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Specific Learning Disorder is a disorder in which deficits in academic skills are caused 

by specific cognitive deficits. Cross-Battery Assessment (Flanagan, Alfonso, & Ortiz, 2013), is a 

popular method of diagnosing specific learning disorders. A recent study using data simulation 

methods claimed that cross-battery assessment was insufficiently accurate for clinical use 

(Stuebing, Fletcher, Branum-Martin, & Francis, 2012). However, the study used the general 

population base rate for specific learning disorders, resulting in misleadingly low accuracy 

estimates. The current study attempted to accurately simulate the cross-battery assessment 

method with a referred population prevalence to provide a fair analysis of cross-battery 

assessment’s diagnostic accuracy. Under the assumptions modeled, cross-battery assessment’s 

positive predictive value for specific learning disorder detection was between 71% and 93%, with 

negative predictive value between 43% to 80%. In addition, each additional testing phase adds 

increased diagnostic accuracy with diminishing returns. 

 

KEYWORDS: Cross-Battery Assessment, Diagnostic Accuracy, Monte Carlo, Signal Detection 

Theory, Simulation Study, SLD, Specific Learning Disorder, XBA
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CHAPTER I 

THE PROBLEM AND ITS BACKGROUND 

Statement of the Problem 

              There are approximately 32,000 working school psychologists in the United States 

(Charvat, 2005), many of whom perform hundreds of psychoeducational evaluations every year. 

These assessments, while costly in time and money to school districts, are crucial for identifying 

children in need of assistance. Approximately 7% of children have been diagnosed with a 

Specific Learning Disorder (SLD), and recent research suggests that the disorder’s true 

prevalence may be even higher (Stuebing et al., 2012). With over 324 million people living in the 

United States (U. S. Census Bureau, 2016, September 9), the number of children in need is large. 

Inaccurate identification of learning disorders diverts scarce resources from children who need 

them and puts unnecessary burdens on school districts that can little afford to waste time and 

money. Given these implications, it is important that the systems we have in place for identifying 

learning disorders are thoroughly evaluated and optimized as much as is feasible. A prior 

investigation of cross-battery assessment by Stuebing et al. (2012) has attempted to evaluate the 

diagnostic accuracy of the detection method by using simulated data. This investigation paints a 

dark picture for cross-battery assessment, showing it to be largely inaccurate. However, a closer 

look at the methods employed show the simulation did not properly mimic the cross-battery 

assessment method. Thus, an evaluation which accurately emulates cross-battery assessment is 

still needed. 
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CHAPTER II 

REVIEW OF RELEVANT LITERATURE

Diagnosing Specific Learning Disorder 

Diagnosis of specific learning disorder is typically done by a school psychologist, clinical 

neuropsychologist, or by a professional in a related discipline. There are three main approaches to 

specific learning disorder diagnosis: The Discrepancy Model, The Response-to-Intervention 

Model, The Patterns of Strengths and Weaknesses Model. The Discrepancy Model defines 

specific learning disorder as when a person’s academic achievement is substantially lower than 

his or her general intelligence. This model was once dominant but is rarely used today because 

leading scholars deem it theoretically and psychometrically unsound (Fletcher et al., 1998; 

Speece & Shekitka, 2002). The Response-to-Intervention Model defines specific learning 

disorder as poor academic achievement that persists despite appropriate instruction (Fuchs & 

Fuchs, 1998). The Patterns of Strengths and Weakness Model defines specific learning disorder 

as a specific cognitive deficit that causes low academic achievement. The cross-battery 

assessment model (Flanagan, Ortiz, & Alfonso, 2013) is the most popular method that 

operationalizes the Patterns of Strengths and Weaknesses approach to specific learning disorder 

assessment. Though widely used, cross-battery assessment has a number of underlying 

assumptions that can be questioned (Stuebing et al., 2012). 

Defining Specific Learning Disorder 

Specific Learning Disorder is a group of disorders in which specific cognitive deficits 

interfere with academic achievement (Kavale, Spaulding, & Beam, 2009). Specific learning 

disorder is not diagnosed when academic problems are primarily caused by poor instruction, 
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cultural differences, or low intelligence. Rather, learning to read, write, and calculate is 

particularly difficult because basic psychological functions such as working memory capacity, 

attention, memory, and language processing are deficient. 

When diagnosing specific learning disorder with the Diagnostic and Statistical Manual of 

Mental Disorders, 5th edition (DSM-V; American Psychiatric Association, 2013), the academic 

domain and specific area of deficit is specified. Table 1 provides the forms of specific learning 

disorder impairment as provided by the DSM-V. 

 

 

 

Table 1 

Forms of Specific Learning Disorder Impairment 

SLD Subtype Impairment   
Reading   
  Word reading accuracy 
  Reading rate or fluency 
  Reading comprehension 
Written expression   

  Spelling accuracy 
  Grammar and punctuation accuracy 
  Clarity or organization of written 

expression 
Mathematics   

 
 Number sense 

  Memorization of arithmetic facts 
  Accurate or fluent calculation 
    Accurate math reasoning 
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Impairments in reading, writing, and calculation are sometimes referred to as dyslexia, 

dysgraphia, and dyscalculia, respectively. The prevalence of each disorder is between 4 and 9 

percent of the population (American Psychiatric Association, 2013). 

Differentiating Specific Learning Disorder from Intellectual Disability 

Intellectual disability is characterized by intellectual deficits that interfere with most or 

all areas of adaptive functioning, including social interactions and activities of daily living 

(American Psychiatric Association, 2013; Katz & Lazcano-Ponce, 2008). In specific learning 

disorder, cognitive abilities are in general at least average except for one or more narrow deficits. 

It is assumed that distinguishing clearly between intellectual disability and specific learning 

disorder is important for selecting appropriate interventions. In specific learning disorder, 

interventions tend be more time-limited and narrowly targeted toward the specific deficits the 

person has. In contrast, support for people with intellectual disability are necessarily more 

comprehensive and longer term. 

Cattell-Horn-Carroll Theory 

The cross-battery assessment method of detecting specific learning disorder relies heavily 

on the Cattell-Horn-Carroll Theory of Cognitive Ability (CHC Theory) as its guiding framework 

of intelligence. CHC Theory has evolved over a long period of time. In the early 1900s, 

intelligence research was primarily focused on the general factor of intelligence (McGrew, 2009). 

Later research focused on other factors of intelligence beyond the general factor (Kaufman, 

2009). 

Cattell (1941, 1943) gave theoretical and empirical justification for splitting the general 

factor of intelligence into two factors, fluid intelligence (Gf) and crystallized intelligence (Gc). 

Later, he and John Horn found strong evidence for several other general factors of intelligence, 

including visual spatial ability (Gv), auditory processing (Ga), processing speed (Gs), and several 

other factors related to different aspects of memory (Horn & Cattell, 1966). At this time, the 
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Horn-Cattell model was just one of many viable models of intelligence. However, it became more 

recognized when Carroll (1993) reanalyzed every relevant dataset available before 1990 and 

found that the Horn-Cattell model was largely supported. Carroll’s theory differed primarily on 

the inclusion of a general intelligence factor (g). 

Because Carroll’s theory and the Horn-Cattell model were so similar, both Carroll and 

Horn consented to McGrew’s proposal that the two theories be yoked under a common 

framework to facilitate communication among scholars and practitioners (McGrew, 1997, 2005). 

Since this combination, CHC Theory has become the dominant model for multidimensional 

measures of intelligence (Alfonso, Flanagan, & Radwan, 2005; Sternberg, 2012). 

CHC Theory Hierarchy 

 CHC Theory is a hierarchically structured model of cognitive ability (Newton & 

McGrew, 2010). CHC Theory uses the terms broad abilities and narrow abilities to classify 

constructs into their respective level of the hierarchy. There are about at least 8 broad abilities, as 

well as several others that are hypothesized to exist (McGrew, 2009). Associated with each broad 

ability, there are multiple narrow abilities (about 70 in all). Figure 1 shows the CHC hierarchy of 

broad and narrow abilities related to academic achievement. The following section will define 

CHC Theory’s broad and narrow abilities, which have been found to be related to specific 

learning disorder and academic achievement at large. Definitions were drawn from Flanagan et 

al. (2013), Newton and McGrew (2010), McGrew (2009) and Alfonso et al. (2005). 

Fluid reasoning (Gf). Gf is the ability to logically  come to solutions to novel problems. 

Research has found support for at least three narrow abilities within Gf: Inductive Reasoning, 

General Sequential Reasoning, and Quantitative Reasoning. Inductive Reasoning is the ability to 

recognize characteristics of a greater whole, or pattern of a set of problems. General Sequential 

Reasoning is the ability to take rules or conditions and apply them to a problem solving solution. 
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This process can be considered hypothetical deductive reasoning. Quantitative Reasoning is the 

ability to inductively and or deductively produce logical solutions to mathematical problems. 

Working memory (Gwm). Gwm is the ability to manipulate and process information 

stored in short-term memory. Two narrow abilities are of concern to cross-battery assessment, 

Memory Span and Attentional Control. Memory Span refers to the amount of information that is 

immediately accessible to consciousness. Short-term memories usually last no more than 30 

seconds, unless they are consciously maintained by repeating the information over and over. 

Attentional Control is the ability to intentionally manipulate recently obtained information (e.g., 

sorting a list or multiplying large numbers in one’s head). 

 

 

 

 

Figure 1. CHC Theory structural model. 
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Long term storage and retrieval (Glr). Similar to Gwm, Glr is the ability to store and 

retrieve information. However, Glr relates to the retrieval of information for times greater than 

approximately one minute after storage. Three principal narrow abilities of Glr are the target of 

cross-battery assessment:  Naming Facility, Meaningful Memory, and Associative Memory. 

Naming Facility is the ability to quickly express accurate names for things and concepts when 

presented with a visual example, which is typically a picture. Meaningful Memory is the ability to 

retain information regarding the relationship of a set of items. Associative Memory is the ability 

to recall an item of a pair, when the other item is presented. 

Visual processing (Gv). Gv is the ability to store, retrieve, and transform visual 

perceptions. Two primary narrow abilities under Gv are important to academic achievement and 

are subsequently assessed in the cross-battery assessment method of detecting specific learning 

disorder: Visual Memory, which is the ability to store mental images for later use; and 

Visualization, which is the ability to manipulate visual imagery in the mind’s eye. 

Auditory processing (Ga). Ga encompasses abilities that rely on perceiving and 

processing sound. Within Ga, three narrow abilities are of primary concern to the identification of 

specific learning disorder through the cross-battery assessment process of identifying specific 

learning disorder. Phonetic Coding is the ability to code, process and identify phonetic 

information (speech sounds). Sound Discrimination is the ability to recognize and discriminate 

between changes in phonemes or speech sounds with no distracting conditions. Auditory 

Stimulus Distortion is the ability to perceive sound correctly even when the sounds are distorted 

or when the listening environment is noisy. 

Speed of processing (Gs). Gs is the ability to automatically solve basic, cognitive tasks 

when time restraints are present. The primary narrow ability of Gs of interest to the cross-battery 

assessment procedure or identifying specific learning disorder is Perceptual Speed, which is the 

ability to accurately search for, contrast, and recognize visual elements presented together or 
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separately in the visual field. Table 2 provides a summary of CHC abilities contributing to 

reading achievement. 

Defining Cross-Battery Assessment 

The cross-battery assessment approach is a systematic assessment method which relies on 

the CHC hierarchy to make diagnostic decisions of academic ability through analyzing a person’s 

scores on relevant CHC abilities (Flanagan et al., 2013). Cross-battery assessment’s putative 

advantage over other assessment methods is its ability to integrate findings from multiple test 

batteries into a coherent framework (Flanagan, Ortiz, & Alfonso, 2008). This advantage provides 

practitioners the means to investigate fully a student’s cognitive ability profile, which a single 

battery alone typically cannot provide. 
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Table 2 

Primary CHC Abilities Contributing to Reading Achievement 

Broad Ability Narrow Abilities 

Crystallized Intelligence (Gc)  

 Language Development (LD) 

 Lexical Knowledge (VL) 

 Listening Ability (LS) 

Long Term Memory(Glr)  

 Meaningful Memory (MM) 

 Naming Facility (NA) 

 Associative Memory (MA) 

Fluid intelligence (Gf)  

 Inductive Reasoning (I) 

Auditory Processing (Ga)  

 Phonetic Coding (PC) 

Working Memory (Gwm)  

 Attentional Control (AC) 
 

 

 

 

Cross-Battery Assessment Procedure 

Cross-battery assessment specific learning disorder identification requires five levels of 

identification prior to diagnosis. Prior to the implementation of the procedure, a referral is first 

made, typical by a teacher or parent who finds evidence for a specific deficit. After a referral is 

made the procedure begins at Level 1. 

Level 1 identification. The first level of identification is concerned with confirming the 

referral concern by observing an academic deficit. Investigation of academic performance is 
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conducted by reviewing class performance. If a deficit is present congruent with the referral 

concern, practitioners are instructed to proceed to Level 2 identification (Flanagan et al., 2013). 

Level 2 identification. The second level of identification is concerned with identifying 

exclusionary factors, like second language status, or vision and hearing deficits. Level 2 

identification takes cultural, and environmental factors into account such as inadequate 

instruction. If the academic deficit cannot be explained by exclusionary factors, the practitioner is 

instructed to proceed to Level 3 Identification (Flanagan et al., 2013). 

Level 3 identification. At the third level of identification, cognitive ability and 

neuropsychological assessments now take place. The core battery is the primary battery which 

should measure the major broad abilities in CHC Theory related to the referral concern (Flanagan 

et al., 2013). Unfortunately, no battery measures all narrow abilities that might be needed for a 

particular case. Therefore, practitioners evaluate the core battery to decide which abilities are 

missing and need to be measured by tests in other batteries. 

After the initial round of testing, practitioners input scores into the cross-battery 

assessment Software System (XBASS), which provides a detailed graphical and statistical output 

of the student’s broad and narrow CHC Theory abilities (D. Flanagan, Ortiz, & Alfonso, 2015). If 

there is ambiguity as to the interpretation of a student’s profile of abilities, the XBASS may 

prompt the practitioner to administer more tests before a reliable interpretation can be made. 

