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Summary. In this article, we formalize the Advanced Encryption Stan-
dard (AES). AES, which is the most widely used symmetric cryptosystem in the
world, is a block cipher that was selected by the National Institute of Standards
and Technology (NIST) as an official Federal Information Processing Standard
for the United States in 2001 [12]. AES is the successor to DES [13], which was
formerly the most widely used symmetric cryptosystem in the world. We forma-
lize the AES algorithm according to [12]. We then verify the correctness of the
formalized algorithm that the ciphertext encoded by the AES algorithm can be
decoded uniquely by the same key. Please note the following points about this
formalization: the AES round process is composed of the SubBytes, ShiftRows,
MixColumns, and AddRoundKey transformations (see [12]). In this formalization,
the SubBytes and MixColumns transformations are given as permutations, becau-
se it is necessary to treat the finite field GF(28) for those transformations. The
formalization of AES that considers the finite field GF(28) is formalized by the
future article.
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1. Preliminaries

Let us consider natural numbers k, m. Now we state the propositions:

(1) If m 6= 0 and (k+ 1) mod m 6= 0, then (k+ 1) mod m = (k mod m) + 1.

(2) If m 6= 0 and (k + 1) mod m 6= 0, then (k + 1) divm = k divm.

(3) If m 6= 0 and (k + 1) mod m = 0, then m− 1 = k mod m.

(4) If m 6= 0 and (k + 1) mod m = 0, then (k + 1) divm = (k divm) + 1.

(5) (k −m) mod m = k mod m.

(6) If m 6= 0, then (k −m) divm = (k divm)− 1.

Let m, n be natural numbers, X, D be non empty sets, F be a function
from X into (Dn)m, and x be an element of X. Let us observe that the functor
F (x) yields an element of (Dn)m. Let m be a natural number, X, Y , D be non
empty sets, and F be a function from X × Y into Dm. Let y be an element of
Y . Note that the functor F (x, y) yields an element of Dm. Now we state the
propositions:

(7) Let us consider natural numbers m, n, a non empty set D, and elements
F1, F2 of (Dn)m. Suppose natural numbers i, j. If i ∈ Segm and j ∈ Seg n,
then F1(i)(j) = F2(i)(j). Then F1 = F2.

(8) Let us consider a non empty set D and elements x1, x2, x3, x4 of D.
Then 〈x1, x2, x3, x4〉 is an element of D4.

(9) Let us consider a non empty set D and elements x1, x2, x3, x4, x5 of D.
Then 〈x1, x2, x3, x4, x5〉 is an element of D5.

(10) Let us consider a non empty set D and elements x1, x2, x3, x4, x5, x6,
x7, x8 of D. Then 〈x1, x2, x3, x4〉a 〈x5, x6, x7, x8〉 is an element of D8. The
theorem is a consequence of (8).

(11) Let us consider a non empty set D and elements x1, x2, x3, x4, x5, x6,
x7, x8, x9, x10 of D. Then 〈x1, x2, x3, x4, x5〉 a 〈x6, x7, x8, x9, x10〉 is an
element of D10. The theorem is a consequence of (9).

(12) Let us consider a non empty set D and elements x1, x2, x3, x4, x5, x6,
x7, x8 of D4. Then 〈x1ax5, x2

ax6, x3
ax7, x4

ax8〉 is an element of (D8)4.
The theorem is a consequence of (8).

(13) Let us consider a non empty setD, an element x of (D4)4, and an element
k of N. Suppose k ∈ Seg 4. Then there exist elements x1, x2, x3, x4 of D
such that

(i) x1 = x(k)(1), and

(ii) x2 = x(k)(2), and

(iii) x3 = x(k)(3), and

(iv) x4 = x(k)(4).
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(14) Let us consider non empty sets X, Y , a function f from X into Y , and
a function g from Y into X. Suppose

(i) for every element x of X, g(f(x)) = x, and

(ii) for every element y of Y , f(g(y)) = y.

