding a subset of \mathbb{R}^* is defined by

(Def. 2) for every object $x, x \in it$ iff there exists a non empty, non-decreasing finite sequence s of elements of \mathbb{R} such that x = s and dom s = dom D and for every natural number i such that $i \in \text{dom } s$ holds $s(i) \in \text{divset}(D, i)$.

Now we state the propositions:

- (43) Let us consider a non empty, closed interval subset A of R, and a partition D of A. Then D ∈ the set of tagged partitions of D.
 PROOF: For every natural number i such that i ∈ dom D holds D(i) ∈ divset(D, i) by [15, (19)], (4). □
- (44) Let us consider real numbers a, b, and a non empty, closed interval subset I_4 of \mathbb{R} . If $I_4 = [a, b]$, then $\langle b \rangle$ is a partition of I_4 . PROOF: $\langle b \rangle$ is a partition of I_4 by [3, (39)], [15, (19)]. \Box

Let I be a non empty, closed interval subset of \mathbb{R} and φ be a positive yielding function from I into \mathbb{R} .

A tagged partition of I and φ is defined by

(Def. 3) there exists a partition D of I and there exists an element T of the set of tagged partitions of D such that $it = \langle D, T \rangle$.

Let T_1 be a tagged partition of I and φ . We say that T_1 is δ -fine if and only if

(Def. 4) there exists a partition D of I and there exists an element T of the set of tagged partitions of D such that $T_1 = \langle D, T \rangle$ and for every natural number i such that $i \in \text{dom } D$ holds $\text{vol}(\text{divset}(D, i)) \leq \varphi(T(i))$.

6. PARTITION COMPOSITION

Let us consider a real number r. Now we state the propositions:

(45) (i) $\sup\{r\} = r$, and

(ii) $\inf\{r\} = r$.

- (46) $\operatorname{vol}(\{r\}) = 0$. The theorem is a consequence of (45).
- (47) Let us consider non empty, closed interval subsets I_1 , I_2 of \mathbb{R} , and a positive yielding function φ from I_1 into \mathbb{R} . Suppose $I_2 \subseteq I_1$. Then $\varphi \upharpoonright I_2$ is a positive yielding function from I_2 into \mathbb{R} .
- (48) Let us consider a non empty, closed interval subset I of \mathbb{R} , and a real number c. Suppose $c \in I$. Then
 - (i) $[\inf I, c]$ is a non empty, closed interval subset of \mathbb{R} , and
 - (ii) $[c, \sup I]$ is a non empty, closed interval subset of \mathbb{R} , and
 - (iii) $\sup[\inf I, c] = \inf[c, \sup I].$

The theorem is a consequence of (41).

Let I_5 , I_6 be non empty, closed interval subsets of \mathbb{R} , D_4 be a partition of I_5 , and D_6 be a partition of I_6 . Assume $\sup I_5 \leq \inf I_6$. The functor $D_4 \cdot D_6$

yielding a non empty, increasing finite sequence of elements of $\mathbb R$ is defined by the term

(Def. 5) $\begin{cases} D_4 \cap D_6, & \text{if } D_6(1) \neq \sup I_5, \\ D_4 \cap D_6|_1, & \text{otherwise.} \end{cases}$

Now we state the propositions:

