Isomorphisms of Direct Products of Finite Commutative Groups ${ }^{1}$

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. We have been working on the formalization of groups. In [1] we encoded some theorems concerning the product of cyclic groups. In this article, we present the generalized formalization of [1]. First, we show that every finite commutative group which order is composite number is isomorphic to a direct product of finite commutative groups which orders are relatively prime. Next, we describe finite direct products of finite commutative groups.

MML identifier: GROUP_17, version: 8.1.01 5.9.1172
The notation and terminology used in this paper have been introduced in the following articles: [2], 3], [19, [7], [13], [20, [8], 9], [10], [23], [24], [25], [26], [27], [14], [22], [17], 4], [5], 15], [16], [6], [11], 21], [18], [29], [28], and [12].

1. Preliminaries

Now we state the propositions:
(1) Let us consider sets A, B, A_{1}, B_{1}. Suppose
(i) A misses B, and
(ii) $A_{1} \subseteq A$, and
(iii) $B_{1} \subseteq B$, and
(iv) $A_{1} \cup B_{1}=A \cup B$.

Then

[^0](v) $A_{1}=A$, and
(vi) $B_{1}=B$. Proof: $A \subseteq A_{1} . B \subseteq B_{1}$.
(2) Let us consider non empty finite sets H, K. Then $\overline{\overline{\Pi\langle H, K\rangle}}=\overline{\bar{H}} \cdot \overline{\bar{K}}$.

Let us consider bags p_{2}, p_{1}, f of Prime and a natural number q. Now we state the propositions:
(3) If support p_{2} misses support p_{1} and $f=p_{2}+p_{1}$ and $q \in \operatorname{support} p_{2}$, then $p_{2}(q)=f(q)$.
(4) If support p_{2} misses support p_{1} and $f=p_{2}+p_{1}$ and $q \in \operatorname{support} p_{1}$, then $p_{1}(q)=f(q)$.
Now we state the propositions:
(5) Let us consider a non zero natural number h and a prime number q. If q and h are not relatively prime, then $q \mid h$.
(6) Let us consider non zero natural numbers h, s. Suppose a prime number q. Suppose $q \in \operatorname{support}$ PrimeFactorization (s). Then q and h are not relatively prime. Then support PrimeFactorization $(s) \subseteq$ support PrimeFactorization (h). The theorem is a consequence of (5).
(7) Let us consider non zero natural numbers h, k, s, t. Suppose
(i) h and k are relatively prime, and
(ii) $s \cdot t=h \cdot k$, and
(iii) for every prime number q such that $q \in \operatorname{support}$ PrimeFactorization (s) holds q and h are not relatively prime, and
(iv) for every prime number q such that $q \in \operatorname{support} \operatorname{PrimeFactorization}(t)$ holds q and k are not relatively prime.
Then
(v) $s=h$, and
(vi) $t=k$.

The theorem is a consequence of (6), (1), (3), and (4). Proof: Set $p_{2}=$ PrimeFactorization (s). Set $p_{1}=\operatorname{PrimeFactorization}(t)$. For every natural number p such that $p \in \operatorname{support} \operatorname{PFExp}(h)$ holds $p_{2}(p)=p^{p-\operatorname{count}(h)}$. For every natural number p such that $p \in \operatorname{support} \operatorname{PFExp}(k)$ holds $p_{1}(p)=$ $p^{p-\operatorname{count}(k)}$.
Let G be a non empty multiplicative magma, I be a finite set, and b be a (the carrier of G)-valued total I-defined function. The functor Πb yielding an element of G is defined by
(Def. 1) There exists a finite sequence f of elements of G such that
(i) it $=\Pi f$, and
(ii) $f=b \cdot \operatorname{CFS}(I)$.

Now we state the propositions:
(8) Let us consider a commutative group G, non empty finite sets A, B, a (the carrier of G)-valued total A-defined function F_{3}, a (the carrier of G)valued total B-defined function F_{2}, and a (the carrier of G)-valued total $A \cup B$-defined function F_{1}. Suppose
(i) A misses B, and
(ii) $F_{1}=F_{3}+\cdot F_{2}$.