Then

(iii) f is one-to-one, and

(iv) f is onto, and

(v) g is one-to-one, and

(vi) g is onto, and

(vii) g = f−1, and

(viii) f = g−1.

2. State Array

The array of AES-State yielding a function from Boolean128 into ((Boolean8)4)4

is defined by

(Def. 1) Let us consider an element i1 of Boolean128 and natural numbers i, j.
Suppose i, j ∈ Seg 4. Then it(i1)(i)(j) = mid(i1, (1 + (i −′ 1) · 8) + (j −′
1) · 32, ((1 + (i−′ 1) · 8) + (j −′ 1) · 32) + 7).

Now we state the propositions:

(15) Let us consider a natural number k. Suppose 1 ¬ k ¬ 128. Then there
exist natural numbers i, j such that

(i) i, j ∈ Seg 4, and

(ii) (1 + (i−′ 1) ·8) + (j−′ 1) ·32 ¬ k ¬ ((1 + (i−′ 1) ·8) + (j−′ 1) ·32) + 7.

(16) Let us consider natural numbers i, j, i0, j0. Suppose

(i) i, j, i0, j0 ∈ Seg 4, and

(ii) it is not true that i = i0 and j = j0.

Then {k, where k is a natural number : (1 + (i −′ 1) · 8) + (j −′ 1) · 32 ¬
k ¬ (8 + (i −′ 1) · 8) + (j −′ 1) · 32} ∩ {k, where k is a natural number :
(1 + (i0−′ 1) · 8) + (j0−′ 1) · 32 ¬ k ¬ (8 + (i0−′ 1) · 8) + (j0−′ 1) · 32} = ∅.

(17) Let us consider natural numbers k, i, j, i0, j0. Suppose

(i) 1 ¬ k ¬ 128, and

(ii) i, j, i0, j0 ∈ Seg 4, and

(iii) (1 + (i−′ 1) ·8) + (j−′ 1) ·32 ¬ k ¬ ((1 + (i−′ 1) ·8) + (j−′ 1) ·32) + 7,
and

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/10/15 1:00 PM



174 kenichi arai and hiroyuki okazaki

(iv) (1+(i0−′1)·8)+(j0−′1)·32 ¬ k ¬ ((1+(i0−′1)·8)+(j0−′1)·32)+7.

Then

(v) i = i0, and

(vi) j = j0.

The theorem is a consequence of (16).

(18) The array of AES-State is one-to-one. The theorem is a consequence of
(15). Proof: For every elements x1, x2 such that x1, x2 ∈ Boolean128
and (the array of AES-State)(x1) = (the array of AES-State)(x2) holds
x1 = x2 by [15, (3)], [2, (11)], [4, (1)]. �

(19) The array of AES-State is onto. The theorem is a consequence of (15)
and (17). Proof: For every element y such that y ∈ ((Boolean8)4)4 there
exists an element x such that x ∈ Boolean128 and y = (the array of
AES-State)(x) by [4, (1)], [7, (3)], [15, (3)]. �

Let us note that the array of AES-State is bijective.
Now we state the proposition:

(20) Let us consider an element c of ((Boolean8)4)4. Then (the array of
AES-State)((the array of AES-State)−1(c)) = c.

3. SubBytes

In this paper S denotes a permutation of Boolean8.
Let us consider S. The functor SubBytes(S) yielding a function

from ((Boolean8)4)4 into ((Boolean8)4)4 is defined by

(Def. 2) Let us consider an element i1 of ((Boolean8)4)4 and natural numbers i,
j. Suppose i, j ∈ Seg 4. Then there exists an element i2 of Boolean8 such
that

(i) i2 = i1(i)(j), and

(ii) it(i1)(i)(j) = S(i2).

