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Summary. Educational content for abstract reduction systems concer-
ning reduction, convertibility, normal forms, divergence and convergence, Church-
Rosser property, term rewriting systems, and the idea of the Knuth-Bendix Com-
pletion Algorithm. The theory is based on [1].
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1. Reduction and Convertibility

We consider ARS’s which extend 1-sorted structures and are systems

〈〈a carrier, a reduction〉〉

where the carrier is a set, the reduction is a binary relation on the carrier.
Let A be a non empty set and r be a binary relation on A. Observe that

〈〈A, r〉〉 is non empty and there exists an ARS which is non empty and strict.
Let X be an ARS and x, y be elements of X. We say that x→ y if and only

if

(Def. 1) 〈〈x, y〉〉 ∈ the reduction of X.

We introduce y ← x as a synonym of x→ y.
We say that x→01 y if and only if

37
c© 2014 University of Białystok

CC-BY-SA License ver. 3.0 or later

ISSN 1426–2630(Print), 1898-9934(Online)

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/11/15 8:45 AM

http://www.degruyter.com/view/j/forma
http://zbmath.org/classification/?q=cc:68Q42
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/absred_0.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


38 grzegorz bancerek

(Def. 2) (i) x = y, or

(ii) x→ y.

One can verify that the predicate is reflexive. We say that x→∗ y if and only if

(Def. 3) The reduction of X reduces x to y.

Let us observe that the predicate is reflexive.
From now on X denotes an ARS and a, b, c, u, v, w, x, y, z denote elements

of X.
Now we state the propositions:

(1) If a→ b, then X is not empty.

(2) If x→ y, then x→∗ y.

(3) If x→∗ y →∗ z, then x→∗ z.
The scheme Star deals with an ARS X and a unary predicate P and states

that

(Sch. 1) For every elements x, y of X such that x→∗ y and P[x] holds P[y]

provided

• for every elements x, y of X such that x→ y and P[x] holds P[y].

The scheme Star1 deals with an ARS X and a unary predicate P and ele-
ments a, b of X and states that

(Sch. 2) P[b]

provided

• a→∗ b and

• P[a] and

• for every elements x, y of X such that x→ y and P[x] holds P[y].

The scheme StarBack deals with an ARS X and a unary predicate P and
states that

(Sch. 3) For every elements x, y of X such that x→∗ y and P[y] holds P[x]

provided

• for every elements x, y of X such that x→ y and P[y] holds P[x].

The scheme StarBack1 deals with an ARS X and a unary predicate P and
elements a, b of X and states that

(Sch. 4) P[a]

provided

• a→∗ b and

• P[b] and
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Abstract reduction systems and idea of Knuth-Bendix ... 39

• for every elements x, y of X such that x→ y and P[y] holds P[x].

Let X be an ARS and x, y be elements of X. We say that x →+ y if and
only if

(Def. 4) There exists an element z of X such that x→ z →∗ y.

Now we state the proposition:

(4) x →+ y if and only if there exists z such that x →∗ z → y. Proof: If
x →+ y, then there exists z such that x →∗ z → y. Define P[element of
X] ≡ there exists u such that $1 → u →∗ y. For every y and z such that
y → z and P[z] holds P[y]. For every y and z such that y →∗ z and P[z]
holds P[y] from StarBack. �

Let us consider X, x, and y. We introduce y ←01 x as a synonym of x→01 y
and y ←∗ x as a synonym of x→∗ y and y ←+ x as a synonym of x→+ y.

We say that x↔ y if and only if

(Def. 5) (i) x→ y, or

(ii) x← y.

One can check that the predicate is symmetric.
Now we state the proposition:

(5) x ↔ y if and only if 〈〈x, y〉〉 ∈ (the reduction of X) ∪ (the reduction of
X)`.

Let us consider X, x, and y. We say that x↔01 y if and only if

(Def. 6) (i) x = y, or

(ii) x↔ y.

Observe that the predicate is reflexive and symmetric. We say that x ↔∗ y if
and only if

(Def. 7) x and y are convertible w.r.t. the reduction of X.

One can check that the predicate is reflexive and symmetric.
Now we state the propositions:

(6) If x↔ y, then x↔∗ y.

(7) If x↔∗ y ↔∗ z, then x↔∗ z.
The scheme Star2 deals with an ARS X and a unary predicate P and states

that

(Sch. 5) For every elements x, y of X such that x↔∗ y and P[x] holds P[y]

provided

• for every elements x, y of X such that x↔ y and P[x] holds P[y].

The scheme Star2A deals with an ARS X and a unary predicate P and
elements a, b of X and states that

(Sch. 6) P[b]
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provided

• a↔∗ b and

• P[a] and

• for every elements x, y of X such that x↔ y and P[x] holds P[y].

Let us consider X, x, and y. We say that x↔+ y if and only if

(Def. 8) There exists z such that x↔ z ↔∗ y.