- (49) Let us consider non empty, closed interval subsets I_5 , I_6 of \mathbb{R} , a partition D_4 of I_5 , and a partition D_6 of I_6 . Suppose sup $I_5 = \inf I_6$ and len $D_6 = 1$ and $D_6(1) = \inf I_6$. Then $D_4 \cdot D_6 = D_4$.
- (50) Let us consider non empty, closed interval subsets I_1, I_2, I of \mathbb{R} . Suppose $\sup I_1 \leq \inf I_2$ and $\inf I \leq \inf I_1$ and $\sup I_2 \leq \sup I$. Then $I_1 \cup I_2 \subseteq I$.
- (51) Let us consider non empty, closed interval subsets I_1 , I_2 , I of \mathbb{R} , a partition D_1 of I_1 , and a partition D_2 of I_2 . Suppose $\sup I_1 \leq \inf I_2$ and $I = [\inf I_1, \sup I_2]$. Then $D_1 \cdot D_2$ is a partition of I. The theorem is a consequence of (50).
- (52) Let us consider a non empty, closed interval subset I of \mathbb{R} , and a partition D of I. Then the set of tagged partitions of D is not empty.
- (53) Let us consider a non empty, increasing finite sequence s of elements of \mathbb{R} , and a real number r. Suppose $s(\operatorname{len} s) < r$. Then $s \cap \langle r \rangle$ is a non empty, increasing finite sequence of elements of \mathbb{R} . The theorem is a consequence of (1).
- (54) Let us consider non empty, increasing finite sequences s_1 , s_2 of elements of \mathbb{R} , and a real number r. Suppose $s_1(\ln s_1) < r < s_2(1)$. Then $(s_1 \land \langle r \rangle) \land s_2$ is a non empty, increasing finite sequence of elements of \mathbb{R} . The theorem is a consequence of (53) and (1).
- (55) Let us consider non empty, closed interval subsets I_1 , I_2 , I of \mathbb{R} . Suppose $\sup I_1 = \inf I_2$ and $I = I_1 \cup I_2$. Then
 - (i) $\inf I = \inf I_1$, and
 - (ii) $\sup I = \sup I_2$.
- (56) Let us consider a non empty, closed interval subset I of \mathbb{R} , and a partition D of I. Then
 - (i) $\operatorname{divset}(D, 1) = [\inf I, D(1)]$, and
 - (ii) for every natural number j such that $j \in \text{dom } D$ and $j \neq 1$ holds divset(D, j) = [D(j-1), D(j)].

PROOF: For every natural number j such that $j \in \text{dom } D$ and $j \neq 1$ holds divset(D, j) = [D(j-1), D(j)] by [12, (4)]. \Box

(57) Let us consider a real number r, and finite sequences p, q of elements of \mathbb{R} . Then $\operatorname{len}((p \cap \langle r \rangle) \cap q) = \operatorname{len} p + \operatorname{len} q + 1$.

- (58) Let us consider a non empty, closed interval subset I of \mathbb{R} , and a partition D of I. Then every element of the set of tagged partitions of D is not empty. The theorem is a consequence of (43).
- (59) Let us consider a non empty, closed interval subset I of \mathbb{R} , a partition D of I, and an element T of the set of tagged partitions of D. Then $\operatorname{rng} T \subseteq \mathbb{R}$. The theorem is a consequence of (43).

Let I be a non empty, closed interval subset of \mathbb{R} , φ be a positive yielding function from I into \mathbb{R} , and T_1 be a tagged partition of I and φ . The functor T_1 -partition yielding a partition of I is defined by

(Def. 6) there exists a partition D of I and there exists an element T of the set of tagged partitions of D such that it = D and $T_1 = \langle D, T \rangle$.

7. Examples of Partitions

In the sequel r, s denote real numbers.

Now we state the proposition:

(60) Let us consider a function φ from [r, s] into $]0, +\infty[$. Suppose $r \leq s$. Then the set of all $]x - \varphi(x), x + \varphi(x)[\cap [r, s]$ where x is an element of [r, s] is a family of subsets of $[r, s]_{T}$.

Let us consider a function φ from [r, s] into $]0, +\infty[$ and a family S of subsets of $[r, s]_{T}$.

Let us assume that $r \leq s$ and S = the set of all $]x - \varphi(x), x + \varphi(x)[\cap [r, s]$ where x is an element of [r, s]. Now we state the propositions:

- (61) S is a cover of $[r, s]_{T}$. PROOF: $[r, s] \subseteq \bigcup S$ by [8, (3)]. \Box
- (62) S is open. PROOF: For every subset P of $[r, s]_T$ such that $P \in S$ holds P is open by $[11, (17)], [20, (35)], [11, (15), (9), (10)]. \square$
- (63) Suppose S = the set of all $]x-\varphi(x), x+\varphi(x)[\cap[r,s]]$ where x is an element of [r,s]. Then S is connected. PROOF: For every subset X of $[r, s]_{\mathrm{T}}$ such that $X \in S$ holds X is connected by [16, (43)]. \Box
- (64) Let us consider a function φ from [r, s] into $]0, +\infty[$, and a family S of subsets of $[r, s]_T$. Suppose $r \leq s$ and S = the set of all $]x \varphi(x), x + \varphi(x)[\cap [r, s]$ where x is an element of [r, s]. Let us consider an interval cover I of S. Then
 - (i) I is a finite sequence of elements of $2^{\mathbb{R}}$, and
 - (ii) $\operatorname{rng} I \subseteq S$, and