The functor InvSubBytes(S) yielding a function from ((Boolean8)4)4 into
((Boolean8)4)4 is defined by

(Def. 3) Let us consider an element i1 of ((Boolean8)4)4 and natural numbers i,
j. Suppose i, j ∈ Seg 4. Then there exists an element i2 of Boolean8 such
that

(i) i2 = i1(i)(j), and

(ii) it(i1)(i)(j) = S−1(i2).

Now we state the propositions:
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(21) Let us consider an element i1 of ((Boolean8)4)4.
Then (InvSubBytes(S))((SubBytes(S))(i1)) = i1. The theorem is a con-
sequence of (7).

(22) Let us consider an element o of ((Boolean8)4)4.
Then (SubBytes(S))((InvSubBytes(S))(o)) = o. The theorem is a conse-
quence of (7).

(23) (i) SubBytes(S) is one-to-one, and

(ii) SubBytes(S) is onto, and

(iii) InvSubBytes(S) is one-to-one, and

(iv) InvSubBytes(S) is onto, and

(v) InvSubBytes(S) = (SubBytes(S))−1, and

(vi) SubBytes(S) = (InvSubBytes(S))−1.
The theorem is a consequence of (21), (22), and (14).

4. ShiftRows

The functor ShiftRows yielding a function
from ((Boolean8)4)4 into ((Boolean8)4)4 is defined by

(Def. 4) Let us consider an element i1 of ((Boolean8)4)4 and a natural number
i. Suppose i ∈ Seg 4. Then there exists an element xi of (Boolean8)4 such
that

(i) xi = i1(i), and

(ii) it(i1)(i) = Op-Shift(xi, 5− i).
The functor InvShiftRows yielding a function from ((Boolean8)4)4 into

((Boolean8)4)4 is defined by

(Def. 5) Let us consider an element i1 of ((Boolean8)4)4 and a natural number
i. Suppose i ∈ Seg 4. Then there exists an element xi of (Boolean8)4 such
that

(i) xi = i1(i), and

(ii) it(i1)(i) = Op-Shift(xi, i− 1).

Now we state the propositions:

(24) Let us consider an element i1 of ((Boolean8)4)4.
Then InvShiftRows(ShiftRows(i1)) = i1.

(25) Let us consider an element o of ((Boolean8)4)4.
Then ShiftRows(InvShiftRows(o)) = o.

(26) (i) ShiftRows is one-to-one, and

(ii) ShiftRows is onto, and
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176 kenichi arai and hiroyuki okazaki

(iii) InvShiftRows is one-to-one, and

(iv) InvShiftRows is onto, and

(v) InvShiftRows = ShiftRows−1, and

(vi) ShiftRows = InvShiftRows−1.

5. AddRoundKey

The functor AddRoundKey yielding a function
from ((Boolean8)4)4 × ((Boolean8)4)4 into ((Boolean8)4)4 is defined by

(Def. 6) Let us consider elements t1, k1 of ((Boolean8)4)4 and natural numbers i,
j. Suppose i, j ∈ Seg 4. Then there exist elements t2, k2 of Boolean8 such
that

(i) t2 = t1(i)(j), and

(ii) k2 = k1(i)(j), and

(iii) it(t1, k1)(i)(j) = Op-XOR(t2, k2).

6. Key Expansion

Let us consider S. Let x be an element of (Boolean8)4.
The functor SubWord(S, x) yielding an element of (Boolean8)4 is defined by

(Def. 7) Let us consider an element i of Seg 4. Then it(i) = S(x(i)).

The functor RotWord(x) yielding an element of (Boolean8)4 is defined by the
term

(Def. 8) Op-LeftShiftx.

Let n, m be non zero elements of N and s, t be elements of (Booleann)m.
The functor XOR-Word(s, t) yielding an element of (Booleann)m is defined by

(Def. 9) Let us consider an element i of Segm. Then it(i) = Op-XOR(s(i), t(i)).