Failing to conduct follow-up tests is likely to result in non-cohesive test scores, making 

interpretations of composite tests unreliable (Flanagan et al., 2013). Those interested in the 

process that the XBASS uses to determine score cohesion and production of test composites 

should refer to Tables 3.2 - 3.5 in Flanagan et al. (2013) as well as the Information tab of the 

XBASS. If a cognitive deficit is observed practitioners are instructed to move to the Fourth level 

of Identification. 
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Level 4 identification. Level Four Identification is concerned with four questions: 

1. Is the cognitive deficit contributing to the academic deficit? 

If the answer to this question is true, the academic deficit will be accompanied by CHC 

theory cognitive deficits that have been shown to be associated with that academic weakness. It is 

common for people of average academic ability to have below average cognitive abilities that do 

not contribute to academic deficits, so both must be present. 

2. Does the student display overall average ability? 

This question is concerned with identifying that the student shows overall average ability. 

Recall that students with specific learning disorder show overall average cognitive ability and not 

a global deficit in functioning. This question is assessed by inspection of the overall estimated 

ability or CHC theories G value. 

3. Is the learning deficit domain-specific?  

This question further probes at how broad the deficit is. If the deficit is evident across 

multiple academic and cognitive domains, a different diagnosis may be required. 

4. Is the underachievement unexpected? 

This question is concerned with the predicted achievement at a given G value. For a 

specific learning disorder diagnosis under cross-battery assessment identification procedures, 

overall performance must be below what would be predicted from the G value. Operationalized, 

the prediction residual must be in the bottom 10% of prediction residuals. If the answer to all of 

these questions is Yes, the practitioner can now make a positive specific learning disorder 

diagnosis and move to the fifth and final level of identification. 

Level 5 identification. Level Five identification is concerned with identifying the degree 

to which specific learning disorder is impairing the student. It is also concerned with concluding 

how much special resources and intervention techniques should be provided to the diagnosed 

individual. 
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Cognitive Profiles 

A cognitive profile is a graphical representation on a standardized scale of a student’s 

CHC abilities. In the XBASS, scores are presented in the index score metric (µ = 100, σ = 15). 

Practitioners compare an individual profile to those that are characteristic of individuals with 

particular disorders. 

Normative cognitive profile. A normative cognitive profile will have the majority of 

scores within one standard deviation (±15) of the standardized population mean of 100. Most 

people have some variability in their profile, but the deviations are not typically extreme. Figure  

provides an example of a relatively flat normative cognitive profile in the average range. 

 

 

 

 

Figure 2. Normative cognitive profile. 
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Intellectual disability cognitive profile. A diagnosis of specific learning disorder is 

inappropriate if almost all abilities are very low. Figure 2 shows a cognitive profile of a person 

with intellectual disability. Note that intellectual disability is characterized by low scores across 

all CHC Theory Broad and Narrow abilities, though there may be isolated areas of relative 

strength in some individual. 

 

 

 

 

Figure 2. Intellectual disability cognitive profile example. 

 

 

 
Specific Learning Disorder reading subtype cognitive profile. In Figure 3 most of the 

abilities are broadly average but there are specific deficits in Gwm, Ga, and Gs. If there are 

academic weaknesses in reading, a person with this profile may be diagnosed with a reading 

disability. 
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Academic Assessment in Cross-Battery Assessment Specific Learning Disorder 

Identification 

Identifying an academic deficit is necessary for a positive specific learning disorder 

diagnosis. This deficit must be in conjunction with a corresponding cognitive deficit. To assess 

academic deficiencies academic skills batteries are used. There are four primary academic 

abilities that contribute to reading: Reading fluency, reading decoding, and reading 

comprehension. The Wood-Cock Johnson Fourth Edition (WJIV; Woodcock, Johnson, Mather, 

1990) a commonly used battery in cross-battery assessment utilizes four primary reading tests to 

assess the reading based academic abilities: letter word identification, reading fluency, passage 

comprehension, and work attack. 

 

 

 

 

 
Figure 3. Specific learning disability cognitive profile example. 
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Monte Carlo Studies and Simulated Data 

Diagnostic Decision Making 

The accuracy of a diagnostic tool is commonly characterized using four test 

characteristics: Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive 

Value (NPV). Sensitivity and Specificity describe the accuracy of the test, while PPV and NPV 

describe the accuracy of decision making (Antczak-Bouckoms, Tulloch, Bouckoms, Keith, & 

Lavori, 1990). Whereas these two categories may seem to be the same, they are derived very 

differently, and describe different aspects of the diagnostic method. 

To analyze diagnostic accuracy, the true score of every case must be known. The true 

“score” in this sense is the true diagnostic status (Meaning positive or negative diagnosis for 

Specific Learning Disorder). With real data, true scores are typically unobtainable. However, data 

simulation allows for the ability to create true scores (actual diagnosis) and obtained scores (test-

identified diagnosis) for each case, allowing researchers to evaluate how well they align. To the 

degree that the data simulation process mimics the processes that generate real data, the simulated 

diagnostic accuracy results are informative. 

Accuracy of tests. Sensitivity and specificity are both test characteristics that describe 

the accuracy of a test or diagnostic procedure. Sensitivity is the probability that a person who 

truly has a disorder will test positive for the disorder (Antczak-Bouckoms et al., 1990). Which is 

commonly referred to as the hit rate. 

Sensitivity =
True Positives

True Positives + False Negatives
=

Correctly Identified SLD
True SLD Cases

 

Specificity can be conceptualized as the probability of testing negative for a disorder that 

the given person truly does not have (Antczak-Bouckoms et al., 1990). Which is commonly 

referred to as the true negative rate. 
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Specificity =
True Negatives

True Negatives + False Positives
=

Correctly Identified Non SLD
True Non SLD Cases

 

Accuracy of decision making. PPV and NPV are both test characteristics that relate to 

the accuracy of diagnosis of a test. PPV can be conceptualized as; given a test outcome of 

positive, what is the probability a person truly has the disorder. (Antczak-Bouckoms et al., 1990; 

Pauker & Kassirer, 1980). 

PPV =
True Positives

True Positives + False Positives
=

Correctly Identified SLD Cases
All Identified SLD Cases

 

NPV can be conceptualized as the probability of testing negative given you truly do not 

have the disorder (Antczak-Bouckoms et al., 1990; Pauker & Kassirer, 1980). 

NPV =
True Negatives

True Negatives + False Negatives
=

Correctly Identified Non SLD Cases
All Identified SLD Cases

 

Figure 4 shows a distribution of an average diagnostic psychometric. The overlapping 

distributions exemplify the area in which decision making becomes more difficult. Someone with 

a very low or high score can easily be diagnosed accurately, however scores near the cut-off point 

are subject to falling into the false positive/negative range. 
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Figure 4. Diagnosis status and cut scores. 

 

 

 

Influences on the accuracy of diagnostic decision making. The accuracy of diagnostic 

decision-making is influenced by multiple factors; including the threshold score (also referred to 

as the cut point) for making decisions, the prevalence of the disorder within the population being 

tested, and tests’ ability to discriminate among the diagnostic groups (i.e., it’s predictive validity). 
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Figure 5. The effect of changing cut scores on diagnostic accuracy. Whereas cutoff B results in 

an increased false negative rate and decreased false positive rate and C results in a decreased false 

negative rate and an increased false positive rate. 

 

 

 

Different cut scores minimize different kinds of diagnostic errors while increasing others. 

Figure 5 exemplifies this relationship. At cut-off point A the false positive and false negative 

rates are roughly equal. If one wishes to minimize false negatives (improving PPV and 

Sensitivity), the cut score can be moved to a higher value on the right. Unfortunately, doing so 

increases the false positive rate (decreasing Specificity and NPV). Lowering the cut score will 

have the opposite effect. False positives will be reduced (increasing NVP and Specificity) but 

false negatives will be increased (lowering PPV and Sensitivity). 
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Whereas the cut score is easily changed, the underlying validity of a test is not usually 

under a test developer’s direct control. If a test has low reliability, it is possible to increase its 

reliability by making the test longer or by minimizing other kinds of measurement error (e.g., 

dropping confusing items or rewording them). If an unreliable test has underlying validity, 

increasing its reliability will indirectly raise its validity. However, increasing the reliability of a 

test with no validity will not improve the diagnostic accuracy of the test. 

 
 

 PPV =
Sensitivity ∗ Prevalance

Sensitivity ∗ Prevalance + (1 − Specificity) ∗ (1 − Prevalence)
 (1) 

   

 NPV =
Specificity ∗ (1 − Prevalence)

(1 − Sensitivity) ∗ Prevalence + Specificity ∗ (1 − Prevalence)
 (2) 

 

 
 

The prevalence of a disorder within a population also plays an important role in decision 

making accuracy. A low prevalence requires high specificity to provide acceptable levels of PPV. 

Inversely when prevalence is high, specificity must be very high to obtain acceptable levels of 

NPV. The relationship between prevalence, specificity, sensitivity, and its effects on PPV and 

NPV are in Equations 1 and 2 but they are more easily understood by examining Figure 6. 
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Figure 6. Effect of prevalence on diagnostic accuracy (Sensitivity = .49, Specificity = .97). 
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their means are far apart or their within-group variability is low), the test’s diagnostic accuracy 

statistics improve. As seen in the first panel of Figure 7, when the within-group distributions of a 

test overlap almost completely, the test does not permit accurate diagnostic decisions. In the 

second panel, the distributions have no overlap. If the cut score is anywhere between the 

distributions, the test will make perfectly accurate diagnostic decisions. The typical test is more 

0.0 0.2 0.4 0.6 0.8 1.0 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

Prevalence 

Pr
op

or
tio

n 



 

21 
 

like the third panel in which the distributions are distinguishable but have some overlap, resulting 

in increased (but still imperfect) diagnostic accuracy. Unfortunately, the underlying distributions 

of the diagnostic groups are not typically under our control, and thus cannot be directly 

manipulated. 

 

 

 

 

Figure 7. Example distributions of testing populations and cut scores. 

 

 

 

Prior Evaluation of Cross-Battery Assessment 

 Stuebing et al. (2012) used data simulation methods to evaluate the diagnostic accuracy 

of the cross-battery assessment procedure for identifying specific learning disorder. Four cluster 

scores from the Woodcock-Johnson III (WJ III) were simulated: Gc, Ga, Gsm, and Glr. The 

correlations between the latent scores were estimated using the WJ III correlation matrix and 

reliability coefficients like so: 𝜌𝜌𝑋𝑋𝑋𝑋 = 𝑟𝑟𝑥𝑥𝑥𝑥
�𝑟𝑟𝑥𝑥𝑥𝑥𝑟𝑟𝑥𝑥𝑥𝑥

. For each cluster, a latent construct score and an 

accompanying “observed” cluster score were generated like so: 𝑋𝑋 = 𝑇𝑇𝑥𝑥�𝑟𝑟𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑥𝑥�1− 𝑟𝑟𝑥𝑥𝑥𝑥. 

Useless Test Perfect Test Average Test 
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Stuebing et al. (2012) then used cross-battery assessment procedure evaluation criteria to classify 

cases as having a specific learning disorder or not, based on observed scores. This process was 

conducted again at the latent level, allowing the latent specific learning disorder status to be 

compared with the “observed” specific learning disorder status. 

Discrepancies between latent and observed decisions were used to calculate the 

diagnostic accuracy statistics for cross-battery assessment. Results varied, depending on the 

specific decision rules and the cognitive ability identified as the specific deficit. Specificity 

estimates were high, ranging from .94 to .97. Likewise, NPV was also high, ranging from .95 to 

.97. Thus, cross-battery assessment procedures were reasonably accurate in identifying those 

without specific learning disorder. However, the range of results for sensitivity (.46–.55) and PPV 

(.33–.53) suggest that cross-battery assessment is less accurate in identifying those with specific 

learning disorder. Practically speaking, if these results are correct, roughly half of children 

identified as having specific learning disorder by the cross-battery assessment method do not 

actually have specific learning disorder. 

These numbers would, on the surface, appear to discredit cross-battery assessment as a 

viable method for specific learning disorder diagnosis. However, there are a number of important 

ways in which the procedures used by Stuebing et al. (2012) did not replicate the cross-battery 

assessment procedures (Schneider & Flanagan, 2016). Flanagan (Personal Communication, W. J. 

Schneider, April 15, 2016) is well aware of the potential for diagnostic errors, which is why 

cross-battery assessment has a number of features to minimize their occurrence. For example, 

before claiming that a particular low score is indeed a deficit, follow-up testing must confirm the 

presence of a deficit. That is, multiple rounds of assessment are necessary for diagnosis in many 

situations. In the study by Stuebing et al. (2012), there were no simulated follow-up measures. 

Thus, the study by Stuebing et al. (2012) provide diagnostic accuracy statistics for the first round 
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of cross-battery assessment testing. The accuracy of the cross-battery assessment procedure as 

articulated by its authors is still unknown. 

There is a second reason to doubt that the low values of diagnostic decision making in the 

study by Stuebing et al. (2012) are as bad as they appear. In that study, the population of scores 

was simulated to mimic that of the general population. In the general population, the prevalence 

rates for reading disorders is between 5% and 15% (American Psychiatric Association, 2013). In 

the study by Stuebing et al. (2012), they considered the base rate to be between 3.7% to 7.8% 

(Stuebing et al., 2012). 

As seen in Equation 1, PPV is directly proportional to the prevalence (base rate). Thus, in 

any context in which the base rate is lower, the PPV of the diagnostic procedure will be lower. 

Thus, the Stuebing et al. (2012) study found what the PPV would be if clinicians began testing 

people at random from the general population, where the prevalence is relatively low (5.4–7.8%). 

However, clinicians typically only assess children who are struggling in school to keep up. The 

referred population has a much high base rate for learning problems. In clinical settings, the PPV 

is likely to be much higher than that observed by Stuebing et al. (2012). How much higher? The 

base rate would vary considerably depending on the setting, but it seems reasonable that in many 

settings it is between 30 and 70%. With a higher base rate in a referred population, the PPV is 

higher, and the NPV is lower (See Figure 8). Given these concerns, it appears worthwhile to re-

evaluate the accuracy of cross-battery assessment with improved methods. 

Simulation Studies 

 Psychometric tests are used to assess constructs that are not directly observable. 

