Riemann Integral of Functions from \mathbb{R} into n-dimensional Real Normed Space

Keiichi Miyajima
Ibaraki University
Faculty of Engineering
Hitachi, Japan

Artur Korniłowicz
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok
Poland

Yasunari Shidama ${ }^{1}$
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we define the Riemann integral on functions \mathbb{R} into n-dimensional real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to the wider range. Our method refers to the [21].

MML identifier: INTEGR19, version: $\underline{7.12 .024 .175 .1137}$

The terminology and notation used in this paper have been introduced in the following papers: [23], [24], [6], [2], [25], [8], [7], [1], [4], [3], [5], [20], [10], [14], [12], [13], [18], [22], [19], [26], [9], [11], [15], [17], and [16].

1. On the Functions from \mathbb{R} into n-dimensional Real Space

For simplicity, we adopt the following convention: X denotes a set, n denotes an element of $\mathbb{N}, a, b, c, d, e, r, x_{0}$ denote real numbers, A denotes a non empty closed-interval subset of \mathbb{R}, f, g, h denote partial functions from \mathbb{R} to \mathcal{R}^{n}, and E denotes an element of \mathcal{R}^{n}. We now state a number of propositions:
(1) If $a \leq c \leq b$, then $c \in[a, b]$ and $[a, c] \subseteq[a, b]$ and $[c, b] \subseteq[a, b]$.