The functor Rcon yielding an element of ((Boolean8)4)10 is defined by

(Def. 10) (i) it(1) = 〈〈0, 0, 0, 0〉a 〈0, 0, 0, 1〉, 〈0, 0, 0, 0〉a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(ii) it(2) = 〈〈0, 0, 0, 0〉 a 〈0, 0, 1, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(iii) it(3) = 〈〈0, 0, 0, 0〉 a 〈0, 1, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(iv) it(4) = 〈〈0, 0, 0, 0〉 a 〈1, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and
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(v) it(5) = 〈〈0, 0, 0, 1〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(vi) it(6) = 〈〈0, 0, 1, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(vii) it(7) = 〈〈0, 1, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(viii) it(8) = 〈〈1, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(ix) it(9) = 〈〈0, 0, 0, 1〉 a 〈1, 0, 1, 1〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(x) it(10) = 〈〈0, 0, 1, 1〉a 〈0, 1, 1, 0〉, 〈0, 0, 0, 0〉a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉.

Let us consider S. Let m, i be natural numbers and w be an element of
(Boolean8)4. Assume m = 4 or m = 6 or m = 8 and i < 4 · (7 +m) and m ¬ i.
The functor KeyExpansionT(S,m, i, w) yielding an element of (Boolean8)4 is
defined by

(Def. 11) (i) there exists an element T3 of (Boolean8)4 such that T3 = Rcon( im)
and it = XOR-Word(SubWord(S, (RotWord(w))), T3), if i mod m = 0,

(ii) it = SubWord(S,w), if m = 8 and i mod 8 = 4,

(iii) it = w, otherwise.

Let m be a natural number. Assume m = 4 or m = 6 or m = 8. The functor
KeyExpansionW(S,m) yielding a function from ((Boolean8)4)m into
((Boolean8)4)4·(7+m) is defined by

(Def. 12) Let us consider an element K of ((Boolean8)4)m. Then

(i) for every element i of N such that i < m holds it(K)(i+1) = K(i+1),
and

(ii) for every element i of N such that m ¬ i < 4 · (7 + m) there exi-
sts an element P of (Boolean8)4 and there exists an element Q of
(Boolean8)4 such that P = it(K)((i−m) + 1) and Q = it(K)(i) and
it(K)(i+ 1) = XOR-Word(P, (KeyExpansionT(S,m, i,Q))).

The functor KeyExpansion(S,m) yielding a function from ((Boolean8)4)m

into (((Boolean8)4)4)7+m is defined by

(Def. 13) Let us consider an element K of ((Boolean8)4)m. Then there exists an
element w of ((Boolean8)4)4·(7+m) such that

(i) w = (KeyExpansionW(S,m))(K), and

(ii) for every natural number i such that i < 7 +m holds it(K)(i+ 1) =
〈w(4 · i+ 1), w(4 · i+ 2), w(4 · i+ 3), w(4 · i+ 4)〉.
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178 kenichi arai and hiroyuki okazaki

7. Encryption and Decryption

In the sequel M1 denotes a permutation of ((Boolean8)4)4 and M2 denotes
a permutation of ((Boolean8)4)4.

Let us consider S and M1. Let m be a natural number, t1 be an ele-
ment of ((Boolean8)4)4, and K be an element of ((Boolean8)4)m. The functor
AES-Cipher(S,M1, t1,K) yielding an element of ((Boolean8)4)4 is defined by

(Def. 14) There exists a finite sequence s1 of elements of ((Boolean8)4)4 such that

(i) len s1 = (7 +m)− 1, and

(ii) there exists an element K1 of ((Boolean8)4)4 such that
K1 = (KeyExpansion(S,m))(K)(1) and s1(1) = AddRoundKey(t1,K1),
and

(iii) for every natural number i such that 1 ¬ i < (7 +m)− 1 there exists
an element Ki of ((Boolean8)4)4 such that
Ki = (KeyExpansion(S,m))(K)(i+ 1) and
s1(i+1) = AddRoundKey(((M1·ShiftRows)·SubBytes(S))(s1(i)),Ki),
and

(iv) there exists an element Kn of ((Boolean8)4)4 such that
Kn = (KeyExpansion(S,m))(K)(7 +m) and
it = AddRoundKey((ShiftRows · SubBytes(S))(s1((7 +m)− 1)),Kn).