Although tests can provide reasonable estimates of those underlying constructs, there is always 

error and uncertainty associated with real measurements. Measurement error and bias come in 

many forms. Applied to the cross-battery assessment procedure of detecting specific learning 

disorder, the errors include referral bias, administration errors, and various kinds of cognitive 
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biases (e.g., confirmation bias; Kahneman, 2011) which interfere with accurate measurement and 

interpretation. With empirical data, it is virtually impossible to know how far off an individual 

data point is from its true value. For example, when assessing how accurate an empirical measure 

is, assessments of construct validity are implemented. Results obtained by the method are 

compared to others. However, every instrument has an error component, making it impossible to 

completely disentangle error variance from true variance. In contrast, with simulated data, it 

possible know exactly how much error there is in each measurement. Data simulation provides a 

metaphorical clean room to assess the overall validity of these diagnostic procedures. 

 

 

 

 

Figure 8. Comparing referred to general population. 
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CHAPTER III 

METHODOLOGY

Stuebing and colleagues did the field a great service by starting the conversation about 

the accuracy of cross-battery assessment diagnostic methods. Although cross-battery assessment 

does need to be scrutinized, the methods by which cross-battery assessment is evaluated need to 

align with cross-battery assessment principles. The current study improved upon the methods 

Stuebing and colleagues used so that cross-battery assessment can be given a more thorough and 

accurate evaluation. 

The current study produced not only one round of observed and latent scores, but as 

many iterations as needed per the cross-battery assessment method. Further, I used Monte Carlo 

data methods to estimate how many rounds of follow-up testing are needed to achieve adequate 

levels of accuracy in reading based specific learning disorder diagnosis. The term adequate is, of 

course, subjective, so a range has been provided. I will also explore how different base rates 

affect the accuracy of cross-battery assessment methods so that the accuracy of cross-battery 

assessment in referred populations can be estimated. I hypothesized that using a prevalence 

reflective of the referred population will show that cross-battery assessment is more accurate than 

a naïve reading of Stuebing et al. (2012) would suggest. 

Creating Data: Latent and Observed 

The first step for generating appropriate simulated data was to use multiple CHC based 

standardization samples to create a defensible structural model of the relations among CHC 

constructs and academic abilities. CHC models from the standardization samples found in the 

technical manuals of the KABC-II, WJ IV, and WISC-IV, were utilized (Kaufman, 
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Lichtenberger, Fletcher-Janzen, & Kaufman, 2005; McGrew & Woodcock, 2001; Woodcock, 

Johnson, & Mather, 1990). Furthermore, two large scale investigations of CHC relationships were 

included Keith and Reynolds (2010) and Reynolds, Keith, Fine, Fisher, and Low (2007). Table 3 

provides the average subtest loadings by construct, as well as the average g loadings and standard 

deviations. 

 

 

 

Table 3 

Raw (λ) and Fisher Transformed (zλ) Subtest Loadings 

           
 λ  zλ 
Ability Mean SD   Mean SD 
Ga 0.59 0.12  0.7 0.6 
Gc 0.8 0.07  1.13 0.81 
Gf 0.64 0.11  0.77 0.65 
Glr 0.63 0.14  0.78 0.65 
Gs 0.72 0.09  0.94 0.73 
Gv 0.66 0.11  0.83 0.68 
Gwm 0.69 0.1   0.87 0.7 

 

 

 

Users of cross-battery assessment administer many different tests with a wide variety of 

loadings. To simulate what would happen in practice, subtest scores were simulated such that the 

loading on the latent variable was randomized for each individual. As standardized subtest 

loadings are correlations, the subtest loadings were simulated as normal variates and then the 

inverse Fisher’s r to z transformation was applied. The means and standard deviations of the 
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normal variates came from the collected database of subtest loadings, to which the Fisher’s r to z 

transformation was applied. Formula 3 shows the process, where F is the Fishers r to z 

transformation, F-1 is the inverse Fisher’s r to z transformation, λ is the vector of subtest loadings, 

n is the sample size and rnorm is the call to create random normal data. 

 F−1(rnorm(𝑛𝑛, mean(F(𝜆𝜆)), sd( F(𝜆𝜆)))) (3) 
   

The second step for generating simulated data was to specify the latent variable model in 

terms of RAM notation and then use the mvtnorm package (Genz et al., 2015) in the R statistical 

programing environment to generate the data. If A is the matrix of asymmetric paths (i.e. direct 

effects), S is the matrix of symmetric paths (i.e., covariances), u is the vector of exogenous 

variables (including disturbance and error terms), and v is the vector of endogenous variables 

(including observed factor indicator variables), then u can be generated with the Cholesky 

factorization of matrix S via the mvtnorm package. The v can be generated with Equation 3. 

500,000 cases were simulated using the obtained structural model. 

The second step for generating simulated data was to specify the latent variable model in 

terms of RAM notation and then use the mvtnorm package (Genz et al., 2015) in the R statistical 

programing environment to generate the data. If A is the matrix of asymmetric paths (i.e. direct 

effects), S is the matrix of symmetric paths (i.e., covariances), u is the vector of exogenous 

variables (including disturbance and error terms), and v is the vector of endogenous variables 

(including observed factor indicator variables), then u can be generated with the Cholesky 

factorization of matrix S via the mvtnorm package. The v can be generated with Equation 4. 

 𝒗𝒗 =  𝒖𝒖((𝑰𝑰 −  𝑨𝑨)−1)′ (4) 

The standardized path coefficients in Figure 9 were used to generate latent construct 

scores. This model was developed using the WJ IV standardization sample. The paths first were 

chosen according to CHC theory and then non-significant paths were dropped (see Appendix for 
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details). This model was used mostly because it is based on real data and it seems plausible in 

light of CHC theory. No strong claims are being advanced here that this is the best possible 

model. If other paths had been included or some of these paths had been omitted, the results of 

this study would have been somewhat different, but the overall conclusions about the accuracy of 

cross-battery assessment would have been roughly the same.  

 

 

 

Figure 9. Standardized path coefficients used to generate latent scores. 
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Observed achievement scores (N = 100,000) were generated from the latent scores 

combined with error, the weights for which were taken from the WJ IV Technical Manual 

(McGrew, LaForte, & Schrank, 2015). Random subtest loadings were generated using parameters 

from Table 4 in a Fisher distribution (See Figure 10). 

 

 

 

 

Figure 10. Distributions of simulated subtest loadings on latent abilities. 

 

0.00 

0.25 

0.50 

0.75 

1.00 

Gc Gs Gwm Glr Gv Ga Gf 

Ability 

Lo
ad

in
gs

 



 

30 
 

Classification of Cases 

The classification of each observed case was determined to be specific learning disorder, 

or Not specific learning disorder. The classification method modeled mirrors that of the cross-

battery assessment procedure to specific learning disorder identification as outlined by Flanagan 

et al. (2013) levels of identification. First, a reading based weakness must be observed to qualify 

for observed specific learning disorder identification; the deficit must be observed in reading 

fluency, decoding, comprehension, or a combination of these. At this step at least a one standard 

deviation deficit must have been observed in a reading based academic area. Next, this deficit 

must be observed in conjunction with a deficit in the CHC construct(s) related to the academic 

weakness. For example, if reading fluency is observed to be a deficit, an accompanying deficit in 

either Gc, Gf, or Gwm must be present to support a diagnosis of specific learning disorder. Table 

4 provides the elements of reading and the associated cognitive abilities. If these criteria are not 

met, the case was observed as not having specific learning disorder. 

Next, the academic deficit must be unexpected. This deficit is operationalized by having 

an estimated general intelligence score that is at least average. The XBASS produces a statistic, 

somewhat confusingly termed G probability, which is the probability that general intelligence (g) 

is at least average. The XBASS calculates the G probability by producing two weighted ratios 

from cognitive abilities that are considered strengths by the clinician; the XBASS then adds the 

two composites together and transforms them into a probability. The weights associated with each 

ability are: Gc=.2355, Gf=.1870, Glr=.1572, Gwm=.1152, Gv=.1167, Ga=.1029, Gs=.0864. The 

weights were derived from prior studies which used factor analytic methods to determine the 

contribution of each ability to g. The cross-battery assessment manual recommends practitioners 

choose an ability to be a strength if it is no lower than 2/3 of a standard deviation below the mean. 

The second stage in the calculation produces another ratio. In the second ratio, Gc, Gf, Glr, and 

Gwm receive weights of .25 and are added together if it is chosen as a strength. Both values are 
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added together and divided by two to produce the G probability. For example, If Gc, Gf, Glr, Gv, 

and Gs are chosen as strengths, the calculations will be as follows: .2355 + .1870 + .1572 + .1167 

+ .0864 + .25 + .25 + .25 = 1.5328 / 2 = .7664. Probabilities above .50 are regarded as likely to be 

normative. If G probabilities were below .50 even if congruent academic and cognitive deficits 

exist, the case was classified as Non SLD, because the deficit is not unexpected. In summary, if a 

reading based impairment was observed (Reading academic test score composite < 85) in 

conjunction with a deficient related CHC ability (Related CHC composite < 85) and the academic 

deficit is unexpected (Residual of g value prediction of academic performance < 10th percentile) 

and g is likely within the average or above range (G probability > .50) a classification of observed 

specific learning disorder was made. Otherwise a classification of Non SLD was made. Table 5 

provides this information at a glance. 

After observed cases are classified, the same process was conducted at the latent level. At 

this point, diagnostic test characteristics were calculated to determine the specificity, sensitivity, 

PPV and NPV of the cross-battery assessment method of specific learning disorder identification. 
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Table 4 

Academic Tests, Elements of Reading, and Relevant Cognitive Abilities 

Element of Reading  Relevant CHC Abilities 
Reading Fluency  

 

 Crystallized Intelligence (Gc) 
 Auditory Processing (Ga) 
 Working Memory (Gwm) 
Reading Decoding   

 Crystallized Intelligence (Gc) 
 Auditory Processing (Ga) 
 Long Term Memory (Glr) 
 Working Memory (Gwm) 
Reading Fluency   

 Long Term Memory (Glr) 
 Processing Speed (Gs) 
Comprehension   

 Processing Speed (Gs) 
 Working Memory (Gwm) 
 Long Term Memory (Glr) 
  Crystallized Intelligence (Gc) 

 

 

 

Summary 

The current study aimed to answer the following research questions using simulated data 

based on the Cattell-Horn-Carroll Theory of Cognitive Abilities: 

1. What is the diagnostic accuracy (specificity, sensitivity, PPV, and NPV) 

of cross-battery assessment in determining a diagnosis status of specific 

learning disorder (meaning, SLD or Not SLD) when the cross-battery 

assessment procedure is accurately simulated with a prevalence 

reflective of the referred population? 
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2. How much does increasing the number of subtests per cognitive 

composite increase the diagnostic accuracy of the specific learning 

disorder decision? 

 

 

 

Table 5 

Cross-Battery Assessment Specific Learning Disorder Criteria and Decisions Rules 

SLD Condition Decision Rule  

At least one reading based impairment  <85 

Related CHC reading impairment <85 

G probability likely average >.50 

Unexpected academic deficit, given g: Residual of prediction < 10th Percentile 
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CHAPTER IV 

RESULTS

Diagnostic Accuracy of the Cross-Battery Assessment Method 

In any simulation study, the results depend on the decisions of the analyst and the explicit 

and implicit assumptions used to generate the data. The accuracy of cross-battery assessment as it 

is practiced in the real world cannot be evaluated directly because latent scores are unobservable. 

To avoid confusion with in vivo cross-battery assessment, I will refer to cross-battery assessment 

as I have modelled it in this study as cross-battery assessment. As seen in Table 6, the current 

study found accuracy results for cross-battery assessment similar those at the low end of Stuebing 

et al.’s results. With the current definitions, assumptions, and methods, 8% individuals in the 

population were classified as having a specific learning disorder. Although the current results 

suggest that cross-battery assessment has high specificity (.92), its sensitivity is low (.47). The 

low sensitivity of the cross-battery assessment method means that about half of the people with 

specific learning disorder were not diagnosed.  

The implications of low specificity depend on which population is being assessed. In the 

general population the prevalence of specific learning disorder is low. Under the definition of 

specific learning disorder used in this study, the prevalence of specific learning disorder was 

about 8%, resulting in a PPV of .33. That is, if a person is selected at random from the population 

and diagnosed with specific learning disorder using cross-battery assessment, there is only about 

a one third probability that the person really does have specific learning disorder. However, as 

with the results in Stuebing et al. (2012), this low PPV is misleadingly low. When a person is 
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referred for an assessment because of academic problems, the prior probability of a learning 

disability is much higher than it would be for a person selected at random. As seen in Table 6 and  

Figure 11, PPV rises to .72 when the base rate is 30% and to .93 when the base rate is 

70%. At high base rates, NPV becomes dangerously low, making it hard to rule out specific 

learning disorder accurately. 

 

 

 

Table 6 

Overall Accuracy of Cross-Battery Assessment at Different Prevalence Levels 

    Prevalence 
  Current Results  Stuebing et al. 

Accuracy Statistics   8% 30% 70%   3.7%–9.1% 
Sensitivity  0.47 0.47 0.47  .44–.55 
Specificity  0.92 0.92 0.92  .95–.97 
Positive Predictive 
Value 

 0.33 0.72 0.93  .33–.53 

Negative Predictive 
Value   0.95 0.80 0.43   .95–.98 
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Figure 11. Overall accuracy of Cross-Battery Assessment as a function of prevalence. 
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comprehension (Passage Comprehension), or any combination of reading deficits. The accuracy 

0.0 0.2 0.4 0.6 0.8 1.0 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

Prevalence 

Pr
op

or
tio

n 

Likely Prevalence in 
Referred Population 

(30–70%) 
 
 

Sensitivity = .47 
Specificity = .92 

 
 



 

37 
 

of these decision is solely a function of the test reliability coefficient. Because the WJ IV 

Achievement tests tend to be reasonably reliable, the accuracy statistics were reasonably high. 

Table 7 summarizes all of diagnostic values for the academic assessments. 

 

 

 

Table 7 

Cross-Battery Assessment Diagnostic Accuracy of Academic Deficit Identification 

Reading Ability Sensitivity Specificity PPV NPV Prevalence 

Word Attack .79 .93 .79 .93 .25 

Letter-Word Identification .81 .94 .81 .94 .25 

Sentence Reading Fluency .82 .94 .83 .94 .25 

Passage Comprehension .75 .92 .75 .92 .25 
 

 

 

Accuracy of Cross-Battery Assessment Cognitive Deficits Identification 

At the cognitive level of assessment, a decision must be made if a cognitive deficit exists. 

