Finite Product of Semiring of Sets

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Summary. We formalize that the image of a semiring of sets 17 by an injective function is a semiring of sets. We offer a non-trivial example of a semiring of sets in a topological space [21]. Finally, we show that the finite product of a semiring of sets is also a semiring of sets [21] and that the finite product of a classical semiring of sets [8] is a classical semiring of sets. In this case, we use here the notation from the book of Aliprantis and Border [1].

MSC: 28A05 03E02 03B35
Keywords: set partitions; semiring of sets
MML identifier: SRINGS_4, version: 8.1.04 5.32.1237

The notation and terminology used in this paper have been introduced in the following articles: [9], [2], [3], [4], [22], [7], [15], [23], [10], [11], [6], [12], [20], [26], [27], 19], [14], 16], [25], [18], and [13].

1. Preliminaries

From now on $X_{1}, X_{2}, X_{3}, X_{4}$ denote sets.
Now we state the propositions:
(1) (i) $X_{1} \cap X_{4} \backslash\left(X_{2} \cup X_{3}\right)$ misses $X_{1} \backslash\left(\left(X_{2} \cup X_{3}\right) \cup X_{4}\right)$, and
(ii) $X_{1} \cap X_{4} \backslash\left(X_{2} \cup X_{3}\right)$ misses $\left(X_{1} \cap X_{3}\right) \cap X_{4} \backslash X_{2}$, and
(iii) $X_{1} \backslash\left(\left(X_{2} \cup X_{3}\right) \cup X_{4}\right)$ misses $\left(X_{1} \cap X_{3}\right) \cap X_{4} \backslash X_{2}$.
(2) $\left(X_{1} \backslash X_{2}\right) \backslash\left(X_{3} \backslash X_{4}\right)=\left(X_{1} \backslash\left(X_{2} \cup X_{3}\right)\right) \cup\left(X_{1} \cap X_{4} \backslash X_{2}\right)$.
(3) $\quad\left(X_{1} \backslash\left(X_{2} \cup X_{3}\right)\right) \cup\left(X_{1} \cap X_{4} \backslash X_{2}\right)=\left(\left(X_{1} \cap X_{4} \backslash\left(X_{2} \cup X_{3}\right)\right) \cup\left(X_{1} \backslash\left(\left(X_{2} \cup\right.\right.\right.\right.$ $\left.\left.\left.\left.X_{3}\right) \cup X_{4}\right)\right)\right) \cup\left(\left(X_{1} \cap X_{3}\right) \cap X_{4} \backslash X_{2}\right)$.
(4) $\left(X_{1} \backslash X_{2}\right) \backslash\left(X_{3} \backslash X_{4}\right)=\left(\left(X_{1} \cap X_{4} \backslash\left(X_{2} \cup X_{3}\right)\right) \cup\left(X_{1} \backslash\left(\left(X_{2} \cup X_{3}\right) \cup\right.\right.\right.$ $\left.\left.\left.X_{4}\right)\right)\right) \cup\left(\left(X_{1} \cap X_{3}\right) \cap X_{4} \backslash X_{2}\right)$. The theorem is a consequence of (2) and (3).

$$
\begin{equation*}
\cup\left\{X_{1}, X_{2}, X_{3}\right\}=\left(X_{1} \cup X_{2}\right) \cup X_{3} . \tag{5}
\end{equation*}
$$

2. The Direct Image of a Semiring of Sets by an Injective Function

Now we state the proposition:
(6) Let us consider sets T, S, a function f from T into S, and a family G of subsets of T. Then $f^{\circ} G=\left\{f^{\circ} A\right.$, where A is a subset of $\left.T: A \in G\right\}$.
Let T, S be sets, f be a function from T into S, and G be a finite family of subsets of T. Let us note that $f^{\circ} G$ is finite.

Let f be a function and A be a countable set. Let us note that $f^{\circ} A$ is countable.