The functor AES-InvCipher(S,M1, t1,K) yielding an element
of ((Boolean8)4)4 is defined by

(Def. 15) There exists a finite sequence s1 of elements of ((Boolean8)4)4 such that

(i) len s1 = (7 +m)− 1, and

(ii) there exists an element K1 of ((Boolean8)4)4 such that
K1 = (Rev((KeyExpansion(S,m))(K)))(1) and s1(1) =
(InvSubBytes(S) · InvShiftRows)(AddRoundKey(t1,K1)), and

(iii) for every natural number i such that 1 ¬ i < (7 +m)− 1 there exists
an element Ki of ((Boolean8)4)4 such that
Ki = (Rev((KeyExpansion(S,m))(K)))(i+ 1) and s1(i+ 1) =
((InvSubBytes(S)·InvShiftRows)·M1−1)(AddRoundKey(s1(i),Ki)),
and

(iv) there exists an element Kn of ((Boolean8)4)4 such that
Kn = (Rev((KeyExpansion(S,m))(K)))(7 +m) and it =
AddRoundKey(s1((7 +m)− 1),Kn).

Now we state the propositions:

(27) Let us consider an element i1 of ((Boolean8)4)4.
Then M1−1(M1(i1)) = i1.

(28) Let us consider an element o of ((Boolean8)4)4. ThenM1(M1−1(o)) = o.
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Let us consider a natural number m and an element t1 of ((Boolean8)4)4.
Now we state the propositions:

(29) (InvSubBytes(S) ·InvShiftRows)((ShiftRows · SubBytes(S))(t1)) = t1.

(30) ((InvSubBytes(S)·InvShiftRows)·M1−1)(((M1 ·ShiftRows)·SubBytes
(S))(t1)) = t1.

Now we state the propositions:

(31) Let us consider a natural number m, an element t1 of ((Boolean8)4)4,
an element K of ((Boolean8)4)m, and elements dk, ek of ((Boolean8)4)4.
Suppose

(i) m = 4 or m = 6 or m = 8, and

(ii) dk = (Rev((KeyExpansion(S,m))(K)))(1), and

(iii) ek = (KeyExpansion(S,m))(K)(7 +m).

Then AddRoundKey(AddRoundKey(t1, ek), dk) = t1. The theorem is a con-
sequence of (7).

(32) Let us consider a natural number m, an element t1 of ((Boolean8)4)4,
an element k1 of ((Boolean8)4)m, and elements dk, ek of ((Boolean8)4)4.
Suppose

(i) m = 4 or m = 6 or m = 8, and

(ii) dk = (KeyExpansion(S,m))(k1)(1), and

(iii) ek = (Rev((KeyExpansion(S,m))(k1)))(7 +m).

Then AddRoundKey(AddRoundKey(t1, ek), dk) = t1. The theorem is a con-
sequence of (7).

(33) Let us consider a natural number m, elements t1, o1 of ((Boolean8)4)4,
an element K of ((Boolean8)4)m, and elements K1, Kn of ((Boolean8)4)4.
Suppose

(i) m = 4 or m = 6 or m = 8, and

(ii) K1 = (KeyExpansion(S,m))(K)(1), and

(iii) Kn = (Rev((KeyExpansion(S,m))(K)))(7 +m), and

(iv) o1 = AddRoundKey((ShiftRows · SubBytes(S))(t1),Kn).

Then (InvSubBytes(S) · InvShiftRows)(AddRoundKey(o1,K1)) = t1. The
theorem is a consequence of (32) and (29).

(34) Let us consider natural numbers m, i, an element t1 of ((Boolean8)4)4,
an element K of ((Boolean8)4)m, and elements ei, di of ((Boolean8)4)4.
Suppose

(i) m = 4 or m = 6 or m = 8, and

(ii) i ¬ (7 +m)− 1, and

(iii) ei = (KeyExpansion(S,m))(K)((7 +m)− i), and
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(iv) di = (Rev((KeyExpansion(S,m))(K)))(i+ 1).