Then $\Pi F_{1}=\Pi F_{3} \cdot \Pi F_{2}$.
(9) Let us consider a non empty multiplicative magma G, a set q, an element z of G, and a (the carrier of G)-valued total $\{q\}$-defined function f. If $f=q \longmapsto z$, then $\Pi f=z$.

2. Direct Product of Finite Commutative Groups

Now we state the propositions:
(10) Let us consider non empty multiplicative magmas X, Y. Then the carrier of $\Pi\langle X, Y\rangle=\Pi\langle$ the carrier of X, the carrier of $Y\rangle$. Proof: Set $\operatorname{Carr} X=$ the carrier of X. Set $\operatorname{Carr} Y=$ the carrier of Y. For every element a such that $a \in$ dom the support of $\langle X, Y\rangle$ holds (the support of $\langle X, Y\rangle)(a)=$ \langle the carrier of X, the carrier of $Y\rangle(a)$.
(11) Let us consider a group G and normal subgroups A, B of G. Suppose (the carrier of $A) \cap($ the carrier of $B)=\left\{\mathbf{1}_{G}\right\}$. Let us consider elements a, b of G. If $a \in A$ and $b \in B$, then $a \cdot b=b \cdot a$.
(12) Let us consider a group G and normal subgroups A, B of G. Suppose
(i) for every element x of G, there exist elements a, b of G such that $a \in A$ and $b \in B$ and $x=a \cdot b$, and
(ii) (the carrier of $A) \cap($ the carrier of $B)=\left\{\mathbf{1}_{G}\right\}$.

Then there exists a homomorphism h from $\Pi\langle A, B\rangle$ to G such that
(iii) h is bijective, and
(iv) for every elements a, b of G such that $a \in A$ and $b \in B$ holds $h(\langle a$, $b\rangle)=a \cdot b$.
The theorem is a consequence of (11). Proof: Define $\mathcal{P}[$ set, set $] \equiv$ there exists an element x of G and there exists an element y of G such that $x \in A$ and $y \in B$ and $\$_{1}=\langle x, y\rangle$ and $\$_{2}=x \cdot y$. For every element z of $\Pi\langle A$, $B\rangle$, there exists an element w of G such that $\mathcal{P}[z, w]$. Consider h being a function from $\Pi\langle A, B\rangle$ into G such that for every element z of $\Pi\langle A, B\rangle$, $\mathcal{P}[z, h(z)]$. For every elements a, b of G such that $a \in A$ and $b \in B$ holds

$$
h(\langle a, b\rangle)=a \cdot b . \text { For every elements } z, w \text { of } \prod\langle A, B\rangle, h(z \cdot w)=h(z) \cdot h(w)
$$

Let us consider a finite commutative group G, a natural number m, and a subset A of G. Now we state the propositions:
(13) Suppose $A=\left\{x\right.$ where x is an element of $\left.G: x^{m}=\mathbf{1}_{G}\right\}$. Then
(i) $A \neq \emptyset$, and
(ii) for every elements g_{1}, g_{2} of G such that $g_{1}, g_{2} \in A$ holds $g_{1} \cdot g_{2} \in A$, and
(iii) for every element g of G such that $g \in A$ holds $g^{-1} \in A$.
(14) Suppose $A=\left\{x\right.$ where x is an element of $\left.G: x^{m}=\mathbf{1}_{G}\right\}$. Then there exists a strict finite subgroup H of G such that
(i) the carrier of $H=A$, and
(ii) H is commutative and normal.

Now we state the propositions:
(15) Let us consider a finite commutative group G, a natural number m, and a finite subgroup H of G. Suppose the carrier of $H=\{x$ where x is an element of $\left.G: x^{m}=\mathbf{1}_{G}\right\}$. Let us consider a prime number q. Suppose $q \in \operatorname{support}$ PrimeFactorization $(\overline{\bar{H}})$. Then q and m are not relatively prime.
(16) Let us consider a finite commutative group G and natural numbers h, k. Suppose
(i) $\overline{\bar{G}}=h \cdot k$, and
(ii) h and k are relatively prime.