The scheme FraenkelCountable deals with a set \mathcal{A} and a set \mathcal{X} and a unary functor \mathcal{F} yielding a set and states that
(Sch. 1) $\{\mathcal{F}(w)$, where w is an element of $\mathcal{A}: w \in \mathcal{X}\}$ is countable provided

- \mathcal{X} is countable.

Let T, S be sets, f be a function from T into S, and G be a countable family of subsets of T. Let us note that $f^{\circ} G$ is countable.

Let X, Y be sets, S be a family of subsets of X with the empty element, and f be a function from X into Y. One can verify that $f^{\circ} S$ has the empty element.

Now we state the propositions:
(7) Let us consider sets X, Y, a function f from X into Y, and families S_{1}, S_{2} of subsets of X. If $S_{1} \subseteq S_{2}$, then $f^{\circ} S_{1} \subseteq f^{\circ} S_{2}$. The theorem is a consequence of (6).
(8) Let us consider sets X, Y, a \cap-closed family S of subsets of X, and a function f from X into Y. Suppose f is one-to-one. Then $f^{\circ} S$ is a \cap-closed family of subsets of Y.
(9) Let us consider non empty sets X, Y, a $\cap_{f p}$-closed family S of subsets of X, and a function f from X into Y. Suppose f is one-to-one. Then $f^{\circ} S$ is a $\cap_{f p}$-closed family of subsets of Y.
(10) Let us consider non empty sets X, Y, a $\backslash \frac{C}{f p}$-closed family S of subsets of X, and a function f from X into Y. Suppose f is one-to-one and $f^{\circ} S$ is not empty. Then $f^{\circ} S$ is a $\backslash \frac{\subset}{f p}$-closed family of subsets of Y.

Proof: Reconsider $f_{1}=f^{\circ} S$ as a family of subsets of $Y . f_{1}$ is $\backslash \frac{C}{f p}$-closed by [10, (64), (87)], [11, (103)], [26, (123)].
(11) Let us consider non empty sets X, Y, a $\backslash_{f p}$-closed family S of subsets of X, and a function f from X into Y. Suppose f is one-to-one. Then $f^{\circ} S$ is a $\backslash_{f p}$-closed family of subsets of Y.
(12) Let us consider non empty sets X, Y, a semiring S of sets of X, and a function f from X into Y. If f is one-to-one, then $f^{\circ} S$ is a semiring of sets of Y.

3. The Set of Set Differences of All Elements of a Semiring of SETS

Now we state the proposition:
(13) Let us consider a 1-element finite sequence X. Suppose $X(1)$ is not empty. Then there exists a function I from $X(1)$ into ΠX such that
(i) I is one-to-one and onto, and
(ii) for every object x such that $x \in X(1)$ holds $I(x)=\langle x\rangle$.

Let X be a set. Observe that 2_{*}^{X} is \cap-closed and there exists a \cap-closed family of subsets of X which has the empty element and there exists a \cap-closed family of subsets of X with the empty element which is \cup-closed.

Let X, Y be non empty sets. Let us observe that $X \Downarrow Y$ is non empty.
Now we state the proposition:
(14) Let us consider a set X, and a family S of subsets of X with the empty element. Then $S \backslash S=$ the set of all $A \backslash B$ where A, B are elements of S.
Let X be a set and S be a family of subsets of X with the empty element. The functor semidiff S yielding a family of subsets of X is defined by the term (Def. 1) $S \backslash S$.

Now we state the proposition:
(15) Let us consider a set X, a family S of subsets of X with the empty element, and an object x. Suppose $x \in \operatorname{semidiff} S$. Then there exist elements A, B of S such that $x=A \backslash B$. The theorem is a consequence of (14).
Let X be a set and S be a family of subsets of X with the empty element. Observe that semidiff S has the empty element.

Let S be a \cap-closed, \cup-closed family of subsets of X with the empty element. Note that semidiff S is \cap-closed and $\backslash_{f p}$-closed.

Now we state the proposition:
(16) Let us consider a set X, and a \cap-closed, \cup-closed family S of subsets of X with the empty element. Then semidiff S is a semiring of sets of X.