One can check that the predicate is symmetric.
Now we state the propositions:

(8) x↔+ y if and only if there exists z such that x↔∗ z ↔ y.

(9) If x→01 y, then x→∗ y.

(10) If x→+ y, then x→∗ y. The theorem is a consequence of (2) and (3).

(11) If x→ y, then x→+ y.

(12) If x → y → z, then x →∗ z. The theorem is a consequence of (2) and
(3).

(13) If x→ y →01 z, then x→∗ z. The theorem is a consequence of (2), (9),
and (3).

(14) If x → y →∗ z, then x →∗ z. The theorem is a consequence of (2) and
(3).

(15) If x→ y →+ z, then x→∗ z. The theorem is a consequence of (2), (10),
and (3).

(16) If x→01 y → z, then x→∗ z. The theorem is a consequence of (9), (2),
and (3).

(17) If x→01 y →01 z, then x→∗ z. The theorem is a consequence of (9) and
(3).

(18) If x→01 y →∗ z, then x→∗ z. The theorem is a consequence of (9) and
(3).

(19) If x →01 y →+ z, then x →∗ z. The theorem is a consequence of (9),
(10), and (3).

(20) If x →∗ y → z, then x →∗ z. The theorem is a consequence of (2) and
(3).

(21) If x→∗ y →01 z, then x→∗ z. The theorem is a consequence of (9) and
(3).

(22) If x→∗ y →+ z, then x→∗ z. The theorem is a consequence of (10) and
(3).

(23) If x→+ y → z, then x→∗ z. The theorem is a consequence of (10), (2),
and (3).

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/11/15 8:45 AM



Abstract reduction systems and idea of Knuth-Bendix ... 41

(24) If x →+ y →01 z, then x →∗ z. The theorem is a consequence of (10),
(9), and (3).

(25) If x →+ y →+ z, then x →∗ z. The theorem is a consequence of (10)
and (3).

(26) If x→ y → z, then x→+ z.
(27) If x→ y →01 z, then x→+ z.
(28) If x→ y →+ z, then x→+ z.
(29) If x→01 y → z, then x→+ z.
(30) If x→01 y →+ z, then x→+ z. The theorem is a consequence of (4) and

(18).

(31) If x→∗ y →+ z, then x→+ z. The theorem is a consequence of (4) and
(3).

(32) If x→+ y → z, then x→+ z.
(33) If x→+ y →01 z, then x→+ z.
(34) If x→+ y →∗ z, then x→+ z.
(35) If x→+ y →+ z, then x→+ z.
(36) If x↔01 y, then x↔∗ y.

(37) If x↔+ y, then x↔∗ y. The theorem is a consequence of (6) and (7).

(38) If x↔ y, then x↔+ y.

(39) If x ↔ y ↔ z, then x ↔∗ z. The theorem is a consequence of (6) and
(7).

(40) If x↔ y ↔01 z, then x↔∗ z. The theorem is a consequence of (6), (36),
and (7).

(41) If x↔01 y ↔ z, then x↔∗ z.
(42) If x ↔ y ↔∗ z, then x ↔∗ z. The theorem is a consequence of (6) and

(7).

(43) If x↔∗ y ↔ z, then x↔∗ z.
(44) If x↔ y ↔+ z, then x↔∗ z. The theorem is a consequence of (6), (37),

and (7).

(45) If x↔+ y ↔ z, then x↔∗ z.
(46) If x ↔01 y ↔01 z, then x ↔∗ z. The theorem is a consequence of (36)

and (7).

(47) If x ↔01 y ↔∗ z, then x ↔∗ z. The theorem is a consequence of (36)
and (7).

(48) If x↔∗ y ↔01 z, then x↔∗ z.
(49) If x ↔01 y ↔+ z, then x ↔∗ z. The theorem is a consequence of (36),

(37), and (7).

(50) If x↔+ y ↔01 z, then x↔∗ z.
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(51) If x ↔∗ y ↔+ z, then x ↔∗ z. The theorem is a consequence of (37)
and (7).

(52) If x ↔+ y ↔+ z, then x ↔∗ z. The theorem is a consequence of (37)
and (7).

(53) If x↔ y ↔ z, then x↔+ z.
(54) If x↔ y ↔01 z, then x↔+ z.
(55) If x↔ y ↔+ z, then x↔+ z.
(56) If x↔01 y ↔+ z, then x↔+ z. The theorem is a consequence of (8) and

(47).

(57) If x ↔∗ y ↔+ z, then x ↔+ z. The theorem is a consequence of (8)
and (7).

(58) If x↔+ y ↔+ z, then x↔+ z.
(59) If x↔01 y, then x← y or x = y or x→ y.

(60) If x← y or x = y or x→ y, then x↔01 y.

(61) If x↔01 y, then x←01 y or x→ y.