Then AddRoundKey(AddRoundKey(t1, ei), di) = t1. The theorem is a conse-
quence of (7).

(35) Let us consider a natural number m, an element t1 of ((Boolean8)4)4,
and an element K of ((Boolean8)4)m. Suppose

(i) m = 4, or

(ii) m = 6, or

(iii) m = 8.

Then AES-InvCipher(S,M1, (AES-Cipher(S,M1, t1,K)),K) = t1. The
theorem is a consequence of (34) and (30). Proof: Reconsider N =
(7 + m) − 1 as a natural number. Consider es being a finite sequence
of elements of ((Boolean8)4)4 such that len es = N and there exists an ele-
ment K1 of ((Boolean8)4)4 such that K1 = (KeyExpansion(S,m))(K)(1)
and es(1) = AddRoundKey(t1,K1) and for every natural number i such
that 1 ¬ i < N there exists an element Ki of ((Boolean8)4)4 such that
Ki = (KeyExpansion(S,m))(K)(i+1) and es(i+1) = AddRoundKey(((M1·
ShiftRows) · SubBytes(S))(es(i)),Ki) and there exists an element Kn of
((Boolean8)4)4 such that Kn = (KeyExpansion(S,m))(K)(7 + m) and
AES-Cipher(S,M1, t1,K) = AddRoundKey((ShiftRows · SubBytes(S))(es
(N)),Kn). Consider ds being a finite sequence of elements of ((Boolean8)4)4

such that len ds = N and there exists an elementK1 of ((Boolean8)4)4 such
thatK1 = (Rev((KeyExpansion(S,m))(K)))(1) and ds(1) = (InvSubBytes
(S)·InvShiftRows)(AddRoundKey(AES-Cipher(S,M1, t1,K),K1)) and for
every natural number i such that 1 ¬ i < N there exists an element Ki
of ((Boolean8)4)4 such that Ki = (Rev((KeyExpansion(S,m))(K)))(i+ 1)
and ds(i+1) = ((InvSubBytes(S)·InvShiftRows)·M1−1)(AddRoundKey(ds
(i),Ki)) and there exists an element Kn of ((Boolean8)4)4 such that Kn =
(Rev((KeyExpansion(S,m))(K)))(7 +m) and AES-InvCipher(S,M1,
(AES-Cipher(S,M1, t1,K)),K) = AddRoundKey(ds(N),Kn). Consider e1
being an element of ((Boolean8)4)4 such that e1 = (KeyExpansion(S,m))
(K)(1) and es(1) = AddRoundKey(t1, e1). Consider en being an element
of ((Boolean8)4)4 such that en = (KeyExpansion(S,m))(K)(7 + m) and
AES-Cipher(S,M1, t1,K) = AddRoundKey((ShiftRows · SubBytes(S))(es
(N)), en). Consider d1 being an element of ((Boolean8)4)4 such that d1 =
(Rev((KeyExpansion(S,m))(K)))(1) and ds(1) = (InvSubBytes(S)·
InvShiftRows)(AddRoundKey(AES-Cipher(S,M1, t1,K), d1)). Consider dn
being an element of ((Boolean8)4)4 such that dn = (Rev((KeyExpansion(S,
m))(K)))(7+m) and AES-InvCipher(S,M1, (AES-Cipher(S,M1, t1,K)),
K) = AddRoundKey(ds(N), dn). Define R[natural number] ≡ if $1 < N ,
then ds($1 + 1) = es(N − $1). For every natural number i such that R[i]
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holds R[i+ 1] by [2, (11)], [15, (3)], [2, (14)]. For every natural number k,
R[k] from [2, Sch. 2]. �

(36) Let us consider a non empty set D, non zero elements n, m of N, and
an element r of Dn. Suppose

(i) m ¬ n, and

(ii) 8 ¬ n−m.