4. The Collection of All Locally Closed Sets $L C(X, \tau)$ of a Topological Space (X, τ)

Let T be a non empty topological space. The functor $\mathrm{LC}(T)$ yielding a family of subsets of Ω_{T} is defined by the term
(Def. 2) $\quad\{A \cap B$, where A, B are subsets of $T: A$ is open and B is closed $\}$.
Let us note that $\mathrm{LC}(T)$ is \cap-closed and $\backslash_{f p}$-closed and has the empty element.
(17) Let us consider a non empty topological space T. Then $\mathrm{LC}(T)$ is a semiring of sets of Ω_{T}.

5. The Finite Product of Semirings of Sets

Let n be a natural number. Note that there exists an n-element finite sequence which is non-empty.

Let n be a non zero natural number and X be a non-empty, n-element finite sequence.

A semiring family of X is an n-element finite sequence and is defined by
(Def. 3) for every natural number i such that $i \in \operatorname{Seg} n$ holds $i t(i)$ is a semiring of sets of $X(i)$.
In the sequel n denotes a non zero natural number and X denotes a nonempty, n-element finite sequence. Now we state the propositions:
(18) Let us consider a semiring family S of X. Then $\operatorname{dom} S=\operatorname{dom} X$.
(19) Let us consider a semiring family S of X, and a natural number i. If $i \in \operatorname{Seg} n$, then $\bigcup(S(i)) \subseteq X(i)$.
(20) Let us consider a function f, and an n-element finite sequence X. If $f \in \prod X$, then f is an n-element finite sequence.

Let n be a non zero natural number and X be an n-element finite sequence. The functor SemiringProduct X yielding a set is defined by
(Def. 4) for every object $f, f \in i t$ iff there exists a function g such that $f=\Pi g$ and $g \in \Pi X$.
Now we state the propositions:
(21) Let us consider an n-element finite sequence X. Then SemiringProduct $X \subseteq 2^{(\bigcup \bigcup X)^{\text {dom } X} \text {. }}$
(22) Let us consider a semiring family S of X. Then SemiringProduct S is a family of subsets of ΠX.
Proof: Reconsider $S_{1}=$ SemiringProduct S as a subset of $2^{(U \bigcup S)^{\text {dom } S} \text {. }}$ $S_{1} \subseteq 2 \prod^{X}$ by [3, (9)], (18), [7, (89)], (19).
(23) Let us consider a non-empty, 1-element finite sequence X. Then $\Pi X=$ the set of all $\langle x\rangle$ where x is an element of $X(1)$. The theorem is a consequence of (13).
One can check that $\Pi\langle\emptyset\rangle$ is empty. Now we state the propositions:
(24) Let us consider a non empty set x. Then $\Pi\langle x\rangle=$ the set of all $\langle y\rangle$ where y is an element of x. The theorem is a consequence of (23).
(25) Let us consider a non-empty, 1-element finite sequence X, and a semiring family S of X. Then SemiringProduct $S=$ the set of all $\Pi\langle s\rangle$ where s is an element of $S(1)$. Proof: S is non-empty by (18), [7, (3)]. $\Pi S=$ the set of all $\langle s\rangle$ where s is an element of $S(1)$.
Let us consider sets x, y. Now we state the propositions:
(26) $\Pi\langle x\rangle \cap \Pi\langle y\rangle=\Pi\langle x \cap y\rangle$. The theorem is a consequence of (24).
(27) $\Pi\langle x\rangle \backslash \Pi\langle y\rangle=\Pi\langle x \backslash y\rangle$. The theorem is a consequence of (24).