[^0](2) If $a \leq c \leq d \leq b$ and $[a, b] \subseteq X$, then $[c, d] \subseteq X$.
(3) If $a \leq b$ and $c, d \in[a, b]$ and $[a, b] \subseteq X$, then $[\min (c, d), \max (c, d)] \subseteq X$.
(4) If $a \leq c \leq d \leq b$ and $[a, b] \subseteq \operatorname{dom} f$ and $[a, b] \subseteq \operatorname{dom} g$, then $[c, d] \subseteq$ $\operatorname{dom}(f+g)$.
(5) If $a \leq c \leq d \leq b$ and $[a, b] \subseteq \operatorname{dom} f$ and $[a, b] \subseteq \operatorname{dom} g$, then $[c, d] \subseteq$ $\operatorname{dom}(f-g)$.
(6) Let f be a partial function from \mathbb{R} to \mathbb{R}. Suppose $a \leq c \leq d \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$. Then $r \cdot f$ is integrable on $[c, d]$ and $(r \cdot f) \upharpoonright[c, d]$ is bounded.
(7) Let f, g be partial functions from \mathbb{R} to \mathbb{R}. Suppose that $a \leq c \leq d \leq b$ and f is integrable on $[a, b]$ and g is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $g \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $[a, b] \subseteq \operatorname{dom} g$. Then $f-g$ is integrable on $[c, d]$ and $(f-g) \upharpoonright[c, d]$ is bounded.
(8) Suppose $a \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $c \in[a, b]$. Then f is integrable on $[a, c]$ and f is integrable on $[c, b]$ and $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$.
(9) Suppose $a \leq c \leq d \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$. Then f is integrable on $[c, d]$ and $f \upharpoonright[c, d]$ is bounded.
(10) Suppose that $a \leq c \leq d \leq b$ and f is integrable on $[a, b]$ and g is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $g \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $[a, b] \subseteq \operatorname{dom} g$. Then $f+g$ is integrable on $[c, d]$ and $(f+g) \upharpoonright[c, d]$ is bounded.
(11) Suppose $a \leq c \leq d \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$. Then $r \cdot f$ is integrable on $[c, d]$ and $(r \cdot f) \upharpoonright[c, d]$ is bounded.
(12) Suppose $a \leq c \leq d \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$. Then $-f$ is integrable on $[c, d]$ and $(-f) \upharpoonright[c, d]$ is bounded.
(13) Suppose that $a \leq c \leq d \leq b$ and f is integrable on $[a, b]$ and g is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $g \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $[a, b] \subseteq \operatorname{dom} g$. Then $f-g$ is integrable on $[c, d]$ and $(f-g) \upharpoonright[c, d]$ is bounded.
(14) Let n be a non empty element of \mathbb{N} and f be a function from A into \mathcal{R}^{n}. Then f is bounded if and only if $|f|$ is bounded.
(15) If f is bounded and $A \subseteq \operatorname{dom} f$, then $f \upharpoonright A$ is bounded.
(16) Let f be a partial function from \mathbb{R} to \mathcal{R}^{n} and g be a function from A into \mathcal{R}^{n}. If f is bounded and $f=g$, then g is bounded.
(17) For every partial function f from \mathbb{R} to \mathcal{R}^{n} and for every function g from
A into \mathcal{R}^{n} such that $f=g$ holds $|f|=|g|$.
(18) If $A \subseteq \operatorname{dom} h$, then $\mid h\lceil A|=|h| \upharpoonright A$.
(19) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to \mathcal{R}^{n}. If $A \subseteq \operatorname{dom} h$ and $h \upharpoonright A$ is bounded, then $|h| \upharpoonright A$ is bounded.
(20) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to \mathcal{R}^{n}. Suppose $A \subseteq \operatorname{dom} h$ and $h \upharpoonright A$ is bounded and h is integrable on A and $|h|$ is integrable on A. Then $\left|\int_{A} h(x) d x\right| \leq \int_{A}|h|(x) d x$.
(21) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to \mathcal{R}^{n}. Suppose $a \leq b$ and $[a, b] \subseteq \operatorname{dom} h$ and h is integrable on $[a, b]$ and $|h|$ is integrable on $[a, b]$ and $h\left\lceil[a, b]\right.$ is bounded. Then $\left|\int_{a}^{b} h(x) d x\right| \leq \int_{a}^{b}|h|(x) d x$.
(22) Let n be a non empty element of \mathbb{N} and f be a partial function from \mathbb{R} to \mathcal{R}^{n}. Suppose that $a \leq b$ and f is integrable on $[a, b]$ and $|f|$ is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $c, d \in[a, b]$. Then $|f|$ is integrable on $[\min (c, d), \max (c, d)]$ and $|f|\lceil[\min (c, d), \max (c, d)]$ is bounded and $\left|\int_{c}^{d} f(x) d x\right| \leq \int_{\min (c, d)}^{\max (c, d)}|f|(x) d x$.
(23) Let n be a non empty element of \mathbb{N} and f be a partial function from \mathbb{R} to \mathcal{R}^{n}. Suppose that $a \leq b$ and $c \leq d$ and f is integrable on $[a, b]$ and $|f|$ is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $c, d \in[a, b]$. Then $|f|$ is integrable on $[c, d]$ and $|f|\lceil[c, d]$ is bounded and $\left|\int_{c}^{d} f(x) d x\right| \leq \int_{c}^{d}|f|(x) d x$ and $\left|\int_{d}^{c} f(x) d x\right| \leq \int_{c}^{d}|f|(x) d x$.
(24) Let n be a non empty element of \mathbb{N} and f be a partial function from \mathbb{R} to \mathcal{R}^{n}. Suppose that $a \leq b$ and $c \leq d$ and f is integrable on $[a, b]$ and $|f|$ is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and c, $d \in[a, b]$ and for every real number x such that $x \in[c, d]$ holds $\left|f_{x}\right| \leq e$. Then $\left|\int_{c}^{d} f(x) d x\right| \leq e \cdot(d-c)$ and $\left|\int_{d}^{c} f(x) d x\right| \leq e \cdot(d-c)$.
(25) If $a \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq$ $\operatorname{dom} f$ and $c, d \in[a, b]$, then $\int_{c}^{d}(r \cdot f)(x) d x=r \cdot \int_{c}^{d} f(x) d x$.
(26) If $a \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq$ $\operatorname{dom} f$ and $c, d \in[a, b]$, then $\int_{c}^{d}(-f)(x) d x=-\int_{c}^{d} f(x) d x$.
(27) Suppose that $a \leq b$ and f is integrable on $[a, b]$ and g is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $g \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $[a, b] \subseteq \operatorname{dom} g$ and $c, d \in[a, b]$. Then $\int_{c}^{d}(f+g)(x) d x=\int_{c}^{d} f(x) d x+$ $\int_{c}^{d} g(x) d x$.
(28) Suppose that $a \leq b$ and f is integrable on $[a, b]$ and g is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $g \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $[a, b] \subseteq \operatorname{dom} g$ and $c, d \in[a, b]$. Then $\int_{c}^{d}(f-g)(x) d x=\int_{c}^{d} f(x) d x-$ $\int_{c}^{d} g(x) d x$.
(29) Suppose $a \leq b$ and $[a, b] \subseteq \operatorname{dom} f$ and for every real number x such that $x \in[a, b]$ holds $f(x)=E$. Then f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $\int_{a}^{b} f(x) d x=(b-a) \cdot E$.
(30) Suppose $a \leq b$ and for every real number x such that $x \in[a, b]$ holds $f(x)=E$ and $[a, b] \subseteq \operatorname{dom} f$ and $c, d \in[a, b]$. Then $\int_{c}^{d} f(x) d x=(d-c) \cdot E$.
(31) If $a \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq$ $\operatorname{dom} f$ and $c, d \in[a, b]$, then $\int_{a}^{d} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x$.
(32) Suppose that $a \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $c, d \in[a, b]$ and for every real number x such that $x \in[\min (c, d), \max (c, d)]$ holds $\left|f_{x}\right| \leq e$. Then $\left|\int_{c}^{d} f(x) d x\right| \leq n \cdot e \cdot|d-c|$.
\[

$$
\begin{equation*}
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x \tag{33}
\end{equation*}
$$

\]

2. On the Functions from \mathbb{R} into n-dimensional Real Normed Space

Let R be a real normed space, let X be a non empty set, and let g be a partial function from X to R. We say that g is bounded if and only if:
(Def. 1) There exists a real number r such that for every set y such that $y \in \operatorname{dom} g$ holds $\left\|g_{y}\right\|<r$.