Then there exist strict finite subgroups H, K of G such that
(iii) the carrier of $H=\left\{x\right.$ where x is an element of $\left.G: x^{h}=\mathbf{1}_{G}\right\}$, and
(iv) the carrier of $K=\left\{x\right.$ where x is an element of $\left.G: x^{k}=\mathbf{1}_{G}\right\}$, and
(v) H is normal, and
(vi) K is normal, and
(vii) for every element x of G, there exist elements a, b of G such that $a \in H$ and $b \in K$ and $x=a \cdot b$, and
(viii) (the carrier of $H) \cap($ the carrier of $K)=\left\{\mathbf{1}_{G}\right\}$.

The theorem is a consequence of (14). Proof: Set $A=\{x$ where x is an element of $\left.G: x^{h}=\mathbf{1}_{G}\right\}$. Set $B=\{x$ where x is an element of G : $\left.x^{k}=\mathbf{1}_{G}\right\} . A \subseteq$ the carrier of $G . B \subseteq$ the carrier of G. Consider H being a strict finite subgroup of G such that the carrier of $H=A$ and H is commutative and H is normal. Consider K being a strict finite subgroup of G such that the carrier of $K=B$ and K is commutative and K is
normal. Consider a, b being integers such that $a \cdot h+b \cdot k=1$. (The carrier of $H) \cap($ the carrier of $K) \subseteq\left\{\mathbf{1}_{G}\right\}$. For every element x of G, there exist elements s, t of G such that $s \in H$ and $t \in K$ and $x=s \cdot t$.
(17) Let us consider finite groups H, K. Then $\overline{\overline{\Pi\langle H, K\rangle}}=\overline{\bar{H}} \cdot \overline{\bar{K}}$. The theorem is a consequence of (10) and (2).
(18) Let us consider a finite commutative group G and non zero natural numbers h, k. Suppose
(i) $\overline{\bar{G}}=h \cdot k$, and
(ii) h and k are relatively prime.

Then there exist strict finite subgroups H, K of G such that
(iii) $\overline{\bar{H}}=h$, and
(iv) $\overline{\bar{K}}=k$, and
(v) (the carrier of $H) \cap($ the carrier of $K)=\left\{\mathbf{1}_{G}\right\}$, and
(vi) there exists a homomorphism F from $\Pi\langle H, K\rangle$ to G such that F is bijective and for every elements a, b of G such that $a \in H$ and $b \in K$ holds $F(\langle a, b\rangle)=a \cdot b$.
The theorem is a consequence of (16), (12), (17), (15), and (7).

3. Finite Direct Products of Finite Commutative Groups

Let us consider a group G, a set q, an associative group-like multiplicative magma family F of $\{q\}$, and a function f from G into ΠF. Now we state the propositions:
(19) If $F=q \longmapsto G$ and for every element x of $G, f(x)=q \longmapsto x$, then f is a homomorphism from G to ΠF.
(20) If $F=q \longmapsto G$ and for every element x of $G, f(x)=q \longmapsto x$, then f is bijective.
Now we state the propositions:
(21) Let us consider a set q, an associative group-like multiplicative magma family F of $\{q\}$, and a group G. Suppose $F=q \longmapsto G$. Then there exists a homomorphism I from G to ΠF such that
(i) I is bijective, and
(ii) for every element x of $G, I(x)=q \longmapsto x$.

The theorem is a consequence of (19) and (20). Proof: Define $\mathcal{P}[$ set, set $] \equiv$ $\$_{2}=q \longmapsto \$_{1}$. For every element z of G, there exists an element w of ΠF such that $\mathcal{P}[z, w]$. Consider I being a function from G into ΠF such that for every element x of $G, \mathcal{P}[x, I(x)]$.
(22) Let us consider non empty finite sets I_{0}, I, an associative group-like multiplicative magma family F_{0} of I_{0}, an associative group-like multiplicative magma family F of I, groups H, K, an element q of I, an element k of K, and a function g. Suppose
(i) $g \in$ the carrier of $\prod F_{0}$, and
(ii) $q \notin I_{0}$, and
(iii) $I=I_{0} \cup\{q\}$, and
(iv) $F=F_{0}+\cdot(q \longmapsto K)$.