Again, at this stage the current study compared the observed decisions made by the cross-battery 

assessment system to that of the latent level. Diagnostic accuracy statistics were then calculated. 

As seen in Table 8, abilities with the highest mean subtest loadings (see Table 3) have the best 

accuracy statistics (Gc and Gs). Abilities with lower subtest loadings have lower accuracy 

statistics in Table 8 (e.g., Ga and Glr).  
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Table 8 

Cross-Battery Assessment Diagnostic Accuracy of Cognitive Deficit Identification 

CHC Ability Sensitivity Specificity PPV NPV Prevalence 

Gc 0.73 0.92 0.76 0.91 .26 

Gf 0.61 0.88 0.67 0.86 .27 

Ga 0.58 0.87 0.64 0.85 .28 

Gv 0.63 0.89 0.68 0.87 .27 

Glr 0.61 0.88 0.67 0.86 .28 

Gwm 0.65 0.90 0.70 0.87 .27 

Gs 0.67 0.90 0.72 0.88 .27 
 

 

 

Accuracy of G Probability Above Average  

The decision of cross-battery assessment in regards to G probabilities are categorical. The 

G probability is either above or below .50. Because this decision is categorical the diagnostic 

accuracy can be calculated. Cross-battery assessment′ was found to have fairly accurate positive 

decisions (accurate at identifying cases above .50) with an obtained PPV of .93. However 

negative predictions suffered (accuracy of identifying cases below .50) with an obtained NPV of 

.69. 

The reason for the lower NPV but higher PPV at this step is that the cross-battery 

assessment procedure for identifying G probability only uses cognitive strengths (i.e., scores 

average or better). This procedure biases the estimate of g upward. Under the assumptions 

modeled in this study, cross-battery assessment estimates of g were positively biased by .34 SD. 

This bias means that cross-battery assessment procedures are likely to lead to a judgment that g is 

at least average when it is not. 
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Accuracy of Cross-Battery Assessment Defined Unexpected Deficit  

The final step in a cross-battery assessment diagnosis of specific learning disorder is 

determining whether an observed academic deficit in conjunction with an associated cognitive 

deficit is unexpected. This deficit is determined through the use of a regression model that 

predicts academic performance based on the G value. If the cases predicted performance is lower 

than what their G estimation predicts their performance to be, the deficit is unexpected. More 

specifically, if a cases standardized residual, is lower than the Z score critical threshold (Zcrit= -

1.28) the deficit is unexpected. In other words, if the prediction of academic performance by the 

G value is below the 10th percentile, the deficit is unexpected. Comparing the observed decision 

to the latent level, diagnostic accuracy statistics were calculated. Reflective of the overall method, 

the NPV at this stage is high (.97), and the PPV is very low (.41-.47). Table 9 provides a 

summary of this information by academic test. 

 

 

 
Table 9 

Cross-Battery Assessment Diagnostic Accuracy of Unexpected Academic Deficits 

  Sensitivity Specificity PPV NPV Prevalence 

Word Attack .59 .94 .47 .96 .08 

Letter-Word Identification .59 .94 .47 .96 .08 

Ready Fluency .58 .94 .46 .96 .08 

Passage Comprehension .51 .94 .41 .96 .08 
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Diagnostic Accuracy of Repeated Testing 

The current study explored how the accuracy of decisions would change with repeated 

rounds of testing regardless of cross-battery assessment suggestion for follow up testing. 

Repeated testing was explored to investigate if the cross-battery assessment method of 

determining follow up testing actually provides accuracy above a static number of subtests.  

 

 

 

 

Figure 12. Validity of cognitive ability tests by number of tests in composite. 
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It is assumed that diagnostic accuracy would increase with more rounds of testing 

because each round of testing increases the validity of the cluster scores, as seen in Figure 12.  

Diagnostic accuracy increases slowly which each round of testing, but with diminishing 

returns. Using regular composite scores rather than cross-battery assessment resulted in higher 

specificity but required five rounds of testing to reach the same level of sensitivity as cross-

battery assessment. As seen in Table 10, each subsequent test adds both accuracy and validity; 

although there are diminishing returns with each additional test.  

 

 

 

Table 10 

Including More Subtests Per Cognitive Cluster Increases Diagnostic Accuracy 

  Accuracy Number of Subtests Per Cognitive Cluster Score 
Statistic XBA 2 3 4 5 6 7 8 9 10 

Sensitivity 0.47 0.44 0.45 0.46 0.47 0.48 0.49 0.49 0.5 0.5 

Specificity 0.92 0.95 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 

8% Prevalence           

PPV 0.33 0.44 0.47 0.5 0.51 0.53 0.54 0.55 0.56 0.56 
NPV 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

30% Prevalence           

PPV 0.72 0.8 0.82 0.84 0.85 0.85 0.86 0.86 0.87 0.87 
NPV 0.8 0.8 0.81 0.81 0.81 0.81 0.82 0.82 0.82 0.82 

70% Prevalence           

PPV 0.93 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 
NPV 0.43 0.42 0.43 0.43 0.44 0.44 0.44 0.45 0.45 0.45 
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Even with 10 subtests per cluster, sensitivity was only .50. Why is it so low? One of the 

reasons that increasing the number of tests per cognitive cluster did not result in high levels of 

sensitivity is that a specific learning disorder diagnosis does not just depend on the accuracy of 

the cognitive tests but also on the accuracy of the academic tests, which still were measured with 

a single test. To further understand the sources of inaccuracy with the repeated testing variant of 

cross-battery assessment, I will example the accuracy of each diagnostic step. The accuracy of the 

achievement deficits is unchanged from Table 7. 

Accuracy Cognitive Deficits Identification with Repeated Testing 

One reason that repeated testing did not result in dramatic increases in diagnostic 

accuracy is that the validity of a composite score does not increase as quickly as its reliability 

when the number of subtests increases, especially when the subtest loadings on the latent abilities 

are low (see Figure 12). Table 11 displays how much diagnostic accuracy improves with repeated 

testing. the accuracy of identifying cognitive deficits. Repeated testing adds only modest benefits 

to both PPV and NPV.  

 

 

 

Table 11 

Accuracy of Identifying Specific Cognitive Deficits with Repeated Testing 

Ability Subtests Sensitivity Specificity PPV NPV Prevalence 
Gc       
 2 0.76 0.92 0.75 0.92 0.25 
 3 0.80 0.93 0.79 0.93 0.25 
 4 0.82 0.94 0.81 0.94 0.25 
 5 0.84 0.94 0.83 0.95 0.25 

 6 0.85 0.95 0.85 0.95 0.25 
 7 0.86 0.95 0.86 0.95 0.25 
    (Table continues) 
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Ability Subtests Sensitivity Specificity PPV NPV Prevalence 
 8 0.87 0.96 0.87 0.95 0.25 
 9 0.87 0.96 0.88 0.96 0.25 
 10 0.88 0.96 0.89 0.96 0.25 
Ga       
 2 0.62 0.87 0.61 0.87 0.25 
 3 0.66 0.89 0.66 0.89 0.25 
 4 0.70 0.90 0.70 0.90 0.25 
 5 0.72 0.91 0.72 0.91 0.25 

 6 0.74 0.91 0.74 0.91 0.25 
 7 0.76 0.92 0.76 0.92 0.25 
 8 0.77 0.92 0.77 0.92 0.25 
 9 0.79 0.93 0.78 0.93 0.25 
 10 0.79 0.93 0.80 0.93 0.25 
Gwm       
 2 0.69 0.89 0.68 0.90 0.25 
 3 0.73 0.91 0.72 0.91 0.25 
 4 0.76 0.92 0.76 0.92 0.25 
 5 0.78 0.93 0.79 0.92 0.25 

 6 0.79 0.93 0.80 0.93 0.25 
 7 0.81 0.94 0.82 0.94 0.25 
 8 0.82 0.94 0.83 0.94 0.25 
 9 0.83 0.94 0.83 0.94 0.25 
 10 0.84 0.95 0.84 0.95 0.25 
Glr       
 2 0.64 0.88 0.65 0.88 0.25 
 3 0.70 0.89 0.69 0.90 0.25 
 4 0.73 0.91 0.72 0.91 0.25 
 5 0.75 0.92 0.75 0.91 0.25 

 
      

 6 0.77 0.92 0.76 0.92 0.25 
 7 0.78 0.93 0.78 0.93 0.25 
 8 0.79 0.93 0.80 0.93 0.25 
 9 0.81 0.93 0.80 0.94 0.25 
 10 0.82 0.94 0.81 0.94 0.25 
Gs       
 2 0.70 0.90 0.70 0.90 0.25 
 3 0.74 0.92 0.75 0.91 0.25 
 4 0.77 0.93 0.78 0.92 0.25 
 5 0.80 0.93 0.79 0.93 0.25 
    (Table continues) 
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Ability Subtests Sensitivity Specificity PPV NPV Prevalence 

 6 0.81 0.94 0.81 0.94 0.25 
 7 0.82 0.94 0.83 0.94 0.25 
 8 0.83 0.95 0.84 0.94 0.25 
 9 0.84 0.95 0.85 0.95 0.25 
 10 0.85 0.95 0.85 0.95 0.25 
Gf       
 2 0.64 0.88 0.65 0.88 0.25 
 3 0.70 0.90 0.69 0.90 0.25 
 4 0.73 0.91 0.73 0.91 0.25 
 5 0.75 0.92 0.76 0.91 0.25 

 6 0.77 0.92 0.77 0.92 0.25 
 7 0.78 0.93 0.79 0.93 0.25 
 8 0.80 0.93 0.79 0.93 0.25 
 9 0.81 0.94 0.81 0.94 0.25 
 10 0.81 0.94 0.82 0.94 0.25 
Gv       
 2 0.66 0.89 0.68 0.88 0.26 
 3 0.71 0.90 0.72 0.90 0.25 
 4 0.74 0.91 0.74 0.91 0.25 
 5 0.77 0.92 0.76 0.92 0.25 

 6 0.78 0.93 0.79 0.93 0.25 
 7 0.80 0.93 0.80 0.93 0.25 
 8 0.81 0.94 0.81 0.93 0.25 
 9 0.82 0.94 0.82 0.94 0.25 
  10 0.83 0.94 0.83 0.94 0.25 

 

 

 

Accuracy of G Probability Above Average with Repeated Testing 

Diagnostic accuracy statistics were calculated for the accuracy of the G probability 

decision (G probability > .50 or not). Because the accuracy of the G probability decision is 

already moderately high, there is not a substantial increase in the diagnostic accuracy statistics. 

Although it is worth noting that the accuracy of the decision being non deficient (NPV) increases 

the more than the PPV. As can be seen in Table 12, the PPV results are similar to that of the 
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analogous step in cross-battery assessment. However, the NPV is higher, even with just two 

subtests per broad ability. The reason for this increased accuracy is that no low scores are 

discarded in the estimate of g. In contrast, cross-battery assessment discards low cluster scores 

when g is estimated. Instead of 75% of people having average or better g, cross-battery 

assessment identifies 79%, which is an overestimate. For this reason, the cross-battery assessment 

practice of omitting cognitive weakness from the estimate of g may be a source of diagnostic 

inaccuracy, at least under the assumption modelled in this study. 

 

 

 

Table 12 

Accuracy of Identifying Average or g Scores with Repeated Testing 

Subtests Sensitivity Specificity PPV NPV Prevalence 

2 .95 .73 .91 .84 .75 

3 .96 .75 .92 .86 .75 

4 .96 .76 .92 .88 .75 

5 .97 .77 .93 .89 .75 

6 .97 .78 .93 .89 .75 

7 .97 .78 .93 .90 .75 

8 .97 .78 .93 .90 .75 

9 .97 .79 .93 .90 .75 

10 .97 .79 .93 .91 .75 

XBA .92 .73 .93 .70 .79 
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Accuracy of Unexpected Deficit  

For a diagnosis of specific learning disorder, the observed academic deficit must be 

unexpected. Which is determined through the use of a regression model that predicts academic 

performance based on the G value. If the predicted performance is substantially lower than what 

is predicted from g, the deficit is unexpected. Cross-battery assessment defines unexpectedly low 

achievement as when the prediction error is in the bottom 10% of prediction errors. Compared to 

cross-battery assessment, the repeated testing variant of cross-battery assessment resulted in more 

accurate identification of unexpectedly low achievement because it estimated g more precisely 

and with less bias (see Table 12). The estimates of achievement are the same in both methods. 

However additional rounds of testing do not substantially increase the accuracy of identifying 

unexpectedly low achievement, as seen in Table 13. 

 

 

 

Table 13 

Accuracy of Identifying Unexpected Low Achievement with Repeated Testing 

Academic Test Subtests Sensitivity Specificity PPV NPV Prevalence 
Word Attack 2 0.61 0.96 0.61 0.96 0.10 

 3 0.61 0.96 0.62 0.96 0.10 

 4 0.62 0.96 0.62 0.96 0.10 

 5 0.62 0.96 0.62 0.96 0.10 

 6 0.62 0.96 0.62 0.96 0.10 

 7 0.62 0.96 0.62 0.96 0.10 

 8 0.62 0.96 0.62 0.96 0.10 

 9 0.62 0.96 0.62 0.96 0.10 
 10 0.62 0.96 0.62 0.96 0.10 
Letter Word Identification       

 2 0.63 0.96 0.62 0.96 0.10 

 3 0.63 0.96 0.63 0.96 0.10 
         (Table continues) 
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Academic Test Subtests Sensitivity Specificity PPV NPV Prevalence 

 4 0.64 0.96 0.64 0.96 0.10 
 5 0.64 0.96 0.64 0.96 0.10 
 6 0.64 0.96 0.64 0.96 0.10 

 7 0.64 0.96 0.64 0.96 0.10 

 8 0.65 0.96 0.64 0.96 0.10 

 9 0.65 0.96 0.64 0.96 0.10 
 10 0.65 0.96 0.64 0.96 0.10 
Reading Fluency       

 2 0.62 0.96 0.61 0.96 0.10 

 3 0.62 0.96 0.62 0.96 0.10 

 4 0.63 0.96 0.63 0.96 0.10 
 5 0.63 0.96 0.63 0.96 0.10 
 6 0.63 0.96 0.63 0.96 0.10 

 7 0.63 0.96 0.63 0.96 0.10 

 8 0.64 0.96 0.64 0.96 0.10 

 9 0.64 0.96 0.64 0.96 0.10 
 10 0.64 0.96 0.64 0.96 0.10 
Passage Comprehension       

 2 0.54 0.95 0.54 0.95 0.10 

 3 0.54 0.95 0.54 0.95 0.10 

 4 0.54 0.95 0.54 0.95 0.10 
 5 0.55 0.95 0.54 0.95 0.10 
 6 0.55 0.95 0.55 0.95 0.10 

 7 0.55 0.95 0.55 0.95 0.10 

 8 0.55 0.95 0.55 0.95 0.10 

 9 0.55 0.95 0.55 0.95 0.10 
  10 0.55 0.95 0.55 0.95 0.10 
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CHAPTER V 

DISCUSSION, IMPLICATIONS, AND LIMITATIONS

Accuracy of the Cross-Battery Assessment Method 

There are over 70 million children in the United States. The Diagnostic and Statistical 

Manual of Mental disabilities cites the prevalence of specific learning disorder to be between 5 

and 12 percent. Which means that approximately 3.5 Million to 8.4 Million children have this 

condition. With such a large number of children in need and the high level of training necessary; 

psychoeducational assessment is an expensive industry. Inaccurate identification not only adds to 

the cost of assessment on schools, but diverts already scarce resources from those who can benefit 

most. 