(62) If x←01 y or x→ y, then x↔01 y.

Let us assume that x↔01 y. Now we state the propositions:

(63) (i) x←01 y, or

(ii) x→+ y.

(64) (i) x←01 y, or

(ii) x↔ y.

Now we state the propositions:

(65) If x←01 y or x↔ y, then x↔01 y.

(66) If x↔∗ y → z, then x↔+ z.
(67) If x↔+ y → z, then x↔+ z. The theorem is a consequence of (37).

Let us assume that x↔01 y. Now we state the propositions:

(68) (i) x←01 y, or

(ii) x→ y.

(69) (i) x←01 y, or

(ii) x→+ y.

Now we state the propositions:

(70) If x←01 y or x→ y, then x↔01 y.

(71) If x←01 y or x↔ y, then x↔01 y.

(72) If x↔01 y, then x←01 y or x↔ y.

(73) If x↔+ y → z, then x↔+ z. The theorem is a consequence of (37).

(74) If x↔∗ y → z, then x↔+ z.
(75) If x↔01 y → z, then x↔+ z. The theorem is a consequence of (36).
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Abstract reduction systems and idea of Knuth-Bendix ... 43

(76) If x ↔+ y →01 z, then x ↔+ z. The theorem is a consequence of (70)
and (56).

(77) If x ↔ y →01 z, then x ↔+ z. The theorem is a consequence of (70),
(38), and (56).

(78) If x→ y → z → u, then x→+ u.

(79) If x→ y →01 z → u, then x→+ u.

(80) If x→ y →∗ z → u, then x→+ u.

(81) If x→ y →+ z → u, then x→+ u. The theorem is a consequence of (15)
and (4).

(82) If x→∗ y, then x↔∗ y. Proof: Define P[element of X] ≡ x↔∗ $1. For
every y and z such that y → z and P[y] holds P[z]. P[y] from Star1. �

(83) Suppose for every x and y such that x → z and x → y holds y → z. If
x→ z and x→∗ y, then y → z. Proof: Define P[element of X] ≡ $1 → z.
For every u and v such that u→∗ v and P[u] holds P[v] from Star. �

(84) If for every x and y such that x → y holds y → x, then for every x

and y such that x↔∗ y holds x→∗ y. Proof: Define P[element of X] ≡
x →∗ $1. For every u and v such that u ↔ v and P[u] holds P[v]. For
every u and v such that u↔∗ v and P[u] holds P[v] from Star2. �

(85) If x →∗ y, then x = y or x →+ y. Proof: Define P[element of X] ≡
x = $1 or x →+ $1. For every y and z such that y → z and P[y] holds
P[z]. P[y] from Star1. �

(86) If for every x, y, and z such that x→ y → z holds x→ z, then for every
x and y such that x →+ y holds x → y. Proof: Consider z such that
x→ z and z →∗ y. Define P[element of X] ≡ x→ $1. P[y] from Star1. �

2. Examples of an Abstract Reduction System

The scheme ARSex deals with a non empty set A and a binary predicate R
and states that

(Sch. 7) There exists a strict non empty ARS X such that the carrier of X = A
and for every elements x, y of X, x→ y iff R[x, y].

The functors: ARS01 and ARS02 yielding strict ARS’s are defined by condi-
tions,

(Def. 9) (i) the carrier of ARS01 = {0, 1}, and

(ii) the reduction of ARS01 = {0} × {0, 1},
(Def. 10) (i) the carrier of ARS02 = {0, 1, 2}, and

(ii) the reduction of ARS02 = {0} × {0, 1, 2},
respectively. One can check that ARS01 is non empty and ARS02 is non empty.

From now on i, j, k denote elements of ARS01.
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Now we state the propositions:

(87) Let us consider a set s. Then s is an element of ARS01 if and only if
s = 0 or s = 1.

(88) i→ j if and only if i = 0. The theorem is a consequence of (87).

In the sequel l, m, n denote elements of ARS02.
Now we state the propositions:

(89) Let us consider a set s. Then s is an element of ARS02 if and only if
s = 0 or s = 1 or s = 2.

(90) m→ n if and only if m = 0. The theorem is a consequence of (89).

3. Normal Forms

Let us consider X and x. We say that x is a normal form if and only if

(Def. 11) There exists no y such that x→ y.

Now we state the proposition:

(91) x is a normal form if and only if x is a normal form w.r.t. the reduction
of X. Proof: If x is a normal form, then x is a normal form w.r.t. the
reduction of X by [13, (87)]. �

Let us consider X, x, and y. We say that x is a normal form of y if and
only if

(Def. 12) (i) x is a normal form, and

(ii) y →∗ x.

Now we state the proposition:

(92) x is a normal form of y if and only if x is a normal form of y w.r.t. the
reduction of X. The theorem is a consequence of (91).