Then $g+\cdot(q \longmapsto k) \in$ the carrier of ΠF. Proof: Set $H K=\langle H, K\rangle$. Set $w=g+\cdot(q \longmapsto k)$. For every element x such that $x \in$ dom the support of F holds $w(x) \in($ the support of $F)(x)$.
Let us consider non empty finite sets I_{0}, I, an associative group-like multiplicative magma family F_{0} of I_{0}, an associative group-like multiplicative magma family F of I, groups H, K, an element q of I, a function G_{0} from H into $\prod F_{0}$, and a function G from $\Pi\langle H, K\rangle$ into ΠF. Now we state the propositions:
(23) Suppose G_{0} is a homomorphism from H to $\prod F_{0}$ and G_{0} is bijective and $q \notin I_{0}$ and $I=I_{0} \cup\{q\}$ and $F=F_{0}+\cdot(q \longmapsto K)$. Then suppose for every element h of H and for every element k of K, there exists a function g such that $g=G_{0}(h)$ and $G(\langle h, k\rangle)=g+\cdot(q \longmapsto k)$. Then G is a homomorphism from $\Pi\langle H, K\rangle$ to ΠF.
(24) Suppose G_{0} is a homomorphism from H to $\prod F_{0}$ and G_{0} is bijective and $q \notin I_{0}$ and $I=I_{0} \cup\{q\}$ and $F=F_{0}+\cdot(q \longmapsto K)$. Then suppose for every element h of H and for every element k of K, there exists a function g such that $g=G_{0}(h)$ and $G(\langle h, k\rangle)=g+\cdot(q \longmapsto k)$. Then G is bijective.
Now we state the propositions:
(25) Let us consider a set q, a multiplicative magma family F of $\{q\}$, and a non empty multiplicative magma G. Suppose $F=q \longmapsto G$. Let us consider a (the carrier of G)-valued total $\{q\}$-defined function y. Then
(i) $y \in$ the carrier of $\prod F$, and
(ii) $y(q) \in$ the carrier of G, and
(iii) $y=q \longmapsto y(q)$.
(26) Let us consider a set q, an associative group-like multiplicative magma family F of $\{q\}$, and a group G. Suppose $F=q \longmapsto G$. Then there exists a homomorphism H_{0} from $\prod F$ to G such that
(i) H_{0} is bijective, and
(ii) for every (the carrier of G)-valued total $\{q\}$-defined function $x, H_{0}(x)=$ $\prod x$.

The theorem is a consequence of (21), (25), and (9). Proof: Consider I being a homomorphism from G to ΠF such that I is bijective and for every element x of $G, I(x)=q \longmapsto x$. Set $H_{0}=I^{-1}$. For every (the carrier of G)-valued total $\{q\}$-defined function $y, H_{0}(y)=\Pi y$.
(27) Let us consider non empty finite sets I_{0}, I, an associative group-like multiplicative magma family F_{0} of I_{0}, an associative group-like multiplicative magma family F of I, groups H, K, an element q of I, and a homomorphism G_{0} from H to ΠF_{0}. Suppose
(i) $q \notin I_{0}$, and
(ii) $I=I_{0} \cup\{q\}$, and
(iii) $F=F_{0}+\cdot(q \longmapsto K)$, and
(iv) G_{0} is bijective.

