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BEYOND PROBLEM-SOLVING: ELEMENTARY STUDENTS’ MATHEMATICAL
DISPOSITIONS WHEN FACED WITH THE CHALLENGE

OF UNSOLVED PROBLEMS

Jenna R. O’Dell
260 Pages

The goal of this study was to document the characteristics of students’ dispositions
towards mathematics when they engaged in the exploration of parts of unsolved problems:
Graceful Tree Conjecture and Collatz Conjecture. Ten students, Grades 4 and 5, from an after-
school program in the Midwest participated in the study. I focused on the cognitive, affective,
and conative aspects of their mathematical dispositions as they participated in 7 problem-solving
sessions and two interviews.

With regard to cognitive aspects of the students’ dispositions, I focused on the students
attempts to identify and justify patterns for labeling graphs. Overall, the unsolved problems were
accessible to the students and they found patterns that enabled them to gracefully label specific
classes of graphs for the Graceful Tree Conjecture. With regard to affective aspects of students’
dispositions, I found five themes that characterized their beliefs about the nature of mathematics.
Also, students exhibited a variety of emotions throughout the study. The two emotions exhibited
most frequently were frustration and joy. The third type of disposition that students exhibited
was the conative construct of perseverance. This was related to the interplay of frustration and

joy and characterized the productive struggle that students experienced throughout the study. To



examine students’ dispositions in greater depth, I conducted a case study analysis of the

positional identities of two students, which I report in a detailed narrative.

KEYWORDS: Dispositions, Elementary Education, Graceful Tree Conjecture, Mathematics,

Problem Solving, Unsolved Problems
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CHAPTER I: THE PROBLEM AND ITS BACKGROUND

When a child draws a picture, we call her an artist. When a child plays the piano, we call
her a musician, and when a child plays a sport, we call her an athlete. When a child does
mathematics, why do we not call her a mathematician?

Productive Mathematical Dispositions

The American mathematician William Thurston (1994) claimed that, “mathematics is one
of the most intellectually gratifying of human activities” (p. 170). He explained that
mathematicians engage in solving problems, and their goal is to progress what humans know
about mathematics. Burton (1999) reported that when he interviewed mathematicians, they said
they found pleasure in the struggle of doing mathematics. The mathematicians from Burton’s
interviews described mathematics as “a world of uncertainties and explorations, and the feelings
of excitement, frustration and satisfaction, associated with these journeys, but, above all, a world
of connections, relationships and linkages” (p. 138). Moreover, according to Burton,
“mathematics is no longer seen, by the majority of mathematicians, as an individual activity” (p.
139). Not only do mathematicians believe they should work collaboratively, but Boaler (2016)
reported that top mathematicians in the country have commented that solving a problem is not
about speed but about working slowly and thinking deeply.

These characterizations reflect a certain disposition toward mathematics. A mathematical
disposition is “a personal point of view on mathematics that includes what mathematics is about;
what it can and should be used for; who does it; and the role it plays, or should play, in one’s
activities and subcultures” (Gainsburg, 2007, pp. 477-478). It is important that students develop
positive dispositions toward mathematics—about what it means to know and learn

mathematics—similar to those of mathematicians. In 2000, the National Council of Teachers of



Mathematics (NCTM) presented a vision for mathematics education that is characterized as

follows:
Imagine a classroom, a school, or a school district where all students have access to high-
quality, engaging mathematics instruction. There are ambitious expectations for all
students, which accommodations for those who need it. Knowledgeable teachers have
adequate resources to support their work and are continually growing as professionals.
The curriculum is mathematically rich, offering students opportunities to learn important
mathematical concepts and procedures with understanding. Technology is an essential
component of the environment. Students confidently engage in complex mathematical
tasks chosen carefully by teachers. They draw on knowledge for a wide variety of
mathematical topics, sometimes approaching the same problem for different
mathematical perspectives or representing the mathematics in different ways until they
find methods that enable them to make progress. Teachers help students make, refine, and
explore conjectures on the basis of evidence and use a variety of reasoning and proof
techniques to confirm or disprove those conjectures. Students are flexible and resourceful
problem solvers. Alone or in groups and with access to technology, they work
productively and reflectively, with the skilled guidance of their teachers. Orally and in
writing, students communicate their ideas and results effectively. They value
mathematics and engage actively in learning it. (p. 3)