Next we state a number of propositions:
(34) Let f be a partial function from \mathbb{R} to \mathcal{R}^{n} and g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. If $f=g$, then f is bounded iff g is bounded.
(35) Let X, Y be sets and f_{1}, f_{2} be partial functions from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $f_{1} \upharpoonright X$ is bounded and $f_{2} \upharpoonright Y$ is bounded. Then $\left(f_{1}+f_{2}\right) \upharpoonright(X \cap Y)$ is bounded and $\left(f_{1}-f_{2}\right) \upharpoonright(X \cap Y)$ is bounded.
(36) Let f be a function from A into \mathcal{R}^{n}, g be a function from A into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, D be a Division of A, p be a finite sequence of elements of \mathcal{R}^{n}, and q be a finite sequence of elements of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $f=g$ and $p=q$. Then p is a middle volume of f and D if and only if q is a middle volume of g and D.
(37) Let f be a function from A into \mathcal{R}^{n}, g be a function from A into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, D be a Division of A, p be a middle volume of f and D, and q be a middle volume of g and D. If $f=g$ and $p=q$, then middle $\operatorname{sum}(f, p)=$ middle $\operatorname{sum}(g, q)$.
(38) Let f be a function from A into \mathcal{R}^{n}, g be a function from A into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, T be a division sequence of A, p be a function from \mathbb{N} into $\left(\mathcal{R}^{n}\right)^{*}$, and q be a function from \mathbb{N} into (the carrier of $\left.\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle\right)^{*}$. Suppose $f=g$ and $p=q$. Then p is a middle volume sequence of f and T if and only if q is a middle volume sequence of g and T.
(39) Let f be a function from A into \mathcal{R}^{n}, g be a function from A into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, T be a division sequence of A, S be a middle volume sequence of f and T, and U be a middle volume sequence of g and T. If $f=g$ and $S=U$, then middle $\operatorname{sum}(f, S)=$ middle $\operatorname{sum}(g, U)$.
(40) Let f be a function from A into \mathcal{R}^{n}, g be a function from A into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, I be an element of \mathcal{R}^{n}, and J be a point of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $f=g$ and $I=J$. Then the following statements are equivalent
(i) for every division sequence T of A and for every middle volume sequence S of f and T such that δ_{T} is convergent and $\lim \left(\delta_{T}\right)=0$ holds middle $\operatorname{sum}(f, S)$ is convergent and \lim middle $\operatorname{sum}(f, S)=I$,
(ii) for every division sequence T of A and for every middle volume sequence S of g and T such that δ_{T} is convergent and $\lim \left(\delta_{T}\right)=0$ holds middle $\operatorname{sum}(g, S)$ is convergent and limmiddle $\operatorname{sum}(g, S)=J$.
(41) Let f be a function from A into \mathcal{R}^{n} and g be a function from A into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $f=g$ and f is bounded. Then f is integrable if and only if g is integrable.
(42) Let f be a function from A into \mathcal{R}^{n} and g be a function from A into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $f=g$ and f is bounded and integrable. Then g is integrable and integral $f=$ integral g.
(43) Let f be a partial function from \mathbb{R} to \mathcal{R}^{n} and g be a partial function
from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $f=g$ and $f\lceil A$ is bounded and $A \subseteq \operatorname{dom} f$. Then f is integrable on A if and only if g is integrable on A.
(44) Let f be a partial function from \mathbb{R} to \mathcal{R}^{n} and g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $f=g$ and $f \upharpoonright A$ is bounded and $A \subseteq \operatorname{dom} f$ and f is integrable on A. Then g is integrable on A and $\int_{A} f(x) d x=\int_{A} g(x) d x$.
(45) Let f be a partial function from \mathbb{R} to \mathcal{R}^{n} and g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $f=g$ and $a \leq b$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and f is integrable on $[a, b]$. Then $\int_{a}^{b} f(x) d x=\int_{a}^{b} g(x) d x$.
(46) Let f, g be partial functions from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $a \leq b$ and f is integrable on $[a, b]$ and g is integrable on $[a, b]$ and $[a, b] \subseteq \operatorname{dom} f$ and $[a, b] \subseteq \operatorname{dom} g$. Then $\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$ and $\int_{a}^{b}(f-g)(x) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$.
(47) For every partial function f from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ such that $a \leq b$ and $[a, b] \subseteq \operatorname{dom} f$ holds $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$.
(48) Let f be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and g be a partial function from \mathbb{R} to \mathcal{R}^{n}. Suppose $f=g$ and $a \leq b$ and $[a, b] \subseteq \operatorname{dom} f$ and $f \upharpoonright[a, b]$ is bounded and f is integrable on $[a, b]$ and $c, d \in[a, b]$. Then $\int_{c}^{d} f(x) d x=\int_{c}^{d} g(x) d x$.
(49) Let f, g be partial functions from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose that $a \leq b$ and f is integrable on $[a, b]$ and g is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $g \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $[a, b] \subseteq \operatorname{dom} g$ and $c, d \in[a, b]$. Then $\int_{c}^{d}(f+g)(x) d x=\int_{c}^{d} f(x) d x+\int_{c}^{d} g(x) d x$.
(50) Let f, g be partial functions from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose that $a \leq b$ and f is integrable on $[a, b]$ and g is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $g \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $[a, b] \subseteq \operatorname{dom} g$ and $c, d \in[a, b]$. Then $\int_{c}^{d}(f-g)(x) d x=\int_{c}^{d} f(x) d x-\int_{c}^{d} g(x) d x$.
(51) Let E be a point of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and f be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $a \leq b$ and $[a, b] \subseteq \operatorname{dom} f$ and for every real number
x such that $x \in[a, b]$ holds $f(x)=E$. Then f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $\int_{a}^{b} f(x) d x=(b-a) \cdot E$.
(52) Let E be a point of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and f be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $a \leq b$ and $[a, b] \subseteq \operatorname{dom} f$ and for every real number x such that $x \in[a, b]$ holds $f(x)=E$ and $c, d \in[a, b]$. Then $\int_{c}^{d} f(x) d x=$ $(d-c) \cdot E$.
(53) Let f be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $a \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and c, $d \in[a, b]$. Then $\int_{a}^{d} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x$.
(54) Let f be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose that $a \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and c, $d \in[a, b]$ and for every real number x such that $x \in[\min (c, d), \max (c, d)]$ holds $\left\|f_{x}\right\| \leq e$. Then $\left\|\int_{c}^{d} f(x) d x\right\| \leq n \cdot e \cdot|d-c|$.