- (iii) $\bigcup \operatorname{rng} I = [r, s]$, and
- (iv) for every natural number n such that $1 \leq n$ holds if $n \leq \ln I$, then I_n is not empty and if $n + 1 \leq \ln I$, then $\inf I_n \leq \inf I_{n+1}$ and $\sup I_n \leq \sup I_{n+1}$ and $\inf I_{n+1} < \sup I_n$ and $\inf n + 2 \leq \ln I$, then $\sup I_n \leq \inf I_{n+2}$, and
- (v) if $[r,s] \in S$, then $I = \langle [r,s] \rangle$, and
- (vi) if $[r, s] \notin S$, then there exists a real number p such that rand <math>I(1) = [r, p[and there exists a real number p such that $r \leq p < s$ and I(len I) =]p, s] and for every natural number n such that 1 < n < len I there exist real numbers p, q such that $r \leq p < q \leq s$ and I(n) =]p, q[.

The theorem is a consequence of (61), (62), and (63).

- (65) Let us consider real numbers r, s, t, x. Then
 - (i) if $r \leq x t$ and $x + t \leq s$, then $]x t, x + t[\cap [r, s] =]x t, x + t[$, and
 - (ii) if $r \le x t$ and s < x + t, then $|x t, x + t| \cap [r, s] = |x t, s|$, and
 - (iii) if x t < r and $x + t \leq s$, then $|x t, x + t| \cap [r, s] = [r, x + t]$, and
 - (iv) if x t < r and s < x + t, then $|x t, x + t| \cap [r, s] = [r, s]$.
- (66) Let us consider real numbers r, s, t, x, and a subset X_1 of \mathbb{R} . Suppose 0 < t and $r \leq x \leq s$ and $X_1 = [x t, x + t] \cap [r, s]$. Then
 - (i) if $r \leq x t$ and $x + t \leq s$, then $\inf X_1 = x t$ and $\sup X_1 = x + t$, and
 - (ii) if $r \leq x t$ and s < x + t, then $\inf X_1 = x t$ and $\sup X_1 = s$, and
 - (iii) if x t < r and $x + t \leq s$, then $\inf X_1 = r$ and $\sup X_1 = x + t$, and
 - (iv) if x t < r and s < x + t, then $\inf X_1 = r$ and $\sup X_1 = s$.

The theorem is a consequence of (65).

Let us consider real numbers a, b, c, non empty, compact subsets I_5 , I_6 of \mathbb{R} , a partition D_4 of I_5 , a partition D_6 of I_6 , and natural numbers i, j.

Let us assume that $a \leq c \leq b$ and $I_5 = [a, c]$ and $I_6 = [c, b]$. Now we state the propositions:

(67) Suppose $i \in \text{dom } D_4$ and $j \in \text{dom } D_6$. Then

- (i) if $i < \text{len } D_4$, then $D_4(i) < D_6(j)$, and
- (ii) if $i = \text{len } D_4$ and $c < D_6(1)$, then $D_4(i) < D_6(j)$, and
- (iii) if $D_6(1) = c$, then $D_4(\ln D_4) = D_6(1)$.

PROOF: If $i < \text{len } D_4$, then $D_4(i) < D_6(j)$ by [3, (3)]. If $i = \text{len } D_4$ and $c < D_6(1)$, then $D_4(i) < D_6(j)$ by [7, (6)], [3, (91)]. \Box