Let us consider X and x. We say that x is normalizable if and only if

(Def. 13) There exists y such that y is a normal form of x.

Now we state the proposition:

(93) x is normalizable if and only if x has a normal form w.r.t. the reduction
of X. The theorem is a consequence of (92).

Let us consider X. We say that X is WN if and only if

(Def. 14) x is normalizable.

We say that X is SN if and only if

(Def. 15) Let us consider a function f from N into the carrier of X. Then there
exists a natural number i such that f(i) 6→ f(i+ 1).

We say that X is UN* if and only if

(Def. 16) If y is a normal form of x and z is a normal form of x, then y = z.

We say that X is UN if and only if
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Abstract reduction systems and idea of Knuth-Bendix ... 45

(Def. 17) If x is a normal form and y is a normal form and x↔∗ y, then x = y.

We say that X is NF if and only if

(Def. 18) If x is a normal form and x↔∗ y, then y →∗ x.

Now we state the propositions:

(94) X is WN if and only if the reduction of X is weakly-normalizing. The
theorem is a consequence of (93).

(95) If X is SN, then the reduction of X is strongly-normalizing.

(96) If X is not empty and the reduction of X is strongly-normalizing, then
X is SN.

From now on A denotes a set.
Now we state the proposition:

(97) X is SN if and only if there exists no A and there exists z such that
z ∈ A and for every x such that x ∈ A there exists y such that y ∈ A and
x→ y.

The scheme notSN deals with an ARS X and a unary predicate P and states
that

(Sch. 8) X is not SN

provided

• there exists an element x of X such that P[x] and

• for every element x of X such that P[x] there exists an element y of X
such that P[y] and x→ y.

Now we state the propositions:

(98) X is UN if and only if the reduction of X has unique normal form
property. Proof: Set R = the reduction of X. If X is UN, then R has
unique normal form property by (91), [6, (28), (31)]. x is a normal form
w.r.t. R and y is a normal form w.r.t. R and x and y are convertible w.r.t.
R. �

(99) X is NF if and only if the reduction of X has normal form property.
Proof: Set R = the reduction of X. If X is NF, then R has normal form
property by (91), [6, (28), (31), (12)]. �

Let us consider X and x. Assume there exists y such that y is a normal form
of x and for every y and z such that y is a normal form of x and z is a normal
form of x holds y = z. The functor nf x yielding an element of X is defined by

(Def. 19) it is a normal form of x.

Now we state the propositions:

(100) Suppose there exists y such that y is a normal form of x and for every y
and z such that y is a normal form of x and z is a normal form of x holds
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y = z. Then nf x = nfα(x), where α is the reduction of X. The theorem
is a consequence of (92).

(101) If x is a normal form and x →∗ y, then x = y. The theorem is a conse-
quence of (85).

(102) If x is a normal form, then x is a normal form of x.

(103) If x is a normal form and y → x, then x is a normal form of y.

(104) If x is a normal form and y →01 x, then x is a normal form of y.

(105) If x is a normal form and y →+ x, then x is a normal form of y.

(106) If x is a normal form of y and y is a normal form of x, then x = y.

(107) If x is a normal form of y and z → y, then x is a normal form of z.

(108) If x is a normal form of y and z →∗ y, then x is a normal form of z.

(109) If x is a normal form of y and z →∗ x, then x is a normal form of z.

Let us consider X. One can check that every element of X which is a normal
form is also normalizable.

Now we state the propositions:

(110) If x is normalizable and y → x, then y is normalizable.

(111) X is WN if and only if for every x, there exists y such that y is a normal
form of x.

(112) If for every x, x is a normal form, then X is WN. The theorem is a
consequence of (102).

One can verify that every ARS which is SN is also WN.
Now we state the propositions:

(113) If x 6= y and for every a and b, a→ b iff a = x, then y is a normal form
and x is normalizable. The theorem is a consequence of (2).

(114) There exists X such that

(i) X is WN, and

(ii) X is not SN.

Proof: Define R[set, set] ≡ $1 = 0. Consider X being a strict non empty
ARS such that the carrier of X = {0, 1} and for every elements x, y of X,
x→ y iff R[x, y] from ARSex. X is WN. �

One can verify that every ARS which is NF is also UN* and every ARS
which is NF is also UN and every ARS which is UN is also UN*.

Now we state the proposition:

(115) If X is WN and UN* and x is a normal form and x↔∗ y, then y →∗ x.
Proof: Define P[element of X] ≡ $1 →∗ x. For every y and z such that
y ↔ z and P[y] holds P[z]. For every y and z such that y ↔∗ z and P[y]
holds P[z] from Star2. �
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Abstract reduction systems and idea of Knuth-Bendix ... 47

Observe that every ARS which is WN and UN* is also NF and every ARS
which is WN and UN* is also UN.