A high NPV is considered more important in scenarios such as diagnostic decisions 

because a false negative is regarded as much more detrimental than a false positive. Positive 

diagnosis are typically followed up with further investigation, which makes a false positive more 

likely to be detected later. However, a negative diagnosis is frequently not followed up, so later 

detection is less likely. 

The results of the current study found that cross-battery assessment had low sensitivity 

(.47) but higher specificity (.92). Which means that about half of those with specific learning 

disorder are identified by cross-battery assessment as not having specific learning disorder and 

about 8% of those without specific learning disorder are identified by cross-battery assessment as 

having specific learning disorder. The accuracy of diagnosis depends on the prevalence of 

specific learning disorder in the population being assessed. In the general population, specific 

learning disorder might have a prevalence around 8%. If the general population is assessed, the 
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PPV for cross-battery assessment is .33, meaning that only about one third of those diagnosed 

with a reading specific learning disorder by cross-battery assessment procedures truly have it. At 

a prevalence of 8%, the NPV is .95, meaning that the vast majority of those deemed by cross-

battery assessment not to have specific learning disorder actually do not have it. 

However, the general population is rarely assessed for specific learning disorder. People 

referred for specific learning disorder assessments certainly have a higher prevalence of specific 

learning disorders than does the general population. If we conservatively assume that between 30 

and 70 percent of people assessed for specific learning disorder truly have specific learning 

disorder, then the PPV is much higher than .33, ranging from .72 to .93. Unfortunately, the NPV 

dips ever lower, the more prevalent specific learning disorder is in a referred population, ranging 

from .80 at a prevalence of 30% to .43 at a prevalence of 70%. This is an alarming rate of false 

negative diagnosis. False negative diagnoses withhold the important resources from children who 

need them.  

Improving the Diagnostic Accuracy of Cross-Battery Assessment with Repeated Testing 

The second goal of the study was to find out how many iterations of testing it takes to 

reach acceptable levels of diagnostic accuracy. The major result of this analysis is that increasing 

the number of subtests per cluster improves diagnostic accuracy but only by a little bit. Achieving 

high levels of accuracy would require impractical amounts of testing time (e.g., administering 

more than 10 subtests per broad ability).  

A second major finding of this study was that using all the scores in a composite resulted 

in higher accuracy than the cross-battery assessment method of finding coherent clusters. 

Likewise, using all scores to estimate g is more accurate than the cross-battery assessment 

method of discarding cognitive weaknesses. Using all available test scores as opposed to 

determining score cohesion produces more accurate results. Therefore, identifying a target area of 
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weakness and preforming multiple assessments for each associated cognitive ability will produce 

more accurate results while maintaining practicality in time constraints. 

To achieve high levels of diagnostic accuracy with a manageable number of tests, it is 

likely that increasing the underlying reliability and validity of the tests is going to be necessary. 

In the meantime, given the results of this paper, it seems increasing the number of tests per factor 

to a higher but still practical number is warranted (e.g., about 3 or 4 tests per factor). 

An important consideration for this study is that most diagnostic missteps occur near the 

cut scores for the various decision rules. That is, most errors are near misses, not gross missteps. 

Each time a dichotomous decision is made (e.g. g deficit or not, coherent or not, unexpected or 

not) accuracy suffers.  A possible way to remedy the repeated process of dichotomous decision 

making would be to use a dimensional approach instead of the binary decision approach in cross-

battery assessment.  

Limitations 

There are several important limitations of the current study. Simulation studies are no 

better than the accuracy of their assumptions. It is possible that the current finding that regular 

composite scores are more accurate than the cross-battery assessment coherent composites would 

not hold true if the distribution of scores is not multivariate normal, as assumed here. For 

example, from time to time a child might misunderstand the test or cease to try on a test. Often 

the examiner sees what is happening but a certain percentage of the time misunderstandings and 

low effort are undetected. In such cases, it would be more accurate to discard anomalously low 

scores as mandated by cross-battery assessment. 

Other possible inaccuracies in the modeling process might be that if the distribution of 

subtest loadings is biased or incorrect, the underlying causal model might be incorrect as well.  

This simulation study only modeled cross-battery assessment Reading based specific 

learning disorder Identification. A single type of specific learning disorder identification (reading) 
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was chosen in an attempt to provide clear and succinct results. This restricts the generalization of 

obtained accuracy past that of reading subtype specific learning disorder identification within the 

cross-battery assessment framework. 

There are a number of cross-battery assessment procedures that could not be modeled in 

this study. For example, cross-battery assessment has procedures and steps of identification for 

considering cultural factors; The primary cultural factor being English as a second language. It 

would be difficult to model such considerations meaningfully with simulated data. 

Finally, only reading-related learning disabilities were modelled in this study. Future 

studies should investigate the accuracy of cross-battery assessment specific learning disorder 

identification in writing and math domains as well as reading.
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APPENDIX 

SIMULATION CODE

# Required packages 
library(purrr) 
library(psych) 
library(magrittr) 
library(dplyr) 
library(tidyr) 
library(tibble) 
library(lavaan) 
library(broom) 
library(caret) 
library(dtplyr) 
library(data.table) 
library(ggrepel) 
library(haven) 
library(pander) 
library(mvtnorm) 
library(e1071) 
library(robustHD) 
library(caret) 

# How many subtests per broad factor 
kGx <- 10 
# Sample Size 
n <- 1000000 

# Get CHC Loadings for subtests 
d <- read.csv("chc_loadings_csv.csv") 

# Cognitive Factors 
cog <- c('Gc','Gs','Gwm','Glr','Gv','Ga','Gf') 
dc <- filter(d,Ability %in% cog) %>% mutate(Ability = factor(Ability, 

levels = cog)) 

# Broad Ability loading parameters (mean and sd) 
Gxl <- read.csv("ConstructLoading.csv") %>%  
  mutate(zl = fisherz(Loading)) %>%  
  select(Ability, zl) %>%  
  group_by(Ability) %>%  
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  summarize(zl_mean = mean(zl), zl_sd = sd(zl)) %>%  
  mutate(l_mean = fisherz2r(zl_mean)) 

# Function for generating loadings 
fr2z <- function(l_mean, l_sd, n = 1) { 
  k <- length(l_mean) 
  fisherz2r(rnorm(n * k, fisherz(l_mean), l_sd)) 
} 

# Create latent scores 
# g to broad ability loadings 
Glr <- dc$G_AVG 
names(Glr) <- dc$Ability 

# Function to make Latent Scores 
Gx <- function(Glr, n = 1){ 
  k <- length(Glr) 
  G <- matrix(rep(rnorm(n),k), ncol = k) 
  e <- matrix(rnorm(n * k),ncol = k) 
  el <- sqrt(1 - Glr ^ 2) 
  Gxx <- G %*% diag(Glr) + e %*% diag(el) 
  as_data_frame(cbind(G[,1],Gxx) %>% set_colnames(c("G",names(Glr)))) 
} 

# Make g and Broad Abilty latent scores 
dConstructScores <- Gx(Glr, n) %>% mutate(id = 1:n) 

# Cog Subtests 
# Every combination of id, Ability, and i 
longdata <- data.table::CJ(id = 1:n, 
                           Ability = factor(dc$Ability), 
                           i = 1:kGx) 

# Set key for Gxl (Subtest loading parameters) 
setDT(Gxl,key = "Ability") 

# Set key for longdata 
setkey(longdata,Ability) 

# Merge Gxl and longdata by Broad Ability 
longdata <- longdata[Gxl] 

# Long to wide restructuring of construction scores 
gatherdConstructScores <- dConstructScores %>% 
  select(-G) %>% 
  gather(key = "Ability",value = "Gx",-id) %>% 
  mutate(Ability = factor(Ability,cog)) 
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# Merge construct scores into longdata 
setkey(longdata,id,Ability) 
setDT(gatherdConstructScores,key = c("id","Ability")) 
gatherdConstructScores <- as.data.table(gatherdConstructScores) 
longdata <- longdata[gatherdConstructScores] 
rm(gatherdConstructScores) 

# Generate random loadings 
longdata[,l := fisherz2r(rnorm(n * kGx * 7,zl_mean,zl_sd))] 

# Plot loading distribution by ability 
if (n < 100001) ggplot(longdata ,aes(Ability,l)) + geom_violin(colour = 

NA, fill = rgb(1,1,1,.8)) + ylab("Loadings") + ylim(0,1) + 
geom_point(data = Gxl %>% rename(l = l_mean),colour = "gray40") 

# Subtest Errors 
longdata[,ze := rnorm(n * kGx)] 

# Subtest Scores 
longdata[,Tx := l * Gx + sqrt(1 - l ^ 2) * ze] 

# Winsorize to 4 SD and round scores to 1/15 of an SD 
longdata <- mutate(longdata, Tx = robustHD::winsorize(round(Tx * 15, 0) 

/ 15,standardized = TRUE, const = 4)) 

# Make widedata 
widedata <- longdata[,.(id, Ability, i, Tx)] 
widedata <- dcast(widedata,id + Ability ~ i, value.var =  "Tx") 
colnames(widedata) <- c("id","Ability",paste0("x",1:kGx)) 
wideloading <- longdata %>% as_data_frame() %>% 
  select(id, Ability, i, l) 
setDT(wideloading) 
wideloading <- dcast(wideloading, id + Ability ~ i, value.var = "l") 
wideloading <- select(wideloading, -id,-Ability) 
colnames(wideloading) <- paste0("l",colnames(wideloading)) 

# Generate XBA Composites 
widedata <- widedata %>% 
  bind_cols(wideloading) %>% 
  mutate( 
    dif12 = abs(x1 - x2), 
    Above120 = (x1 > (5 / 3)) & (x2 > (5 / 3)), 
    Below80 = (x1 < (-5 / 3)) & (x2 > (-5 / 3)), 
    Cohesive2 = (dif12 < 1) | Above120 | Below80 
  ) 

# Restructure data (2 subtest XBA composites) 
rm(wideloading) 
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widedata2 <- widedata %>% 
  filter(Cohesive2) %>% 
  mutate(nTests = 2, 
         Tx = (x1 + x2) / sqrt(2 + 2 * l1 * l2)) 

# Restructure data (3 subtest XBA composites) 
widedata3plus <- widedata %>% 
  filter(!Cohesive2) %>% 
  mutate( 
    dif13 = abs(x1 - x3), 
    dif23 = abs(x2 - x3), 
    eq3 = dif13 == dif23, 
    Cohesive3 = (dif13 < 1 | dif23 < 1)) 
widedata3 <- widedata3plus %>% 
  filter(Cohesive3) %>% 
  mutate(nTests = 3, 
         Tx13 = (x1 + x3) / sqrt(2 + 2 * l1 * l3), 
         Tx23 = (x2 + x3) / sqrt(2 + 2 * l2 * l3), 
         Higher13 = Tx13 > Tx23, 
         Tx = if_else(eq3, 
                      if_else(Tx13 > Tx23,Tx13, Tx23), 
                      if_else(dif13 < dif23, Tx13, Tx23))) 

# Restructure data (4 subtest XBA composites) 
setDT(widedata3plus) 
widedata4plus <- widedata3plus[Cohesive3 == F] 
widedata4plus[, ':='(dif14 = abs(x1 - x4), dif24 = abs(x2 - x4), dif34 

= abs(x3 - x4))] 
widedata4plus[, minDif := pmin(dif14,dif24,dif34)] 
widedata4plus[, Cohesive4 := (minDif < 1)] 
widedata4 <- widedata4plus %>% 
  filter(Cohesive4) %>% 
  mutate(nTests = 4, 
         Tx14 = (x1 + x4) / sqrt(2 + 2 * l1 * l4), 
         Tx24 = (x2 + x4) / sqrt(2 + 2 * l2 * l4), 
         Tx34 = (x3 + x4) / sqrt(2 + 2 * l3 * l4)) %>% 
  rowwise() %>% 
  mutate(imin = list((1:3)[minDif == c(dif14,dif24,dif34)]), 
         Tx = max(c(Tx14,Tx24,Tx34)[imin])) 

# Restructure data (5 subtest XBA composites) 
widedata5plus <- widedata4plus %>% 
  filter(!Cohesive4) %>% 
  mutate( 
    dif15 = abs(x1 - x5), 
    dif25 = abs(x2 - x5), 
    dif35 = abs(x3 - x5), 
    dif45 = abs(x4 - x5)) 
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if (nrow(widedata5plus) > 0) { 
  widedata5plus <- widedata5plus %>% 
    rowwise() %>% 
    mutate(minDif = min(dif15,dif25,dif35,dif45)) %>% 
    ungroup() %>% 
    mutate(Cohesive5 = (minDif < 1)) 
} 
widedata5 <- widedata5plus %>% 
  filter(Cohesive5) %>% 
  mutate(nTests = 5, 
         Tx15 = (x1 + x5) / sqrt(2 + 2 * l1 * l5), 
         Tx25 = (x2 + x5) / sqrt(2 + 2 * l2 * l5), 
         Tx35 = (x3 + x5) / sqrt(2 + 2 * l3 * l5), 
         Tx45 = (x4 + x5) / sqrt(2 + 2 * l4 * l5)) 
if (nrow(widedata5) > 0) { 
  widedata5 <- widedata5 %>% 
    rowwise() %>% 
    mutate(imin = list((1:4)[minDif == c(dif15,dif25,dif35,dif45)]), 
           Tx = max(c(Tx15,Tx25,Tx35,Tx45)[imin])) 
} else { 
  widedata5$Tx <- double(0) 
} 