Then there exists a homomorphism G from $\Pi\langle H, K\rangle$ to ΠF such that
(v) G is bijective, and
(vi) for every element h of H and for every element k of K, there exists a function g such that $g=G_{0}(h)$ and $G(\langle h, k\rangle)=g+\cdot(q \longmapsto k)$.
The theorem is a consequence of (22), (23), and (24). Proof: Set $H K=$ $\langle H, K\rangle$. Define $\mathcal{P}[$ set, set $] \equiv$ there exists an element h of H and there exists an element k of K and there exists a function g such that $\$_{1}=\langle h$, $k\rangle$ and $g=G_{0}(h)$ and $\$_{2}=g+\cdot(q \longmapsto k)$. For every element z of $\Pi\langle H$, $K\rangle$, there exists an element w of the carrier of ΠF such that $\mathcal{P}[z, w]$. Consider G being a function from $\Pi\langle H, K\rangle$ into ΠF such that for every element x of $\Pi\langle H, K\rangle, \mathcal{P}[x, G(x)]$. For every element h of H and for every element k of K, there exists a function g such that $g=G_{0}(h)$ and $G(\langle h$, $k\rangle)=g+\cdot(q \longmapsto k)$.
(28) Let us consider non empty finite sets I_{0}, I, an associative group-like multiplicative magma family F_{0} of I_{0}, an associative group-like multiplicative magma family F of I, groups H, K, an element q of I, and a homomorphism G_{0} from ΠF_{0} to H. Suppose
(i) $q \notin I_{0}$, and
(ii) $I=I_{0} \cup\{q\}$, and
(iii) $F=F_{0}+\cdot(q \longmapsto K)$, and
(iv) G_{0} is bijective.

Then there exists a homomorphism G from ΠF to $\Pi\langle H, K\rangle$ such that
(v) G is bijective, and
(vi) for every function x_{0} and for every element k of K and for every element h of H such that $h=G_{0}\left(x_{0}\right)$ and $x_{0} \in \Pi F_{0}$ holds $G\left(x_{0}+\cdot(q \longmapsto k)\right)=\langle h, k\rangle$.

The theorem is a consequence of (27). Proof: Set $L 0=G_{0}{ }^{-1}$. Consider L being a homomorphism from $\Pi\langle H, K\rangle$ to ΠF such that L is bijective and for every element h of H and for every element k of K, there exists a function g such that $g=L 0(h)$ and $L(\langle h, k\rangle)=g+\cdot(q \longmapsto k)$. Set $G=L^{-1}$. For every function x_{0} and for every element k of K and for every element h of H such that $h=G_{0}\left(x_{0}\right)$ and $x_{0} \in \Pi F_{0}$ holds $G\left(x_{0}+\cdot(q \longmapsto k)\right)=\langle h$, $k\rangle$.
(29) Let us consider a non empty finite set I, an associative group-like multiplicative magma family F of I, and a total I-defined function x. Suppose an element p of I. Then $x(p) \in F(p)$. Then $x \in$ the carrier of ΠF.
(30) Let us consider non empty finite sets I_{0}, I, an associative group-like multiplicative magma family F_{0} of I_{0}, an associative group-like multiplicative magma family F of I, a group K, an element q of I, and an element x of ΠF. Suppose
(i) $q \notin I_{0}$, and
(ii) $I=I_{0} \cup\{q\}$, and
(iii) $F=F_{0}+\cdot(q \longmapsto K)$.

Then there exists a total I_{0}-defined function x_{0} and there exists an element k of K such that $x_{0} \in \prod F_{0}$ and $x=x_{0}+\cdot(q \longmapsto k)$ and for every element p of $I_{0}, x_{0}(p) \in F_{0}(p)$. Proof: Reconsider $y=x$ as a total I-defined function. Reconsider $k=y(q)$ as an element of K. Reconsider $y 0=y \upharpoonright I_{0}$ as an I_{0}-defined function. For every element i of $I_{0}, y 0(i) \in$ (the support of $\left.F_{0}\right)(i)$ and $y 0(i) \in F_{0}(i)$.
(31) Let us consider a group G, a subgroup H of G, a finite sequence f of elements of G, and a finite sequence g of elements of H. If $f=g$, then $\Pi f=\Pi g$. Proof: Define $\mathcal{P}[$ natural number $] \equiv$ for every finite sequence f of elements of G for every finite sequence g of elements of H such that $\$_{1}=\operatorname{len} f$ and $f=g$ holds $\Pi f=\Pi g . \mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$.
(32) Let us consider a non empty finite set I, a group G, a subgroup H of G, a (the carrier of G)-valued total I-defined function x, and a (the carrier of H)-valued total I-defined function x_{0}. If $x=x_{0}$, then $\Pi x=\prod x_{0}$. The theorem is a consequence of (31).
(33) Let us consider a commutative group G, non empty finite sets I_{0}, I, an element q of I, a (the carrier of G)-valued total I-defined function x, a (the carrier of G)-valued total I_{0}-defined function x_{0}, and an element k of G. Suppose
(i) $q \notin I_{0}$, and
(ii) $I=I_{0} \cup\{q\}$, and
(iii) $x=x_{0}+\cdot(q \longmapsto k)$.