3. Fundamental Theorem of Calculus

The following two propositions are true:
$(55)^{2}$ Let n be a non empty element of \mathbb{N} and F, f be partial functions from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose that $a \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $] a, b[\subseteq \operatorname{dom} F$ and for every real number x such that $x \in] a, b\left[\right.$ holds $F(x)=\int_{a}^{x} f(x) d x$ and $\left.x_{0} \in\right] a, b[$ and f is continuous in x_{0}. Then F is differentiable in x_{0} and $F^{\prime}\left(x_{0}\right)=f_{x_{0}}$.
(56) Let n be a non empty element of \mathbb{N} and f be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $a \leq b$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded and $[a, b] \subseteq \operatorname{dom} f$ and $\left.x_{0} \in\right] a, b\left[\right.$ and f is continuous in x_{0}. Then there exists a partial function F from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ such that $] a, b[\subseteq \operatorname{dom} F$ and for every real number x such that $x \in] a, b\left[\right.$ holds $F(x)=\int_{a}^{x} f(x) d x$ and F is differentiable in x_{0} and $F^{\prime}\left(x_{0}\right)=f_{x_{0}}$.

[^1]
References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[11] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
[12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux's theorem. Formalized Mathematics, 9(1):197-200, 2001.
[13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
[14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191-196, 2001.
[15] Keiichi Miyajima, Takahiro Kato, and Yasunari Shidama. Riemann integral of functions from \mathbb{R} into real normed space. Formalized Mathematics, 19(1):17-22, 2011, doi: 10.2478/v10037-011-0003-8.
[16] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from \mathbb{R} into \mathcal{R}^{n}. Formalized Mathematics, 17(2):179-185, 2009, doi: 10.2478/v10037-009-0021-y.
[17] Keiko Narita, Artur Kornilowicz, and Yasunari Shidama. More on the continuity of real functions. Formalized Mathematics, 19(4):233-239, 2011, doi: 10.2478/v10037-011-0032-3.
[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[19] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[21] Murray R. Spiegel. Theory and Problems of Vector Analysis. McGraw-Hill, 1974.
[22] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[26] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received October 27, 2011

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 22300285.

[^1]: ${ }^{2}$ Fundamental Theorem of Calculus (for \mathcal{R}^{n})