- (68) If $i \in \text{dom } D_4$ and $j \in \text{dom } D_6$, then if $c < D_6(1)$, then $D_4(i) < D_6(j)$. The theorem is a consequence of (67).
- (69) Let us consider real numbers a, b, c, and non empty, compact subsets I_4 , I_5, I_6 of \mathbb{R} . Suppose $a \leq c \leq b$ and $I_4 = [a, b]$ and $I_5 = [a, c]$ and $I_6 = [c, b]$. Let us consider a partition D_4 of I_5 , and a partition D_6 of I_6 . Suppose $c < D_6(1)$. Then $D_4 \cap D_6$ is a partition of I_4 . PROOF: Set $D_5 = D_4 \cap D_6$. For every extended reals e_1, e_2 such that e_1 , $e_2 \in \text{dom } D_5$ and $e_1 < e_2$ holds $D_5(e_1) < D_5(e_2)$ by [3, (25)], (68), [2, (11)], [3, (1)]. rng $D_5 \subseteq I_4$ by [3, (31)]. $D_5(\text{len } D_5) = \sup I_4$ by [3, (3),
- (70) Let us consider real numbers a, b, and a non empty, closed interval subset I_4 of \mathbb{R} . Suppose $a \leq b$ and $I_4 = [a, b]$. Let us consider a partition D_3 of I_4 . If len $D_3 = 1$, then $D_3 = \langle b \rangle$.
- (71) Let us consider real numbers a, b, a non empty, compact subset I_4 of \mathbb{R} , and a partition D_3 of I_4 . Suppose $2 \leq \ln D_3$. Then $D_3_{\downarrow 1}$ is a partition of I_4 .

PROOF: Set $D = D_{3|1}$. D is a non empty, increasing finite sequence of elements of \mathbb{R} by [3, (60)]. rng $D \subseteq I_4$ by [7, (33)]. $D(\operatorname{len} D) = \sup I_4$ by [3, (3)]. \Box

- (72) Let us consider real numbers a, b. Suppose a < b. Then $\langle a, b \rangle$ is a non empty, increasing finite sequence of elements of \mathbb{R} . PROOF: Set $s = \langle a, b \rangle$. s is increasing by [3, (44), (2)]. \Box
- (73) Let us consider real numbers a, b, and a non empty, closed interval subset I_4 of \mathbb{R} . Suppose a < b and $I_4 = [a, b]$. Then $\langle a, b \rangle$ is a partition of I_4 . PROOF: $\langle a, b \rangle$ is a partition of I_4 by (72), [6, (127)], [3, (44)], [15, (19)]. \Box

8. Cousin's Lemma

Now we state the proposition:

(22)], [15, (19)].

(74) Let us consider real numbers a, b, and a positive yielding function φ from [a, b] into \mathbb{R} . Suppose $a \leq b$. Then there exists a non empty, increasing finite sequence x of elements of \mathbb{R} and there exists a non empty finite sequence t of elements of \mathbb{R} such that x(1) = a and $x(\ln x) = b$ and t(1) = a and dom x = dom t and for every natural number i such that $i - 1, i \in \text{dom } t$ holds $t(i) - \varphi(t(i)) \leq x(i-1) \leq t(i)$ and for every natural number i such that $i \in \text{dom } t$ holds $t(i) \leq x(i) \leq t(i) + \varphi(t(i))$.

PROOF: Define $\mathcal{P}[\text{object}] \equiv$ there exists a non empty, increasing finite sequence x of elements of \mathbb{R} and there exists a non empty finite sequence t of elements of \mathbb{R} such that x(1) = a and $x(\ln x) = \$_1$ and t(1) = a and dom x = dom t and for every natural number i such that $i - 1, i \in \text{dom } t$ holds $t(i) - \varphi(t(i)) \leq x(i-1) \leq t(i)$ and for every natural number i such that $i \in \text{dom } t$ holds $t(i) \leq x(i) \leq t(i) + \varphi(t(i))$. Consider C being a set such that for every object $x, x \in C$ iff $x \in [a, b]$ and $\mathcal{P}[x]$. For every object x such that $x \in C$ holds x is real. Reconsider $c = \sup C$ as a real number. $c \in [a, b]$. Consider d being an element of $\overline{\mathbb{R}}$ such that $d \in C$ and $c - \varphi(c) < d$. Consider D_0 being a non empty, increasing finite sequence of elements of \mathbb{R} , T_0 being a non empty finite sequence of elements of \mathbb{R} such that $D_0(1) = a$ and $D_0(\ln D_0) = d$ and $T_0(1) = a$ and dom $D_0 = \text{dom } T_0$ and for every natural number *i* such that i - 1, $i \in \text{dom } T_0 \text{ holds } T_0(i) - \varphi(T_0(i)) \leq D_0(i-1) \leq T_0(i) \text{ and for every natural}$ number i such that $i \in \text{dom } T_0$ holds $T_0(i) \leq D_0(i) \leq T_0(i) + \varphi(T_0(i))$. $c \in C$ and $\mathcal{P}[c]$ by (1), [27, (32)], [3, (22), (39), (1)]. c = b by (1), [27, (32)], [3, (22), (39), (1)].