Then $\prod x=\prod x_{0} \cdot k$. The theorem is a consequence of (8) and (9). Proof: Reconsider $y=q \longmapsto k$ as a (the carrier of G)-valued total $\{q\}$-defined function. I_{0} misses $\{q\}$.
Let us consider a finite commutative group G. Now we state the propositions:
(34) Suppose $\overline{\bar{G}}>1$. Then there exists a non empty finite set I and there exists an associative group-like commutative multiplicative magma family F of I and there exists a homomorphism H_{0} from ΠF to G such that $I=\operatorname{support} \operatorname{PrimeFactorization}(\overline{\bar{G}})$ and for every element p of $I, F(p)$ is a subgroup of G and $\overline{\overline{F(p)}}=($ PrimeFactorization $(\overline{\bar{G}}))(p)$ and for every elements p, q of I such that $p \neq q$ holds (the carrier of $F(p)) \cap($ the carrier of $F(q))=\left\{\mathbf{1}_{G}\right\}$ and H_{0} is bijective and for every (the carrier of G)-valued total I-defined function x such that for every element p of $I, x(p) \in F(p)$ holds $x \in \Pi F$ and $H_{0}(x)=\prod x$.
(35) Suppose $\overline{\bar{G}}>1$. Then there exists a non empty finite set I and there exists an associative group-like commutative multiplicative magma family F of I such that $I=$ support PrimeFactorization $(\overline{\bar{G}})$ and for every element p of $I, F(p)$ is a subgroup of G and $\overline{\overline{F(p)}}=($ PrimeFactorization $(\overline{\bar{G}}))(p)$ and for every elements p, q of I such that $p \neq q$ holds (the carrier of $F(p)) \cap($ the carrier of $F(q))=\left\{\mathbf{1}_{G}\right\}$ and for every element y of G, there exists a (the carrier of G)-valued total I-defined function x such that for every element p of $I, x(p) \in F(p)$ and $y=\prod x$ and for every (the carrier of G)-valued total I-defined functions x_{1}, x_{2} such that for every element p of $I, x_{1}(p) \in F(p)$ and for every element p of $I, x_{2}(p) \in F(p)$ and $\prod x_{1}=\prod x_{2}$ holds $x_{1}=x_{2}$.

References

[1] Kenichi Arai, Hiroyuki Okazaki, and Yasunari Shidama. Isomorphisms of direct products of finite cyclic groups. Formalized Mathematics, 20(4):343-347, 2012. doi $10.2478 / \mathrm{v} 10037-$ 012-0038-5.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.
[5] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[6] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[11] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Artur Korniłowicz. The product of the families of the groups. Formalized Mathematics, 7(1):127-134, 1998.
[15] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179-186, 2004.
[16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.
[18] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1): 103-108, 1993.
[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.
[20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
[21] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[24] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5): 855-864, 1990.
[25] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
[26] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[27] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

Received January 31, 2013

[^0]: ${ }^{1}$ The 1st author was supported by JSPS KAKENHI 21240001, and the 3rd author was supported by JSPS KAKENHI 22300285.
 (C) 2013 University of Białystok CC-BY-SA License ver. 3.0 or later