# Restructure data (6 subtest XBA composites) 
widedata6plus <- widedata5plus %>% 
  filter(!Cohesive5) %>% 
  mutate( 
    dif16 = abs(x1 - x6), 
    dif26 = abs(x2 - x6), 
    dif36 = abs(x3 - x6), 
    dif46 = abs(x4 - x6), 
    dif56 = abs(x5 - x6)) 
if (nrow(widedata6plus) > 0) { 
  widedata6plus <- widedata6plus %>% 
    rowwise() %>% 
    mutate(minDif = min(dif16,dif26,dif36,dif46,dif56)) %>% 
    ungroup() %>% 
    mutate(Cohesive6 = (minDif < 1)) 
} 
widedata6 <- widedata6plus %>% 
  filter(Cohesive6) %>% 
  mutate(nTests = 6, 
         Tx16 = (x1 + x6) / sqrt(2 + 2 * l1 * l6), 
         Tx26 = (x2 + x6) / sqrt(2 + 2 * l2 * l6), 
         Tx36 = (x3 + x6) / sqrt(2 + 2 * l3 * l6), 
         Tx46 = (x4 + x6) / sqrt(2 + 2 * l4 * l6), 
         Tx56 = (x5 + x6) / sqrt(2 + 2 * l5 * l6)) 
if (nrow(widedata6) > 0) { 
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  widedata6 <- widedata6 %>% 
    rowwise() %>% 
    mutate(imin = list((1:5)[minDif == 

c(dif16,dif26,dif36,dif46,dif56)]), 
           Tx = max(c(Tx16,Tx26,Tx36,Tx46,Tx56)[imin])) 
} else { 
  widedata6$Tx <- double(0) 
} 

# Restructure data (7 subtest XBA composites) 
widedata7plus <- widedata6plus %>% 
  filter(!Cohesive6) %>% 
  mutate( 
    dif17 = abs(x1 - x7), 
    dif27 = abs(x2 - x7), 
    dif37 = abs(x3 - x7), 
    dif47 = abs(x4 - x7), 
    dif57 = abs(x5 - x7), 
    dif67 = abs(x6 - x7)) 
if (nrow(widedata7plus) > 0 ) { 
  widedata7plus <- widedata7plus %>% 
    rowwise() %>% 
    mutate(minDif = min(dif17,dif27,dif37,dif47,dif57,dif67)) %>% 
    ungroup() %>% 
    mutate(Cohesive7 = (minDif < 1)) 
} 
widedata7 <- widedata7plus %>% 
  filter(Cohesive7) %>% 
  mutate(nTests = 7, 
         Tx17 = (x1 + x7) / sqrt(2 + 2 * l1 * l7), 
         Tx27 = (x2 + x7) / sqrt(2 + 2 * l2 * l7), 
         Tx37 = (x3 + x7) / sqrt(2 + 2 * l3 * l7), 
         Tx47 = (x4 + x7) / sqrt(2 + 2 * l4 * l7), 
         Tx57 = (x5 + x7) / sqrt(2 + 2 * l5 * l7), 
         Tx67 = (x6 + x7) / sqrt(2 + 2 * l6 * l7)) 
if (nrow(widedata7) > 0) { 
  widedata7 <- widedata7 %>% 
    rowwise() %>% 
    mutate(imin = list((1:5)[minDif == 

c(dif17,dif27,dif37,dif47,dif57,dif67)]), 
           Tx = max(c(Tx17,Tx27,Tx37,Tx47,Tx57,Tx67)[imin])) 
} else { 
  widedata7$Tx <- double(0) 
} 
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# Merge XBA composites in one data.frame 
XBA <- 

bind_rows(widedata2,widedata3,widedata4,widedata5,widedata6,wided
ata7) %>% select(id:dif12,nTests,Tx) %>% select(-dif12) 

rm(widedata2,widedata3,widedata4,widedata5,widedata6,widedata7,widedata
3plus,widedata4plus,widedata5plus,widedata6plus,widedata7plus) 

setDT(XBA, key = c("id","Ability")) 
setorder(XBA, id, Ability) 
setDT(dConstructScores, key = "id") 

# Merge latent scores with XBA 
XBA <- XBA %>% rename(TxXBA = Tx) 
XBA <- XBA[setkeyv(melt(dConstructScores,id.vars = "id",variable.name = 

"Ability",value.name = "Gx")[Ability != "G"],cols = 
c("id","Ability"))] 

wideXBA <- XBA %>% select(id,Ability,TxXBA) %>% 
  mutate(Prefix = "Tx") %>% 
  unite(Ability,Prefix,Ability) %>% 
  spread(key = Ability, value = TxXBA) 
widedata <- longdata %>% 
  rename(Test = Ability) %>% 
  select(id, Test, Tx, i) %>% 
  dcast(id ~ Test + i ,value.var = "Tx") 

# Read WJIV Norming data 
d <- haven::read_spss("W4 Norming_Schneider 051815.sav") %>% 
  select(SubjAgeMos,contains("_SS")) 

# Specify age of cases 
d$AgeYear <- d$SubjAgeMos / 12 
d$Age <- d$AgeYear %>% cut(c(0,4,6,8,10,14,18,40,60,100)) 
AgeCat <- d$Age %>% unique 
library(lavaan) 

# Set as workable data frame 
d <- as.data.frame((as.matrix(d %>% select(-AgeYear,-Age,-SubjAgeMos)) 

- 100) / 15) 

# Structural model of Cognitive and Academic abilities 
m <- ' 
Ga =~ PHNPRO_SS + SEGMNT_SS + SNDBLN_SS 
Gc =~ VOCAB_SS +  ACKNOW_SS + ORLCMP_SS 
Gs =~ PERSPD_SS + PAIRCN_SS 
Glr =~ VAL_SS + STYREC_SS 
Gwm =~ GWM3_SS + AUDMS_SS 
WRDATK =~ 0.918 * WRDATK_SS 
LWIDNT =~ 0.933 * LWIDNT_SS 
RDGFLU =~ 0.940 * RDGFLU_SS 
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PSGCMP =~ 0.880 * PSGCMP_SS 
WRDATK ~ Ga + Gc + Gwm 
LWIDNT ~ WRDATK + Gc 
RDGFLU ~ LWIDNT + Gs + Glr 
PSGCMP ~ LWIDNT + RDGFLU + Gc 
' 
library(semPlot) 
semfit <- lavaan::sem(m,d) 
mstat <- lavInspect(semfit,"std") 
Beta <- mstat$beta %>% as.data.frame() 
psi <- mstat$psi 
exonames <- c('Ga', 'Gc', 'Gwm', 'Gs', 'Glr') 
endonames <- c('WRDATK', 'LWIDNT', 'RDGFLU', 'PSGCMP') 

# Specify matrix properties 
x <- select(dConstructScores,Ga,Gc,Gwm,Gs,Glr) %>% as.matrix() 
Bet <- Beta[endonames,endonames] %>% as.matrix() 
Gam <- Beta[endonames,exonames] %>% as.matrix() 
library(mvtnorm) 
zeta <- rmvnorm(n,sigma = psi[endonames,endonames]) 
colnames(zeta) <- endonames 
Y = t(solve(diag(ncol(Bet)) - Bet) %*% (Gam %*% t(x) + t(zeta))) 

# Restructure and select data 
rawd <- data.frame(x,Y) 
colnames(rawd) <- c(exonames,endonames) 

# Academic abilities structural model 
m <- ' 
WRDATK_SS ~ Ga + Gc + Gwm 
LWIDNT_SS ~ WRDATK_SS + Gc 
RDGFLU_SS ~ LWIDNT_SS + Gs + Glr 
PSGCMP_SS ~ LWIDNT_SS + RDGFLU_SS + Gc 
' 

# Create XBA dataset adding construct scores for cognitive and academic 
abilities 

All_d <- dConstructScores %>% cbind(rawd %>% select(WRDATK:PSGCMP)) %>% 
as_data_frame() 

All_d <- All_d %>% left_join(wideXBA, by = "id") 

# Add variation by Reliability coeeficient 
All_d$Tx_WRDATK <- 0.918 * All_d$WRDATK + sqrt(1 - 0.918 ^ 2) * 

rnorm(n) 
All_d$Tx_LWIDNT <- 0.933 * All_d$LWIDNT + sqrt(1 - 0.933 ^ 2) * 

rnorm(n) 
All_d$Tx_RDGFLU <- 0.940 * All_d$RDGFLU + sqrt(1 - 0.940 ^ 2) * 

rnorm(n) 
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All_d$Tx_PSGCMP <- 0.880 * All_d$PSGCMP + sqrt(1 - 0.880 ^ 2) * 
rnorm(n) 

filterw <- c(1, 1, 1, 1, 0, 0, 0) 
w <- c(.1029,.2355,.1870,.1572,.0864,.1167,.1152) 
fStrength <- function(x) x > -2/3 
Strength <- apply(All_d %>% select(Gc:Gf),2,fStrength) 
GAE <- Strength %*% w 
Lw <- filterw * 0.25 
LAE <- ((Strength %*% Lw) + (Strength %*% (w * filterw)) / sum(w * 

filterw)) / 2 
All_d$g_Prob_Latent <- (LAE + GAE) / 2 
rm(GAE,LAE,Strength,w,filterw,Lw) 

# LD Latent 
weakness <- function(x,threshold = (-2 / 3)) x < threshold 

# Latent LEVEL I Identification 
All_d$WRDATKDeficit <- weakness(All_d$WRDATK) 
All_d$LWIDNTDeficit <- weakness(All_d$LWIDNT) 
All_d$RDGFLUDeficit <- weakness(All_d$RDGFLU) 
All_d$PSGCMPDeficit <- weakness(All_d$PSGCMP) 

# Latent LEVEL III Identification 
All_d$Gc_Deficit <- weakness(All_d$Gc) 
All_d$Ga_Deficit <- weakness(All_d$Ga) 
All_d$Gwm_Deficit <- weakness(All_d$Gwm) 
All_d$Glr_Deficit <- weakness(All_d$Glr) 
All_d$Gs_Deficit <- weakness(All_d$Gs) 
All_d$Gf_Deficit <- weakness(All_d$Gf) 
All_d$Gv_Deficit <- weakness(All_d$Gv) 

# Latent ID Identification 
All_d$G_NotCogDeficit_Latent  <-  All_d$g_Prob_Latent > .50 

# Latent IF WRDATKDeficit & Ga OR Gc OR Gwm 
All_d$WRDATK_CogDeficit <- ((All_d$Gc_Deficit) | (All_d$Ga_Deficit) | 

(All_d$Gwm_Deficit)) 

# Latent IF LWIDNTDeficit & Gc 
All_d$LWIDNT_CogDeficit <- (All_d$Gc_Deficit | All_d$Ga_Deficit | 

All_d$Glr_Deficit | All_d$Gwm_Deficit) 

# Latent IF RDGFLUDeficit & Gs OR Glr 
All_d$RDGFLU_CogDeficit <- (All_d$Gs_Deficit | All_d$Glr_Deficit) 

# Latent IF PSGCMPDeficit & Gc 
All_d$PSGCMP_CogDeficit <- (All_d$Gc_Deficit | All_d$Gf_Deficit | 

All_d$Glr_Deficit | All_d$Gs_Deficit | All_d$Gwm_Deficit) 
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# Latent LEVEL IV Identification 
All_d$AcademicDeficit <- (All_d$WRDATKDeficit | All_d$LWIDNTDeficit | 

All_d$RDGFLUDeficit | All_d$PSGCMPDeficit) & 
(All_d$G_NotCogDeficit_Latent) 

# Critical z 
zcrit <- qnorm(.1) 

# Standardized residual lower than zcrit for Word Attack academic test 
mWRDATK <- lm(WRDATK ~ G, All_d) 
All_d$WRDATKUnexpectedLow <- rstandard(mWRDATK) <= zcrit 

# Standardized residual lower than zcrit for Letter Word Identification 
academic test 

mLWIDNT <- lm(LWIDNT ~ G, All_d) 
All_d$LWIDNTUnexpectedLow <- rstandard(mLWIDNT) <= zcrit 

# Standardized residual lower than zcrit for Reading Fluency academic 
test 

mRDGFLU <- lm(RDGFLU ~ G, All_d) 
All_d$RDGFLUUnexpectedLow <- rstandard(mRDGFLU) <= zcrit 

# Standardized residual lower than zcrit for Passage Completion 
academic test 

mPSGCMP <- lm(PSGCMP~ G, All_d) 
All_d$PSGCMPUnexpectedLow <- rstandard(mPSGCMP) <= zcrit 

# Restructure data 
All_d <-  All_d %>% rowwise %>% mutate( 
  LDWRDATK_Latent = 

all(WRDATKDeficit,G_NotCogDeficit_Latent,WRDATK_CogDeficit,WRDATK
UnexpectedLow), 

  LDLWIDNT_Latent = 
all(LWIDNTDeficit,G_NotCogDeficit_Latent,LWIDNT_CogDeficit,LWIDNT
UnexpectedLow), 

  LDRDGFLU_Latent = 
all(RDGFLUDeficit,G_NotCogDeficit_Latent,RDGFLU_CogDeficit,RDGFLU
UnexpectedLow), 

  LDPSGCMP_Latent = 
all(PSGCMPDeficit,G_NotCogDeficit_Latent,PSGCMP_CogDeficit,PSGCMP
UnexpectedLow) 

) 
All_d$SLD_Latent <-  (All_d$LDPSGCMP_Latent | All_d$LDRDGFLU_Latent | 

All_d$LDLWIDNT_Latent | All_d$LDWRDATK_Latent) 