Now we state the propositions:

(116) If y is a normal form of x and z is a normal form of x and y 6= z, then
x→+ y. The theorem is a consequence of (85) and (101).

(117) If X is WN and UN*, then nf x is a normal form of x.

(118) If X is WN and UN* and y is a normal form of x, then y = nf x.

Let us assume that X is WN and UN*. Now we state the propositions:

(119) nf x is a normal form. The theorem is a consequence of (117).

(120) nf nf x = nf x. The theorem is a consequence of (119), (102), and (118).

Now we state the propositions:

(121) If X is WN and UN* and x →∗ y, then nf x = nf y. The theorem is a
consequence of (117), (108), and (118).

(122) If X is WN and UN* and x ↔∗ y, then nf x = nf y. Proof: Define
P[element of X] ≡ nf x = nf $1. For every z and u such that z ↔ u and
P[z] holds P[u]. P[y] from Star2A. �

(123) If X is WN and UN* and nf x = nf y, then x ↔∗ y. The theorem is a
consequence of (117), (82), and (7).

4. Divergence and Convergence

Let us consider X, x, and y. We say that x↙∗↘ y if and only if

(Def. 20) There exists z such that x←∗ z →∗ y.

Observe that the predicate is symmetric and reflexive. We say that x↘∗↙ y if
and only if

(Def. 21) There exists z such that x→∗ z ←∗ y.

One can check that the predicate is symmetric and reflexive. We say that
x↙01↘ y if and only if

(Def. 22) There exists z such that x←01 z →01 y.

Observe that the predicate is symmetric and reflexive. We say that x ↘01↙ y

if and only if

(Def. 23) There exists z such that x→01 z ←01 y.

One can check that the predicate is symmetric and reflexive.
Now we state the propositions:

(124) x↙∗↘ y if and only if x and y are divergent w.r.t. the reduction of X.

(125) x↘∗↙ y if and only if x and y are convergent w.r.t. the reduction of X.

(126) x ↙01↘ y if and only if x and y are divergent at most in 1 step w.r.t.
the reduction of X.
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(127) x↘01↙ y if and only if x and y are convergent at most in 1 step w.r.t.
the reduction of X.

Let us consider X. We say that X is DIAMOND if and only if

(Def. 24) If x↙01↘ y, then x↘01↙ y.

We say that X is CONF if and only if

(Def. 25) If x↙∗↘ y, then x↘∗↙ y.

We say that X is CR if and only if

(Def. 26) If x↔∗ y, then x↘∗↙ y.

We say that X is WCR if and only if

(Def. 27) If x↙01↘ y, then x↘∗↙ y.

We say that X is COMP if and only if

(Def. 28) X is SN and CONF.

The scheme isCR deals with a non empty ARS X and a unary functor F
yielding an element of X and states that

(Sch. 9) X is CR

provided

• for every element x of X , x→∗ F(x) and

• for every elements x, y of X such that x↔∗ y holds F(x) = F(y).

The scheme isCOMP deals with a non empty ARS X and a unary functor
F yielding an element of X and states that

(Sch. 10) X is COMP

provided

• X is SN and

• for every element x of X , x→∗ F(x) and

• for every elements x, y of X such that x↔∗ y holds F(x) = F(y).

Now we state the propositions:

(128) If x↙01↘ y, then x↙∗↘ y. The theorem is a consequence of (9).

(129) If x↘01↙ y, then x↘∗↙ y. The theorem is a consequence of (9).

Let us assume that x→ y. Now we state the propositions:

(130) x↙01↘ y.

(131) x↘01↙ y.

Let us assume that x→01 y. Now we state the propositions:

(132) x↙01↘ y.

(133) x↘01↙ y.

Let us assume that x↔ y. Now we state the propositions:
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(134) x↙01↘ y.

(135) x↘01↙ y.

Let us assume that x↔01 y. Now we state the propositions:

(136) x↙01↘ y. The theorem is a consequence of (59).

(137) x↘01↙ y. The theorem is a consequence of (59).

Now we state the proposition:

(138) If x→ y, then x↘∗↙ y.

Let us assume that x→∗ y. Now we state the propositions:

(139) x↘∗↙ y.

(140) x↙∗↘ y.

Let us assume that x→+ y. Now we state the propositions:

(141) x↘∗↙ y. The theorem is a consequence of (10).

(142) x↙∗↘ y. The theorem is a consequence of (10).

Now we state the propositions:

(143) If x→ y and x→ z, then y ↙01↘ z.

(144) If x→ y and z → y, then x↘01↙ z.

(145) If x↘∗↙ z ← y, then x↘∗↙ y. The theorem is a consequence of (14).

(146) If x ↘∗↙ z ←01 y, then x ↘∗↙ y. The theorem is a consequence of
(18).

(147) If x↘∗↙ z ←∗ y, then x↘∗↙ y. The theorem is a consequence of (3).