Then Op-Left(Op-Right(r,m), 8) is an element of D8.

Let r be an element of Boolean128. The functor AES-InitState128Key(r)
yielding an element of ((Boolean8)4)4 is defined by

(Def. 16) (i) it(1) = 〈Op-Left(r, 8),Op-Left(Op-Right(r, 8), 8),Op-Left(Op-Right
(r, 16), 8),Op-Left(Op-Right(r, 24), 8)〉, and

(ii) it(2) = 〈Op-Left(Op-Right(r, 32), 8),Op-Left(Op-Right(r, 40), 8),
Op-Left(Op-Right(r, 48), 8),Op-Left(Op-Right(r, 56), 8)〉, and

(iii) it(3) = 〈Op-Left(Op-Right(r, 64), 8),Op-Left(Op-Right(r, 72), 8),
Op-Left(Op-Right(r, 80), 8),Op-Left(Op-Right(r, 88), 8)〉, and

(iv) it(4) = 〈Op-Left(Op-Right(r, 96), 8),Op-Left(Op-Right(r, 104), 8),
Op-Left(Op-Right(r, 112), 8),Op-Right(r, 120)〉.

Let r be an element of Boolean192. The functor AES-InitState192Key(r)
yielding an element of ((Boolean8)4)6 is defined by

(Def. 17) (i) it(1) = 〈Op-Left(r, 8),Op-Left(Op-Right(r, 8), 8),Op-Left(Op-Right
(r, 16), 8),Op-Left(Op-Right(r, 24), 8)〉, and

(ii) it(2) = 〈Op-Left(Op-Right(r, 32), 8),Op-Left(Op-Right(r, 40), 8),
Op-Left(Op-Right(r, 48), 8),Op-Left(Op-Right(r, 56), 8)〉, and

(iii) it(3) = 〈Op-Left(Op-Right(r, 64), 8),Op-Left(Op-Right(r, 72), 8),
Op-Left(Op-Right(r, 80), 8),Op-Left(Op-Right(r, 88), 8)〉, and

(iv) it(4) = 〈Op-Left(Op-Right(r, 96), 8),Op-Left(Op-Right(r, 104), 8),
Op-Left(Op-Right(r, 112), 8),Op-Left(Op-Right(r, 120), 8)〉, and

(v) it(5) = 〈Op-Left(Op-Right(r, 128), 8),Op-Left(Op-Right(r, 136), 8),
Op-Left(Op-Right(r, 144), 8),Op-Left(Op-Right(r, 152), 8)〉, and

(vi) it(6) = 〈Op-Left(Op-Right(r, 160), 8),Op-Left(Op-Right(r, 168), 8),
Op-Left(Op-Right(r, 176), 8),Op-Right(r, 184)〉.

Let r be an element of Boolean256. The functor AES-InitState256Key(r)
yielding an element of ((Boolean8)4)8 is defined by

(Def. 18) (i) it(1) = 〈Op-Left(r, 8),Op-Left(Op-Right(r, 8), 8),Op-Left
(Op-Right(r, 16), 8),Op-Left(Op-Right(r, 24), 8)〉, and

(ii) it(2) = 〈Op-Left(Op-Right(r, 32), 8),Op-Left(Op-Right(r, 40), 8),
Op-Left(Op-Right(r, 48), 8),Op-Left(Op-Right(r, 56), 8)〉, and
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(iii) it(3) = 〈Op-Left(Op-Right(r, 64), 8),Op-Left(Op-Right(r, 72), 8),
Op-Left(Op-Right(r, 80), 8),Op-Left(Op-Right(r, 88), 8)〉, and

(iv) it(4) = 〈Op-Left(Op-Right(r, 96), 8),Op-Left(Op-Right(r, 104), 8),
Op-Left(Op-Right(r, 112), 8),Op-Left(Op-Right(r, 120), 8)〉, and