##G Probability for XBA 
d_XBA <- All_d %>% select(id, G, contains("Tx_")) 
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# XBA G composite loadings 
filterw <- c(0, 1, 0, 1, 1, 0, 1) 
w <- c(.1029,.2355,.1870,.1572,.0864,.1167,.1152) 

# XBAIs cognitive ability test score a strength or weakness? 
Strength <- (d_XBA %>% select(Tx_Ga:Tx_Gwm)) > -2/3 
GAE <- Strength %*% w 
Lw <- filterw * 0.25 
LAE <- ((Strength %*% Lw) + (Strength %*% (w * filterw)) / sum(w * 

filterw)) / 2 
g_prob_observed <- (LAE + GAE) / 2 
isSufficient <- function(x) ifelse(x > -2 / 3,1,0) 
d_Sufficient <- d_XBA %>% select(Tx_Ga:Tx_Gwm) %>% 

mutate_each(funs(isSufficient)) %>% as.matrix 
nSufficient <- rowSums(d_Sufficient) > 3 

# Restructure as matrix 
d_G <- d_XBA %>% select(Tx_Ga:Tx_Gwm) %>%  as.matrix 
sd_G <- ((d_G %>% rowSums)  / 7) %>% sd 
d_XBA$G_XBA <- rowSums(d_Sufficient * d_G) / (sd_G * 

rowSums(d_Sufficient)) 
d_XBA$G_XBA[!nSufficient] <- NA 
# XBA Create True or False list of weakness by Academic test 
d_XBA$WRDATKDeficit_XBA <- weakness(d_XBA$Tx_WRDATK) 
d_XBA$LWIDNTDeficit_XBA <- weakness(d_XBA$Tx_LWIDNT) 
d_XBA$RDGFLUDeficit_XBA <- weakness(d_XBA$Tx_RDGFLU) 
d_XBA$PSGCMPDeficit_XBA <- weakness(d_XBA$Tx_PSGCMP) 

# XBA LEVEL III Identification 
# Create True or False list of weakness by cognitive ability 
d_XBA$Gc_Deficit_XBA <- weakness(d_XBA$Tx_Gc) 
d_XBA$Ga_Deficit_XBA <- weakness(d_XBA$Tx_Ga) 
d_XBA$Gwm_Deficit_XBA <- weakness(d_XBA$Tx_Gwm) 
d_XBA$Glr_Deficit_XBA <- weakness(d_XBA$Tx_Glr) 
d_XBA$Gs_Deficit_XBA <- weakness(d_XBA$Tx_Gs) 
d_XBA$Gf_Deficit_XBA <- weakness(d_XBA$Tx_Gf) 
d_XBA$Gv_Deficit_XBA <- weakness(d_XBA$Tx_Gv) 

# XBA ID Identification 
d_XBA$G_NotCogDeficit_XBA <-  g_prob_observed > .50 

# XBA IF WRDATKDeficit & Ga OR Gc OR Gwm 
d_XBA$WRDATK_CogDeficit_XBA <- ((d_XBA$Gc_Deficit_XBA) | 

(d_XBA$Ga_Deficit_XBA) | (d_XBA$Gwm_Deficit_XBA)) 
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# XBA IF LWIDNTDeficit & Gc 
d_XBA$LWIDNT_CogDeficit_XBA <- (d_XBA$Gc_Deficit_XBA | 

d_XBA$Ga_Deficit_XBA | d_XBA$Glr_Deficit_XBA | 
d_XBA$Gwm_Deficit_XBA) 

# XBA IF RDGFLUDeficit & Gs OR Glr 
d_XBA$RDGFLU_CogDeficit_XBA <- (d_XBA$Gs_Deficit_XBA | 

d_XBA$Glr_Deficit_XBA) 

# XBA IF PSGCMPDeficit & Gc 
d_XBA$PSGCMP_CogDeficit_XBA <- (d_XBA$Gc_Deficit_XBA | 

d_XBA$Gf_Deficit_XBA | d_XBA$Glr_Deficit_XBA | 
d_XBA$Gs_Deficit_XBA | d_XBA$Gwm_Deficit_XBA) 

# XBA LEVEL IV Identification 
d_XBA$AcademicDeficit_XBA <- (d_XBA$WRDATKDeficit_XBA | 

d_XBA$LWIDNTDeficit_XBA | d_XBA$RDGFLUDeficit_XBA | 
d_XBA$PSGCMPDeficit_XBA) & (d_XBA$G_NotCogDeficit_XBA == FALSE) 

# XBA Standardized residual lower than zcrit for word attack academic 
test 

mWRDATK <- lm(Tx_WRDATK ~ G_XBA, d_XBA) 
ze <- rstandard(mWRDATK) 
low <- data.frame(id = as.numeric(names(ze)),WRDATKUnexpectedLow_XBA = 

(ze <= zcrit)) 
setDT(low,key = "id") 
setDT(d_XBA,key = "id") 
d_XBA <- merge(d_XBA,low,all.x = TRUE, all.y = FALSE) 
d_XBA$WRDATKUnexpectedLow_XBA[is.na(d_XBA$WRDATKUnexpectedLow_XBA)] <- 

FALSE 

# XBA Standardized residual lower than zcrit for letter word 
identification academic test 

mLWIDNT <- lm(Tx_LWIDNT ~ G_XBA, d_XBA) 
ze <- rstandard(mLWIDNT) 
low <- data.frame(id = as.numeric(names(ze)),LWIDNTUnexpectedLow_XBA = 

(ze <= zcrit)) 
setDT(low,key = "id") 
setDT(d_XBA,key = "id") 
d_XBA <- merge(d_XBA,low,all.x = TRUE, all.y = FALSE) 
d_XBA$LWIDNTUnexpectedLow_XBA[is.na(d_XBA$LWIDNTUnexpectedLow_XBA)] <- 

FALSE 

# XBA Standardized residual lower than zcrit for reading fluency 
academic test 

mRDGFLU <- lm(Tx_RDGFLU ~ G_XBA, d_XBA) 
ze <- rstandard(mRDGFLU) 
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low <- data.frame(id = as.numeric(names(ze)),RDGFLUUnexpectedLow_XBA = 
(ze <= zcrit)) 

setDT(low,key = "id") 
setDT(d_XBA,key = "id") 
d_XBA <- merge(d_XBA,low,all.x = TRUE, all.y = FALSE) 
d_XBA$RDGFLUUnexpectedLow_XBA[is.na(d_XBA$RDGFLUUnexpectedLow_XBA)] <- 

FALSE 

# XBA Standardized residual lower than zcrit for passage comprehension 
academic test 

mPSGCMP <- lm(Tx_PSGCMP~ G_XBA, d_XBA) 
ze <- rstandard(mPSGCMP) 
low <- data.frame(id = as.numeric(names(ze)),PSGCMPUnexpectedLow_XBA = 

(ze <= zcrit)) 
setDT(low,key = "id") 
setDT(d_XBA,key = "id") 
d_XBA <- merge(d_XBA,low,all.x = TRUE, all.y = FALSE) 
d_XBA$PSGCMPUnexpectedLow_XBA[is.na(d_XBA$PSGCMPUnexpectedLow_XBA)] <- 

FALSE 

# XBA LD (TRUE or FALSE) 
d_XBA <-  d_XBA %>% rowwise %>% mutate( 
  LDWRDATK_XBA = all(WRDATKDeficit_XBA,G_NotCogDeficit_XBA 

,WRDATK_CogDeficit_XBA,WRDATKUnexpectedLow_XBA), 
  LDLWIDNT_XBA = 

all(LWIDNTDeficit_XBA,G_NotCogDeficit_XBA,LWIDNT_CogDeficit_XBA,L
WIDNTUnexpectedLow_XBA), 

  LDRDGFLU_XBA = 
all(RDGFLUDeficit_XBA,G_NotCogDeficit_XBA,RDGFLU_CogDeficit_XBA,R
DGFLUUnexpectedLow_XBA), 

  LDPSGCMP_XBA = 
all(PSGCMPDeficit_XBA,G_NotCogDeficit_XBA,PSGCMP_CogDeficit_XBA,P
SGCMPUnexpectedLow_XBA) 

) 

# XBA Any SLD Diagnosis 
All_d$SLD_XBA <- (d_XBA$LDPSGCMP_XBA | d_XBA$LDRDGFLU_XBA | 

d_XBA$LDLWIDNT_XBA | d_XBA$LDWRDATK_XBA) 

# XBA Diagnostic Accuracy 
ctable <- with(All_d , 
               table( SLD_XBA, SLD_Latent )) 
confuseM <- confusionMatrix(ctable,positive = "TRUE") 
confuseM 

# XBA Diagnostic accuracy statistics 
Sens <- confuseM$byClass["Sensitivity"] 
Spec <- confuseM$byClass["Specificity"] 
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PPV_overall <- confuseM$byClass["Pos Pred Value"] 
NPV_overall <- confuseM$byClass["Neg Pred Value"] 

# Regular Composites 
## Regular Cognitive Composites 
### Slow but hyper-correct method 
# Create Composite SD 
dCSD <- longdata %>% 
  mutate(li = paste0("l_",i)) %>% 
  select(id,Ability,li,l) %>% 
  spread(key = li, value = l) %>% 
  unite(Abilityid,Ability,id) 
CompositeSD <- function(l) { 
  l <- as.matrix(l) 
  CSD <- numeric(kGx - 1) 
  for (i in 2:kGx) { 
    r <- l[1:i] %*% t(l[1:i]) 
    diag(r) <- 1 
    CSD[i - 1] <- sqrt(sum(r)) 
  } 
  matrix(CSD,ncol = 1) 
} 
dCompositeSD <- dCSD %>% select(-Abilityid) %>% apply(1,CompositeSD) 

%>% t %>% set_colnames(paste0("CSD_",2:kGx)) 

# Create Composite Sums 
dCSUM <- longdata %>% 
  mutate(li = paste0("T_",i)) %>% 
  select(id,Ability,li,Tx) %>% 
  spread(key = li, value = Tx) %>% 
  unite(Abilityid,Ability,id) 
CompositeSUM <- function(Tx) { 
  Tx <- as.matrix(Tx) 
  CSUM <- numeric(kGx - 1) 
  for (i in 2:kGx) { 
    CSUM[i - 1] <- sum(Tx[1:i]) 
  } 
  matrix(CSUM,ncol = 1) 
} 
dCompositeSUM <- dCSUM %>% select(-Abilityid) %>% apply(1,CompositeSUM) 

%>% t %>% set_colnames(paste0("C_",2:kGx)) 
Cz <- as_data_frame(dCompositeSUM / dCompositeSD) 

# Composite Scores 
CompositeScores <- data_frame(Abilityid = dCSUM$Abilityid) %>% 

cbind(Cz) %>% 
  separate(Abilityid,c("Ability","id")) %>% 
  gather("k","v",-Ability,-id)  %>% 
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  unite(test,Ability,k) %>% 
  spread(test,v) %>% 
  mutate(id = as.numeric(id)) %>% 
  setDT(key = "id") 
dCS <- dConstructScores %>% select(id,G:Gf) %>% setDT(key = "id") 
dCS <- dCS[widedata][CompositeScores] 

# Composite IQ 
# Function for calculating the sums of IQ 
fIQSum <- function(k) scale(longdata[i < k + 1,.(S = sum(Tx)),id]$S) 
ObservedIQ <- as.data.frame((sapply(1:kGx,fIQSum))) 
colnames(ObservedIQ) <- paste0("IQ_",1:kGx) 
ObservedIQ$id <- 1:n 
setDT(ObservedIQ, key = "id") 
dCS <- dCS[ObservedIQ] 

## Validity Coefficients 
ValidityCoefficient <- function(lc) cor(cbind(dCS %>% select_(lc) , dCS 

%>% select(contains(paste0(lc,"_C_")))))[1,-1] 
valCoef <- sapply(cog,ValidityCoefficient)[paste0(cog[1],"_C_",2:kGx),] 

^ 2 
rownames(valCoef) <- 2:kGx 
valCoef <- as_tibble(valCoef) 
valCoef$k <- 2:kGx 
valCoef <- valCoef %>%  select(k,Gc:Gf) 
dvalCoef <- valCoef %>% gather(k = "Gx",value = "Validity",-k) 
valCoefLabel <- dvalCoef %>% filter(k == 2) 
dvalCoef %>% ggplot(aes(k,Validity,color = Gx)) + geom_line() + 

geom_point() + geom_label_repel(data = valCoefLabel,aes(x = k,y = 
Validity, label = Gx)) + theme(legend.position = "none") + 
xlab("Number of Tests") + scale_x_continuous(limits = c(2, kGx 
),breaks = 2:kGx) 

dvalCoef$Validity <- formatC(dvalCoef$Validity, 2, format = "f") %>% 
gsub(pattern = "0.", replacement = ".") 

dvalCoef %>% spread(key = "Gx", value = "Validity") %>% 
knitr::kable(caption = "Validity coefficients by subtests") 

## LD Regular Composites (CS), Non SLD forced repeated testing method 
dCS$WRDATKDeficit_CS <- All_d$WRDATKDeficit 
dCS$LWIDNTDeficit_CS <- All_d$LWIDNTDeficit 
dCS$RDGFLUDeficit_CS <- All_d$RDGFLUDeficit 
dCS$PSGCMPDeficit_CS <- All_d$PSGCMPDeficit 
dCS$Tx_WRDATK   <- All_d$Tx_WRDATK 
dCS$Tx_LWIDNT <- All_d$Tx_LWIDNT 
dCS$Tx_RDGFLU <- All_d$Tx_RDGFLU 
dCS$Tx_PSGCMP <- All_d$Tx_PSGCMP 
dCS$SLD_Latent <-  All_d$SLD_Latent 
dCS$Tx_WRDATKDeficit_CS <- weakness(dCS$Tx_WRDATK) 
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dCS$Tx_LWIDNTDeficit_CS <- weakness(dCS$Tx_LWIDNT) 
dCS$Tx_RDGFLUDeficit_CS <- weakness(dCS$Tx_RDGFLU) 
dCS$Tx_PSGCMPDeficit_CS <- weakness(dCS$Tx_PSGCMP) 
for (kCS in 2:kGx) { 
  for (a in c("Gc","Ga","Gwm","Glr","Gs","Gs","Gf","Gv")) { 
    dCS[,paste0(a,"_Deficit_CS_",kCS)] <- weakness(dCS %>% 

select_(paste0(a,"_C_",kCS))) 
  } 

  # ID Identification 
  dCS[,paste0("G_NotCogDeficit_CS_",kCS)] <- dCS %>% 

select_(paste0("IQ_",kCS)) > -2/3 

  # IF WRDATKDeficit & Ga OR Gc OR Gwm 
  dCS[,paste0("WRDATK_CogDeficit_CS_",kCS)] <- 

(dCS[,paste0("Gc_Deficit_CS_",kCS), with = F] | 
dCS[,paste0("Ga_Deficit_CS_",kCS), with = F] | 
dCS[,paste0("Gwm_Deficit_CS_",kCS), with = F]) 