(148) If x↙∗↘ y, then x↔∗ y. The theorem is a consequence of (82) and (7).

(149) If x↘∗↙ y, then x↔∗ y. The theorem is a consequence of (82) and (7).

5. Church-Rosser Property

Now we state the propositions:

(150) X is DIAMOND if and only if the reduction of X is subcommutati-
ve. Proof: Set R = the reduction of X. If X is DIAMOND, then R is
subcommutative by [23, (15)], (127). �

(151) X is CONF if and only if the reduction of X is confluent. Proof: Set
R = the reduction of X. If X is CONF, then R is confluent by [6, (37),
(32)], (124), (125). x and y are divergent w.r.t. R. �

(152) X is CR if and only if the reduction of X has Church-Rosser property.
Proof: Set R = the reduction ofX. IfX is CR, then R has Church-Rosser
property by [6, (32)], (125), [6, (38)]. �

(153) X is WCR if and only if the reduction of X is locally-confluent. Proof:
Set R = the reduction of X. If X is WCR, then R is locally-confluent by
[23, (15)], (125). �
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(154) Let us consider a non empty ARS X. Then X is COMP if and only if
the reduction of X is complete. The theorem is a consequence of (151),
(95), and (96).

(155) If X is DIAMOND and x ←∗ z →01 y, then there exists u such that
x→01 u←∗ y. Proof: Define P[element of X] ≡ there exists u such that
$1 →01 u ←∗ y. For every u and v such that u → v and P[u] holds P[v].
For every u and v such that u→∗ v and P[u] holds P[v] from Star. �

(156) If X is DIAMOND and x ←01 y →∗ z, then there exists u such that
x→∗ u←01 z. The theorem is a consequence of (155).

One can verify that every ARS which is DIAMOND is also CONF and every
ARS which is DIAMOND is also CR and every ARS which is CR is also WCR
and every ARS which is CR is also CONF and every ARS which is CONF is
also CR.

Now we state the proposition:

(157) If X is non CONF and WN, then there exists x and there exists y and
there exists z such that y is a normal form of x and z is a normal form of
x and y 6= z. The theorem is a consequence of (108).

Newman Lemma: Every ARS which is SN and WCR is also CR and every
ARS which is CR is also NF and every ARS which is WN and UN is also CR
and every ARS which is SN and CR is also COMP and every ARS which is
COMP is also CR WCR NF UN UN* and WN.

Now we state the proposition:

(158) If X is COMP, then for every x and y such that x↔∗ y holds nf x = nf y.

Observe that every ARS which is WN and UN* is also CR and every ARS
which is SN and UN* is also COMP.

6. Term Rewriting Systems

We consider TRS structures which extend ARS’s and universal algebra struc-
tures and are systems

〈〈a carrier, a characteristic, a reduction〉〉

where the carrier is a set, the characteristic is a finite sequence of operational
functions of the carrier, the reduction is a binary relation on the carrier.

One can verify that there exists a TRS structure which is non empty, non-
empty, and strict.

Let S be a non empty universal algebra structure. We say that S is group-like
if and only if

(Def. 29) (i) Seg 3 ⊆ dom(the characteristic of S), and
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(ii) for every non empty homogeneous partial function f from (the carrier

of S)∗ to the carrier of S, if f = (the characteristic of S)(1), then
arity f = 0 and if f = (the characteristic of S)(2), then arity f = 1
and if f = (the characteristic of S)(3), then arity f = 2.

Now we state the propositions:

(159) Let us consider a non empty set X and non empty homogeneous partial
functions f1, f2, f3 from X∗ to X. Suppose

(i) arity f1 = 0, and

(ii) arity f2 = 1, and

(iii) arity f3 = 2.

Let us consider a non empty universal algebra structure S. Suppose

(iv) the carrier of S = X, and

(v) 〈f1, f2, f3〉 ⊆ the characteristic of S.

Then S is group-like.

(160) Let us consider a non empty set X, non empty quasi total homogeneous
partial functions f1, f2, f3 from X∗ to X, and a non empty universal
algebra structure S. Suppose

(i) the carrier of S = X, and

(ii) 〈f1, f2, f3〉 = the characteristic of S.

Then S is quasi total and partial. Proof: S is quasi total by [7, (89)], [19,
(1)], [7, (45)]. �

Let S be a non empty non-empty universal algebra structure, o be an ope-
ration of S, and a be an element of dom o. Let us note that the functor o(a)
yields an element of S. One can check that every operation of S is non empty.

Note that every element of dom o is relation-like and function-like.
Let S be a partial non empty non-empty universal algebra structure. Let us

observe that every operation of S is homogeneous.
Let S be a quasi total non empty non-empty universal algebra structure.