(v) it(5) = 〈Op-Left(Op-Right(r, 128), 8),Op-Left(Op-Right(r, 136), 8),
Op-Left(Op-Right(r, 144), 8),Op-Left(Op-Right(r, 152), 8)〉, and

(vi) it(6) = 〈Op-Left(Op-Right(r, 160), 8),Op-Left(Op-Right(r, 168), 8),
Op-Left(Op-Right(r, 176), 8),Op-Left(Op-Right(r, 184), 8)〉, and

(vii) it(7) = 〈Op-Left(Op-Right(r, 192), 8),Op-Left(Op-Right(r, 200), 8),
Op-Left(Op-Right(r, 208), 8),Op-Left(Op-Right(r, 216), 8)〉, and

(viii) it(8) = 〈Op-Left(Op-Right(r, 224), 8),Op-Left(Op-Right(r, 232), 8),
Op-Left(Op-Right(r, 240), 8),Op-Right(r, 248)〉.

Let us consider S and M2. Let m1 be an element of Boolean128 and K be
an element of Boolean128. The functor AES-128enc(S,M2,m1,K) yielding an
element of Boolean128 is defined by the term

(Def. 19) (The array of AES-State)−1(AES-Cipher(S,M2, ((the array of
AES-State)(m1)), (AES-InitState128Key(K)))).

Let c be an element of Boolean128. The functor AES-128dec(S,M2, c,K)
yielding an element of Boolean128 is defined by the term

(Def. 20) (The array of AES-State)−1(AES-InvCipher(S,M2, ((the array of
AES-State)(c)), (AES-InitState128Key(K)))).

Now we state the proposition:

(37) Let us consider a permutation S of Boolean8, a permutation M2 of
((Boolean8)4)4, and elements m1, K of Boolean128.
Then AES-128dec(S,M2, (AES-128enc(S,M2,m1,K)),K) = m1. The the-
orem is a consequence of (20) and (35).

Let us consider S and M2. Let m1 be an element of Boolean128 and K be
an element of Boolean192. The functor AES-192enc(S,M2,m1,K) yielding an
element of Boolean128 is defined by the term

(Def. 21) (The array of AES-State)−1(AES-Cipher(S,M2, ((the array of
AES-State)(m1)), (AES-InitState192Key(K)))).

Let c be an element of Boolean128. The functor AES-192dec(S,M2, c,K)
yielding an element of Boolean128 is defined by the term

(Def. 22) (The array of AES-State)−1(AES-InvCipher(S,M2, ((the array of
AES-State)(c)), (AES-InitState192Key(K)))).

Now we state the proposition:

(38) Let us consider a permutation S of Boolean8, a permutation M2 of
((Boolean8)4)4, an element m1 of Boolean128, and an element K
of Boolean192.
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Then AES-192dec(S,M2, (AES-192enc(S,M2,m1,K)),K) = m1. The the-
orem is a consequence of (20) and (35).

Let us consider S and M2. Let m1 be an element of Boolean128 and K be
an element of Boolean256. The functor AES-256enc(S,M2,m1,K) yielding an
element of Boolean128 is defined by the term

(Def. 23) (The array of AES-State)−1(AES-Cipher(S,M2, ((the array of
AES-State)(m1)), (AES-InitState256Key(K)))).

Let c be an element of Boolean128. The functor AES-256dec(S,M2, c,K)
yielding an element of Boolean128 is defined by the term

(Def. 24) (The array of AES-State)−1(AES-InvCipher(S,M2, ((the array of
AES-State)(c)), (AES-InitState256Key(K)))).

Now we state the proposition:

(39) Let us consider a permutation S of Boolean8, a permutation M2 of
((Boolean8)4)4, an element m1 of Boolean128, and an element K
of Boolean256.
Then AES-256dec(S,M2, (AES-256enc(S,M2,m1,K)),K) = m1. The the-
orem is a consequence of (20) and (35).
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