  # IF LWIDNTDeficit & Gc 
  dCS[,paste0("LWIDNT_CogDeficit_CS_",kCS)] <- 

(dCS[,paste0("Gc_Deficit_CS_",kCS), with = F] | 
dCS[,paste0("Ga_Deficit_CS_",kCS), with = F] | 
dCS[,paste0("Glr_Deficit_CS_",kCS), with = F] | 
dCS[,paste0("Gwm_Deficit_CS_",kCS), with = F]) 

  # IF RDGFLUDeficit & Gs OR Glr 
  dCS[,paste0("RDGFLU_CogDeficit_CS_",kCS)] <- 

(dCS[,paste0("Gs_Deficit_CS_",kCS), with = F] | 
dCS[,paste0("Glr_Deficit_CS_",kCS), with = F]) 

  # IF PSGCMPDeficit & Gc 
  dCS[,paste0("PSGCMP_CogDeficit_CS_",kCS)] <- 

(dCS[,paste0("Gc_Deficit_CS_",kCS), with = F] | 
dCS[,paste0("Gf_Deficit_CS_",kCS), with = F] | 
dCS[,paste0("Glr_Deficit_CS_",kCS), with = F] | 
dCS[,paste0("Gs_Deficit_CS_",kCS), with = F] | 
dCS[,paste0("Gwm_Deficit_CS_",kCS), with = F]) 

  # LEVEL IV Identification 
  dCS[,paste0("AcademicDeficit_",kCS)] <- 

(dCS[,paste0("WRDATKDeficit_CS"), with = F] | 
dCS[,paste0("LWIDNTDeficit_CS"), with = F] | 
dCS[,paste0("RDGFLUDeficit_CS"), with = F] | 
dCS[,paste0("PSGCMPDeficit_CS"), with = F]) & 
(dCS[,paste0("G_NotCogDeficit_CS_",kCS), with = F] == FALSE) 
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  # Standardized residual lower than zcrit for academic test Word 
Attack? 

  mWRDATK <- lm(as.formula(paste0("Tx_WRDATK ~ IQ_",kCS)), dCS) 
  dCS[,paste0("WRDATKUnexpectedLow_CS_",kCS)] <- rstandard(mWRDATK) <= 

zcrit 

  # Standardized residual lower than zcrit for academic test Letter 
Word Identification? 

  mLWIDNT <- lm(as.formula(paste0("Tx_LWIDNT ~ IQ_",kCS)), dCS) 
  dCS[,paste0("LWIDNTUnexpectedLow_CS_",kCS)] <- rstandard(mLWIDNT) <= 

zcrit 

  # Standardized residual lower than zcrit for academic test reading 
fluency? 

  mRDGFLU <- lm(as.formula(paste0("Tx_RDGFLU ~ IQ_",kCS)), dCS) 
  dCS[,paste0("RDGFLUUnexpectedLow_CS_",kCS)] <- rstandard(mRDGFLU) <= 

zcrit 

  # Standardized residual lower than zcrit for academic test passage 
comprehension? 

  mPSGCMP <- lm(as.formula(paste0("Tx_PSGCMP ~ IQ_",kCS)), dCS) 
  dCS[,paste0("PSGCMPUnexpectedLow_CS_",kCS)] <- rstandard(mPSGCMP) <= 

zcrit 

  # Regular Composite LD (TRUE or FALSE) 
  for (aa in c("WRDATK","LWIDNT","RDGFLU","PSGCMP")) { 
    dCS[,paste0("LD",aa,"_CS_",kCS)] <- dCS[,paste0(aa,"Deficit_CS"), 

with = F] & dCS[,paste0("G_NotCogDeficit_CS_",kCS), with = F] & 
dCS[,paste0(aa,"_CogDeficit_CS_",kCS), with = F] & 
dCS[,paste0(aa,"_CogDeficit_CS_",kCS), with = F] & 
dCS[,paste0(aa,"UnexpectedLow_CS_",kCS), with = F] 

  } 
  dCS[,paste0("SLD_CS_",kCS)] <- dCS[,paste0("LDPSGCMP_CS_",kCS), with 

= F] | dCS[,paste0("LDRDGFLU_CS_",kCS), with = F] | 
dCS[,paste0("LDLWIDNT_CS_",kCS), with = F] | 
dCS[,paste0("LDWRDATK_CS_",kCS), with = F] 

} 

# Diagnostic Accuracy of Regular Composites 
# PPV 
ppv_CS <- function(i) confusionMatrix(table(dCS[,paste0("SLD_CS_",i), 

with = F][[1]],dCS[,"SLD_Latent", with = F][[1]]),positive = 
"TRUE")$byClass["Pos Pred Value"] 

# Confusion matrix 
confusion_CS <- function(i) 

confusionMatrix(table(dCS[,paste0("SLD_CS_",i), with = 
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F][[1]],dCS[,"SLD_Latent", with = F][[1]]),positive = 
"TRUE")$byClass[1:5] 

ConfusionMatrixCS <- sapply(2:kGx,confusion_CS) 
colnames(ConfusionMatrixCS) <- 2:kGx 
dppv_CS <- data.frame(k = 2:kGx, PPV = sapply(2:kGx,ppv_CS)) 
ggplot(dppv_CS, aes(k,PPV)) + geom_line() + geom_point() + 

geom_text(aes(label = gsub(formatC(PPV,2,format = "f"),pattern = 
"0.",replacement = ".")),vjust = 1.5) + xlab("Number of Subtests 
per Cognitive Composite") + ylab("Positive Predictive Value") 

knitr::kable(ConfusionMatrixCS, caption = "Accuracy Statistics for 
Regular Composites") 

# Accuracy of Academic Achievement Deficits 
# Academic Achievement Variables 
aav <- c("WRDATK","LWIDNT","RDGFLU","PSGCMP") 

# Academic Achievement Variable Names 
aaNames <- c("Word Attack", "Letter-Word Identification", "Ready 

Fluency", "Passage Comprehension") 

# Accuracy of Diagnostic Steps (XBA) 
## Accuracy of XBA Cognitive Deficits 
rbind(table(All_d$Gc_Deficit, d_XBA$Gc_Deficit_XBA) %>% 

confusionMatrix(positive = "TRUE") %$% byClass[1:5], 
      table(All_d$Gf_Deficit, d_XBA$Gf_Deficit_XBA) %>% 

confusionMatrix(positive = "TRUE") %$% byClass[1:5], 
      table(All_d$Ga_Deficit, d_XBA$Ga_Deficit_XBA) %>% 

confusionMatrix(positive = "TRUE") %$% byClass[1:5], 
      table(All_d$Gv_Deficit, d_XBA$Gv_Deficit_XBA) %>% 

confusionMatrix(positive = "TRUE") %$% byClass[1:5], 
      table(All_d$Glr_Deficit, d_XBA$Glr_Deficit_XBA) %>% 

confusionMatrix(positive = "TRUE") %$% byClass[1:5], 
      table(All_d$Gwm_Deficit, d_XBA$Gwm_Deficit_XBA) %>% 

confusionMatrix(positive = "TRUE") %$% byClass[1:5], 
      table(All_d$Gs_Deficit, d_XBA$Gs_Deficit_XBA) %>% 

confusionMatrix(positive = "TRUE") %$% byClass[1:5]) %>% 
  set_rownames(c("Gc", "Gf", "Ga", "Gv", "Glr","Gwm","Gs")) %>% 
  knitr::kable(digits = 2, caption = "Accuracy of Cognitive Deficits 

(XBA Method)") 

## Accuracy of Any Cognitive Deficit (XBA) 
acdf <- function(aa) table(All_d[paste0(aa,"_CogDeficit")][[1]], 

d_XBA[,paste0(aa,"_CogDeficit_XBA")][[1]]) %>% 
confusionMatrix(positive = "TRUE") %$% byClass[1:5] 

sapply(aav,acdf) %>% t %>% 
  set_rownames(aaNames) %>% 
  knitr::kable(digits = 2, caption = "Accuracy of Any Cognitive Deficit 

for Specific LD Diagnoses (XBA Method)") 
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## Accuracy of Unexpected Low Achievement (XBA Method) 
ulaf <- function(aa) table(All_d[paste0(aa,"UnexpectedLow")][[1]], 

d_XBA[,paste0(aa,"UnexpectedLow_XBA")][[1]]) %>% 
confusionMatrix(positive = "TRUE") %$% byClass[1:5] 

sapply(aav,ulaf) %>% t %>% 
  set_rownames(aaNames) %>% 
  knitr::kable(digits = 2, caption = "Accuracy of Unexpected Low 

Achievement for Specific LD Diagnoses (XBA Method)") 

# Accuracy of XBA Specific LD 
aaf <- function(aa) table(All_d[paste0("LD",aa,"_Latent")][[1]], 

d_XBA[,paste0("LD",aa,"_XBA")][[1]]) %>% confusionMatrix(positive 
= "TRUE") %$% byClass[1:5] 

sapply(aav,aaf) %>% t %>% 
  set_rownames(aaNames) %>% 
  knitr::kable(digits = 2, caption = "Accuracy of Specific LD Diagnoses 

(XBA Method)") 

# Accuracy of Diagnositic Steps (Regular Composites) 
# Accuracy of Absence of G Deficit 
gf <- function(i) table(All_d$G_NotCogDeficit_Latent, 

dCS[,paste0("G_NotCogDeficit_CS_",i),with  = F][[1]]) %>% 
confusionMatrix(positive = "TRUE") %$% byClass[1:5] 

rbind(table(All_d$G_NotCogDeficit_Latent, d_XBA$G_NotCogDeficit_XBA) 
%>% confusionMatrix(positive = "TRUE") %$% 
byClass[1:5],sapply(2:kGx,gf) %>% t) %>% 

  set_rownames(c("XBA G", paste0("IQ_", 2:kGx))) %>% 
  knitr::kable(digits = 2, caption = "Accuracy of Absence of G Deficits 

(XBA Method & Regular Composites)") 

# Accuracy of Cognitive Deficits (Regular Composites) 
cogf <- function(cog,i) table(All_d[paste0(cog,"_Deficit")][[1]], 

dCS[,paste0(cog,"_Deficit_CS_",i),with = F][[1]]) %>% 
confusionMatrix(positive = "TRUE") %$% byClass[1:5] 

for (cog in c("Gc","Ga","Gwm","Glr","Gs","Gs","Gf","Gv")) 
print(cbind(Subtests = 2:kGx,map2(cog,2:kGx,cogf) %>% 
simplify2array() %>% t %>% as.data.frame()) %>% 

                                                                  
knitr::kable(digits = 2, caption = paste0("Accuracy of ",cog," 
Deficit (Regular Composites)"))) 

# Accuracy of Any Cognitive Deficit for Specific LD (Regular 
Composites) 

acdif <- function(aa,i) table(All_d[paste0(aa,"_CogDeficit")][[1]], 
dCS[,paste0(aa,"_CogDeficit_CS_",i),with = F][[1]]) %>% 
confusionMatrix(positive = "TRUE") %$% byClass[1:5] 

cbind(Subtests = 2:kGx,map2("WRDATK",2:kGx,acdif) %>% simplify2array() 
%>% t %>% as.data.frame()) %>% 
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  knitr::kable(digits = 2, caption = "Accuracy of Any Cognitive Deficit 
for Word Attack LD (Regular Composites)") 

cbind(Subtests = 2:kGx,map2(aav[2],2:kGx,acdif) %>% simplify2array() 
%>% t %>% as.data.frame()) %>% 

  knitr::kable(digits = 2, caption = "Accuracy of Any Cognitive Deficit 
for Letter-Word Identification LD (Regular Composites)") 

cbind(Subtests = 2:kGx,map2(aav[3],2:kGx,acdif) %>% simplify2array() 
%>% t %>% as.data.frame()) %>% 

  knitr::kable(digits = 2, caption = "Accuracy of Any Cognitive Deficit 
for Reading Fluency LD (Regular Composites)") 

cbind(Subtests = 2:kGx,map2(aav[4],2:kGx,acdif) %>% simplify2array() 
%>% t %>% as.data.frame()) %>% 

  knitr::kable(digits = 2, caption = "Accuracy of Any Cognitive Deficit 
for Passage Comprhension LD (Regular Composites)") 

# Accuracy of Unexpected Low Achievement (Regular Composites) 
ulaif <- function(aa,i) table(All_d[paste0(aa,"UnexpectedLow")][[1]], 

dCS[,paste0(aa,"UnexpectedLow_CS_",i),with = F][[1]]) %>% 
confusionMatrix(positive = "TRUE") %$% byClass[1:5] 

for (ii in 1:4) print(cbind(Subtests = 2:kGx,map2(aav[ii],2:kGx,ulaif) 
%>% simplify2array() %>% t %>% as.data.frame()) %>% 

                        knitr::kable(digits = 2, caption = 
paste0("Accuracy of Unexpected Low Achievement for 
",aaNames[ii]," LD (Regular Composites)"))) 

# Accuracy of Specific LD Diagnoses (Regular Composites) 
aaf <- function(aa,i) table(All_d[paste0("LD",aa,"_Latent")][[1]], 

dCS[,paste0("LD",aa,"_CS_",i),with = F][[1]]) %>% 
confusionMatrix(positive = "TRUE") %$% byClass[1:5] 

for (a in 1:4) print(cbind(Subtests = 2:kGx,map2(aav[a],2:kGx,aaf) %>% 
simplify2array() %>% t %>% as.data.frame()) %>% 

                       knitr::kable(digits = 2, caption = 
paste0("Accuracy of ",aaNames[a]," LD (Regular Composites)"))) 
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