One can check that every operation of S is quasi total.
Now we state the propositions:

(161) Let us consider a non empty non-empty universal algebra structure S.
Suppose S is group-like. Then

(i) 1 is an operation symbol of S, and

(ii) 2 is an operation symbol of S, and

(iii) 3 is an operation symbol of S.

(162) Let us consider a partial non empty non-empty universal algebra struc-
ture S. Suppose S is group-like. Then
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(i) arity Den(1(∈ dom(the characteristic of S)), S) = 0, and

(ii) arity Den(2(∈ dom(the characteristic of S)), S) = 1, and

(iii) arity Den(3(∈ dom(the characteristic of S)), S) = 2.

The theorem is a consequence of (161).

Let S be a non empty non-empty TRS structure. We say that S is invariant
if and only if

(Def. 30) Let us consider an operation symbol o of S, elements a, b of dom Den(o,
S), and a natural number i. Suppose i ∈ dom a. Let us consider elements
x, y of S. Suppose

(i) x = a(i), and

(ii) b = a+· (i, y), and

(iii) x→ y.

Then (Den(o, S))(a)→ (Den(o, S))(b).

We say that S is compatible if and only if

(Def. 31) Let us consider an operation symbol o of S and elements a, b of dom Den(o,
S). Suppose a natural number i. Suppose i ∈ dom a. Let us consider ele-
ments x, y of S. If x = a(i) and y = b(i), then x → y. Then (Den(o,
S))(a)→∗ (Den(o, S))(b).

Now we state the proposition:

(163) Let us consider a natural number n, a non empty set X, and an element
x of X. Then there exists a non empty homogeneous quasi total partial
function f from X∗ to X such that

(i) arity f = n, and

(ii) f = Xn 7−→ x.

Proof: Set f = Xn 7−→ x. f is quasi total by [9, (132), (133)]. f is
homogeneous by [9, (132)]. �

Let X be a non empty set, O be a finite sequence of operational functions
of X, and r be a binary relation on X. Observe that 〈〈X,O, r〉〉 is non empty.

Let O be a non empty non-empty finite sequence of operational functions of
X. Let us note that 〈〈X,O, r〉〉 is non-empty.

Let x be an element of X. The functor TotalTRS(X,x) yielding a non empty
non-empty strict TRS structure is defined by

(Def. 32) (i) the carrier of it = X, and

(ii) the characteristic of it = 〈X0 7−→ x,X1 7−→ x,X2 7−→ x〉, and

(iii) the reduction of it = ∇X .

One can verify that TotalTRS(X,x) is quasi total partial group-like and
invariant and there exists a non empty non-empty TRS structure which is strict,
quasi total, partial, group-like, and invariant.
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Let S be a group-like quasi total partial non empty non-empty TRS struc-
ture. The functor 1S yielding an element of S is defined by the term

(Def. 33) (Den(1(∈ dom(the characteristic of S)), S))(∅).
Let a be an element of S. The functor a−1 yielding an element of S is defined
by the term

(Def. 34) (Den(2(∈ dom(the characteristic of S)), S))(〈a〉).
Let b be an element of S. The functor a · b yielding an element of S is defined
by the term

(Def. 35) (Den(3(∈ dom(the characteristic of S)), S))(〈a, b〉).
In the sequel S denotes a group-like quasi total partial invariant non empty

non-empty TRS structure and a, b, c denote elements of S.
Let us assume that a→ b. Now we state the propositions:

(164) a−1 → b−1. The theorem is a consequence of (162).

(165) a · c→ b · c. The theorem is a consequence of (162).

(166) c · a→ c · b. The theorem is a consequence of (162).

7. Idea of Knuth-Bendix Algorithm

In the sequel S denotes a group-like quasi total partial non empty non-empty
TRS structure and a, b, c denote elements of S.

Let us consider S. We say that S is (R1) if and only if

(Def. 36) 1S · a→ a.

We say that S is (R2) if and only if

(Def. 37) a−1 · a→ 1S .

We say that S is (R3) if and only if

(Def. 38) (a · b) · c→ a · (b · c).
We say that S is (R4) if and only if

(Def. 39) a−1 · (a · b)→ b.

We say that S is (R5) if and only if

(Def. 40) (1S)−1 · a→ a.

We say that S is (R6) if and only if

(Def. 41) (a−1)−1 · 1S → a.

We say that S is (R7) if and only if

(Def. 42) (a−1)−1 · b→ a · b.
We say that S is (R8) if and only if

(Def. 43) a · 1S → a.

We say that S is (R9) if and only if

(Def. 44) (a−1)−1 → a.
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We say that S is (R10) if and only if

(Def. 45) (1S)−1 → 1S .

We say that S is (R11) if and only if

(Def. 46) a · a−1 → 1S .

We say that S is (R12) if and only if

(Def. 47) a · (a−1 · b)→ b.

We say that S is (R13) if and only if

(Def. 48) a · (b · (a · b)−1)→ 1S .