Let us consider a non-empty, 1-element finite sequence X and a semiring family S of X. Now we state the propositions:
(28) the set of all $\Pi\langle s\rangle$ where s is an element of $S(1)$ is a semiring of sets of the set of all $\langle x\rangle$ where x is an element of $X(1)$. The theorem is a consequence of (24), (26), and (27).
(29) SemiringProduct S is a semiring of sets of ΠX. The theorem is a consequence of (23), (25), and (28).
(30) Let us consider sets X_{1}, X_{2}, a semiring S_{1} of sets of X_{1}, and a semiring S_{2} of sets of X_{2}. Then the set of all $s_{1} \times s_{2}$ where s_{1} is an element of S_{1}, s_{2} is an element of S_{2} is a semiring of sets of $X_{1} \times X_{2}$.
(31) Let us consider a non-empty, n-element finite sequence X_{3}, a non-empty, 1-element finite sequence X_{1}, a semiring family S_{3} of X_{3}, and a semiring family S_{1} of X_{1}. Suppose SemiringProduct S_{3} is a semiring of sets of $\prod X_{3}$ and SemiringProduct S_{1} is a semiring of sets of ΠX_{1}. Let us consider a family S_{4} of subsets of $\Pi X_{3} \times \Pi X_{1}$. Suppose $S_{4}=$ the set of all $s_{1} \times$ s_{2} where s_{1} is an element of SemiringProduct S_{3}, s_{2} is an element of SemiringProduct S_{1}. Then there exists a function I from $\Pi X_{3} \times \Pi X_{1}$ into $\Pi\left(X_{3} \frown X_{1}\right)$ such that
(i) I is one-to-one and onto, and
(ii) for every finite sequences x, y such that $x \in \Pi X_{3}$ and $y \in \Pi X_{1}$ holds $I(x, y)=x^{\frown} y$, and
(iii) $I^{\circ} S_{4}=\operatorname{SemiringProduct}\left(S_{3} \frown S_{1}\right)$.

Proof: $\bigcup\left(S_{1}(1)\right) \subseteq X_{1}(1)$. Consider I being a function from $\Pi X_{3} \times \prod X_{1}$ into $\prod\left(X_{3} \frown X_{1}\right)$ such that I is one-to-one and I is onto and for every finite
sequences x, y such that $x \in \prod X_{3}$ and $y \in \Pi X_{1}$ holds $I(x, y)=x^{\wedge} y$. $I^{\circ} S_{4}=\operatorname{SemiringProduct}\left(S_{3} \sim S_{1}\right)$ by (25), (20), [7, (89)], [24, (153)]. \square
(32) Let us consider a non-empty, n-element finite sequence X_{3}, a non-empty, 1-element finite sequence X_{1}, a semiring family S_{3} of X_{3}, and a semiring family S_{1} of X_{1}. Suppose SemiringProduct S_{3} is a semiring of sets of ΠX_{3} and SemiringProduct S_{1} is a semiring of sets of ΠX_{1}. Then SemiringProduct $\left(S_{3} \wedge S_{1}\right)$ is a semiring of sets of $\prod\left(X_{3} \wedge X_{1}\right)$. The theorem is a consequence of $(30),(31),(9)$, and (10).
(33) Let us consider a semiring family S of X. Then SemiringProduct S is a semiring of sets of ΠX. Proof: Define \mathcal{P} [non zero natural number $] \equiv$ for every non-empty, $\$_{1}$-element finite sequence X for every semiring family S of X, SemiringProduct S is a semiring of sets of $\Pi X . \mathcal{P}[1]$. For every non zero natural number $n, \mathcal{P}[n]$ from [5, Sch. 10].
Let n be a non zero natural number, X be a non-empty, n-element finite sequence, and S be a semiring family of X. We say that S is \cap-closed yielding if and only if
(Def. 5) for every natural number i such that $i \in \operatorname{Seg} n$ holds $S(i)$ is \cap-closed.
Note that there exists a semiring family of X which is \cap-closed yielding.

6. The Finite Product of Classical Semirings of Sets

Let X be a set. Note that there exists a semiring of sets of X which is \cap-closed.