(75) COUSIN'S LEMMA:

Let us consider a non empty, closed interval subset I of \mathbb{R} , and a positive yielding function φ from I into \mathbb{R} . Then there exists a tagged partition T_1 of I and φ such that T_1 is δ -fine.

PROOF: Consider a, b being real numbers such that $a \leq b$ and I = [a, b]. Reconsider $r = \frac{1}{2}$ as a positive real number. Reconsider $\phi = r \cdot \varphi$ as a positive yielding function from I into \mathbb{R} . Consider x being a non empty, increasing finite sequence of elements of \mathbb{R} , t being a non empty finite sequence of elements of \mathbb{R} such that x(1) = a and $x(\ln x) = b$ and t(1) = aand dom x = dom t and for every natural number i such that $i-1, i \in \text{dom } t$ holds $t(i) - \phi(t(i)) \leq x(i-1) \leq t(i)$ and for every natural number i such that $i \in \text{dom } t$ holds $t(i) \leq x(i) \leq t(i) + \phi(t(i))$. Reconsider D = x as a partition of I. Reconsider T = t as an element of the set of tagged partitions of D. Reconsider $T_1 = \langle D, T \rangle$ as a tagged partition of I and φ . T_1 is δ -fine by [15, (19)], (4), [8, (3)], [21, (20)]. \Box

References

- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Robert G. Bartle. Return to the Riemann integral. American Mathematical Monthly, pages 625–632, 1996.

- [5] Robert G. Bartle. A modern theory of integration, volume 32. American Mathematical Society Providence, 2001.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241–245, 1996.
- [8] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1): 55–65, 1990.
- [9] Pierre Cousin. Sur les fonctions de n variables complexes. Acta Mathematica, 19(1):1–61, 1895. doi:10.1007/BF02402869.
- [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [12] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. *Formalized Mathematics*, 8(1):93–102, 1999.
- [13] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577–580, 2005.
- [14] Noboru Endou, Yasunari Shidama, and Katsumasa Okamura. Baire's category theorem and some spaces generated from real normed space. *Formalized Mathematics*, 14(4): 213–219, 2006. doi:10.2478/v10037-006-0024-x.
- [15] Adam Grabowski and Yatsuka Nakamura. Some properties of real maps. Formalized Mathematics, 6(4):455–459, 1997.
- [16] Artur Korniłowicz. Properties of connected subsets of the real line. Formalized Mathematics, 13(2):315–323, 2005.
- [17] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [18] Bernard Maurey and Jean-Pierre Tacchi. La genèse du théorème de recouvrement de Borel. Revue d'histoire des mathématiques, 11(2):163–204, 2005.
- [19] Jean Mawhin. L'éternel retour des sommes de Riemann-Stieltjes dans l'évolution du calcul intégral. Bulletin de la Société Royale des Sciences de Liège, 70(4–6):345–364, 2001.
- [20] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. *Formalized Mathematics*, 6(4):563–572, 1997.
- [21] Robin Nittka. Conway's games and some of their basic properties. Formalized Mathematics, 19(2):73–81, 2011. doi:10.2478/v10037-011-0013-6.
- [22] Karol Pąk. Complete spaces. Formalized Mathematics, 16(1):35–43, 2008. doi:10.2478/v10037-008-0006-2.
- [23] Manya Raman-Sundström. A pedagogical history of compactness. The American Mathematical Monthly, 122(7):619–635, 2015.
- [24] Hideki Sakurai, Hisayoshi Kunimune, and Yasunari Shidama. Uniform boundedness principle. Formalized Mathematics, 16(1):19–21, 2008. doi:10.2478/v10037-008-0003-5.
- [25] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
- [26] Yasumasa Suzuki, Noboru Endou, and Yasunari Shidama. Banach space of absolute summable real sequences. *Formalized Mathematics*, 11(4):377–380, 2003.
- [27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [28] Lee Peng Yee. The integral à la Henstock. Scientiae Mathematicae Japonicae, 67(1): 13–21, 2008.
- [29] Lee Peng Yee and Rudolf Vyborny. Integral: an easy approach after Kurzweil and Henstock, volume 14. Cambridge University Press, 2000.

Received December 31, 2015