We say that S is (R14) if and only if

(Def. 49) a · (b · a)−1 → b−1.

We say that S is (R15) if and only if

(Def. 50) (a · b)−1 → b−1 · a−1.
In the sequel S denotes a group-like quasi total partial invariant non empty

non-empty TRS structure and a, b, c denote elements of S.
Now we state the propositions:

(167) If S is (R1), (R2), and (R3), then a−1 · (a · b)↙∗↘ b. The theorem is a
consequence of (2), (165), and (3).

(168) If S is (R1) and (R4), then (1S)−1 · a ↙∗↘ a. The theorem is a conse-
quence of (2) and (166).

(169) If S is (R2) and (R4), then (a−1)−1 · 1S ↙∗↘ a. The theorem is a
consequence of (2) and (166).

(170) If S is (R1), (R3), and (R6), then (a−1)−1 · b↙∗↘ a · b. The theorem is
a consequence of (2), (166), (3), and (165).

(171) If S is (R6) and (R7), then a · 1S ↙∗↘ a. The theorem is a consequence
of (2).

(172) If S is (R6) and (R8), then (a−1)−1 ↙∗↘ a. The theorem is a consequ-
ence of (2).

(173) If S is (R5) and (R8), then (1S)−1 ↙∗↘ 1S . The theorem is a consequ-
ence of (2).

(174) If S is (R2) and (R9), then a·a−1 ↙∗↘ 1S . The theorem is a consequence
of (2) and (165).

(175) If S is (R1), (R3), and (R11), then a · (a−1 · b) ↙∗↘ b. The theorem is
a consequence of (2), (165), and (12).

(176) If S is (R3) and (R11), then a · (b · (a · b)−1)↙∗↘ 1S . The theorem is a
consequence of (2).

(177) If S is (R4), (R8), and (R13), then a · (b · a)−1 ↙∗↘ b−1. The theorem
is a consequence of (2), (166), and (12).

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/11/15 8:45 AM



Abstract reduction systems and idea of Knuth-Bendix ... 55

(178) If S is (R4) and (R14), then (a · b)−1 ↙∗↘ b−1 · a−1. The theorem is a
consequence of (2) and (166).

(179) If S is (R1) and (R10), then (1S)−1·a→∗ a. The theorem is a consequence
of (165) and (12).

(180) If S is (R8) and (R9), then (a−1)−1 · 1S →∗ a. The theorem is a conse-
quence of (12).

(181) If S is (R9), then (a−1)−1 · b →∗ a · b. The theorem is a consequence of
(2) and (165).

(182) If S is (R11) and (R14), then a · (b · (a · b)−1) →∗ 1S . The theorem is a
consequence of (166) and (12).

(183) If S is (R12) and (R15), then a · (b · a)−1 →∗ b−1. The theorem is a
consequence of (166) and (12).

References

[1] S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors. Handbook of Logic in Computer
Science, chapter Term Rewriting Systems, pages 1–116. Oxford University Press, New
York, 1992.

[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[5] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics, 5

(3):405–414, 1996.
[6] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[8] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):
55–65, 1990.

[11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[15] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of uni-

versal algebra. Formalized Mathematics, 3(2):251–253, 1992.
[16] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction.
Formalized Mathematics, 1(3):441–444, 1990.

[17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1

(2):329–334, 1990.
[19] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. For-
malized Mathematics, 1(3):569–573, 1990.

[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/11/15 8:45 AM

http://fm.mizar.org/1990-1/pdf1-2/card_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/nat_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/ordinal1.pdf
http://fm.mizar.org/1996-5/pdf5-3/pua2mss1.pdf
http://fm.mizar.org/1996-5/pdf5-4/rewrite1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1996-5/pdf5-4/funct_7.pdf
http://fm.mizar.org/1990-1/pdf1-3/finseq_2.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_2.pdf
http://fm.mizar.org/1990-1/pdf1-2/partfun1.pdf
http://fm.mizar.org/1990-1/pdf1-1/zfmisc_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finset_1.pdf
http://fm.mizar.org/1992-3/pdf3-2/unialg_1.pdf
http://fm.mizar.org/1992-3/pdf3-2/unialg_1.pdf
http://fm.mizar.org/1990-1/pdf1-3/eqrel_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/enumset1.pdf
http://fm.mizar.org/1990-1/pdf1-2/funcop_1.pdf
http://fm.mizar.org/1990-1/pdf1-3/finseq_3.pdf
http://fm.mizar.org/1990-1/pdf1-3/finseq_4.pdf
http://fm.mizar.org/1990-1/pdf1-1/subset_1.pdf


56 grzegorz bancerek

[22] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733–737,
1990.

[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1
(1):73–83, 1990.

[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received March 31, 2014

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/11/15 8:45 AM

http://fm.mizar.org/1990-1/pdf1-4/margrel1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relset_1.pdf