Let us consider a non-empty, 1-element finite sequence X and a \cap-closed yielding semiring family S of X. Now we state the propositions:
(34) the set of all $\Pi\langle s\rangle$ where s is an element of $S(1)$ is a \cap-closed semiring of sets of the set of all $\langle x\rangle$ where x is an element of $X(1)$. The theorem is a consequence of (26) and (28).
(35) SemiringProduct S is a \cap-closed semiring of sets of ΠX. The theorem is a consequence of $(23),(25)$, and (34).
Now we state the propositions:
(36) Let us consider sets X_{1}, X_{2}, a \cap-closed semiring S_{1} of sets of X_{1}, and a \cap-closed semiring S_{2} of sets of X_{2}. Then the set of all $s_{1} \times s_{2}$ where s_{1} is an element of S_{1}, s_{2} is an element of S_{2} is a \cap-closed semiring of sets of $X_{1} \times X_{2}$.
(37) Let us consider a non-empty, n-element finite sequence X_{3}, a non-empty, 1-element finite sequence X_{1}, a \cap-closed yielding semiring family S_{3} of X_{3}, and a \cap-closed yielding semiring family S_{1} of X_{1}. Suppose SemiringProduct
S_{3} is a \cap-closed semiring of sets of ΠX_{3} and SemiringProduct S_{1} is a \cap-closed semiring of sets of ΠX_{1}. Then SemiringProduct $\left(S_{3} \frown S_{1}\right)$ is a \cap-closed semiring of sets of $\Pi\left(X_{3}\right.$ ค $\left.X_{1}\right)$. The theorem is a consequence of (30), (31), (36), (8), and (10).

Let us consider n and X. Let S be a \cap-closed yielding semiring family of X. One can check that SemiringProduct S is \cap-closed.
(38) Let us consider a \cap-closed yielding semiring family S of X. Then SemiringProduct S is a \cap-closed semiring of sets of ΠX.

7. Measurable Rectangle

Let n be a non zero natural number and X be a non-empty, n-element finite sequence.

A classical semiring family of X is an n-element finite sequence and is defined by
(Def. 6) for every natural number i such that $i \in \operatorname{Seg} n$ holds $i t(i)$ is a semi-diffclosed, \cap-closed family of subsets of $X(i)$ with the empty element.
Let X be an n-element finite sequence. We introduce MeasurableRectangle X as a synonym of SemiringProduct X. Now we state the propositions:
(39) Every classical semiring family of X is a \cap-closed yielding semiring family of X.
(40) Let us consider a classical semiring family S of X.

Then MeasurableRectangle S is a semi-diff-closed, \cap-closed family of subsets of ΠX with the empty element. The theorem is a consequence of (39) and (33).

Acknowledgement: I would like to thank Artur Korniłowicz for suggestions.

References

[1] Charalambos D. Aliprantis and Kim C. Border. Infinite dimensional analysis. SpringerVerlag, Berlin, Heidelberg, 2006.
[2] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. König's theorem, Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
[5] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[6] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[8] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
[9] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[10] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[11] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[13] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[14] Roland Coghetto. Semiring of sets. Formalized Mathematics, 22(1):79-84, 2014. doi 10.2478/forma-2014-0008.
[15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[16] Noboru Endou, Kazuhisa Nakasho, and Yasunari Shidama. σ-ring and σ-algebra of sets. Formalized Mathematics, 23(1):51-57, 2015. doi 10.2478/forma-2015-0004.
[17] D.F. Goguadze. About the notion of semiring of sets. Mathematical Notes, 74:346-351, 2003. ISSN 0001-4346. doi 10.1023/A:1026102701631.
[18] Zbigniew Karno. On discrete and almost discrete topological spaces Formalized Mathematics, 3(2):305-310, 1992.
[19] Beata Padlewska. Families of sets Formalized Mathematics, 1(1):147-152, 1990.
[20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[21] Jean Schmets. Théorie de la mesure Notes de cours, Université de Liège, 146 pages, 2004.
[22] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[23] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187-190, 1990.
[24] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences Formalized Mathematics, 1(3):569-573, 1990.
[25] Zinaida Trybulec. Properties of subsets Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received April 19, 2015