To achieve this vision, NCTM published a set of mathematics content and process standards to

guide the teaching and learning of mathematics across the grade levels. More recently, the

Common Core State Standards for Mathematics (National Governors Association Center for

Best Practices [NGA] & Council of Chief State School Officers [CCSSO], 2010) outlines a



similar set of standards, including eight standards for mathematical practice that should be the
focus of instruction for all students in Kindergarten through Grade 12. The mathematical
practices involve (a) making sense of problems and persevering in solving them, (b) reasoning
abstractly and quantitatively, (c) constructing viable arguments and critiquing the reasoning of
others, (d) modeling with mathematics, () using appropriate tools strategically, (f) attending to
precision, (g) looking for and making use of structure, and (h) looking for and expressing
regularity in repeated reasoning (NGA & CCSSO, 2010, pp. 6-8).

Thus, according to the standards that are informing mathematics curriculum and
instruction in the United States, students should be experiencing mathematics in ways that reflect
the views expressed by mathematicians about what it means to know and do mathematics. As a
result, the dispositions students develop about mathematics should be positive and productive.

Students’ Mathematical Dispositions

There are many mathematical dispositions held by students. It has been well documented,
however, that many students have negative feelings toward mathematics. Beilock, Gunderson,
Ramirez, and Levine (2010) stated that people have fear and anxiety about doing mathematics.
“The view most students develop of mathematics is that it is a cut-and-dried, 400-year-old list of
theorems and applications. They do not get the sense that mathematics is an exciting, living, and
developing subject” (Su, 2010, p. 760). Similarly, Allen (2004) reported that the following quote
was characteristic of the way Grade 6 students in her study viewed mathematics: “Maths lessons
is all sums and hard stuff isn’t it. It’s not something you enjoy” (p. 240).

Many students think the role of mathematics in school is to get the right answer to a
question, and students tend to think they are good at mathematics if they can solve a problem

quickly (Boaler, 2016). Schoenfeld (1989) found that the average amount of time students spend



on homework problems was just less than 2 minutes. When the students in his study were asked
how long they would work on a problem before knowing it was impossible, the average answer
was 12 minutes. More recently, in The Math Gene, Delvin (2000) gave a list of beliefs people
hold about mathematics, including “To most people, mathematics is calculating with numbers”
(p. 71) and “mathematics is predictable. It involves following precise rules.... There is always a
right answer. (And it’s in the back of the book)” (p. 72).

The mathematical dispositions of students described above are vastly different from the
mathematical dispositions of the mathematicians described by Burton (1999). As Boaler (2016)
explained, “When we ask students what math is, they will typically give descriptions that are
very different from those given by experts in the field” (p. 21). Mathematicians believe
mathematics is about discovering and working slowly through mathematics; students believe that
mathematics problems should be solved quickly and that they should be told if their solution is
correct. Mathematicians believe it is acceptable to spend years on a single mathematics problem
(Singh, 1997); many students think that a problem should be solvable in several minutes.
Mathematicians believe mathematics is alive and something to discover; students believe that
mathematics is something they need to learn and memorize. Mathematicians believe everyone
can be successful at mathematics; students believe certain people either have the mathematics
gene or they do not.

The mathematical dispositions students hold may be perpetuated by their experiences in
school mathematics. Mathematics classrooms are traditionally set up where teachers explain
procedures and rules to students (Fosnot & Dolk, 2002) and mathematics is about answering
questions quickly and knowing the answers. These concerns date back to 1990 when Lampert

explained that



these cultural assumptions are shaped by school experience, in which doing mathematics

means following the rules laid down by the teacher; knowing mathematics means

remembering and applying the correct rule when the teacher asks a questions; and

mathematical truth is determined when the answer is ratified by the teacher. (p. 32)
Lampert further explained that mathematics is thought of as a subject where a teacher asks a
question, the student solves the problem by applying a rule, and the teacher ratifies the answer.
She said, “The teacher and the textbook are the authorities, and mathematics is not a subject to
be created or explore” (Lampert, 1990, p. 32).

In 2014, NCTM released Principles to Action: Ensuring Mathematical Success for All in
which they described current unproductive beliefs about the learning and teaching of
mathematics, similar to those described by Lampert in 1990. These unproductive beliefs include
the following: basic skills need to be grasped prior to a student learning mathematics, students
should memorize steps to solve a problem, “an effective teacher makes the mathematics easy for
students by guiding them step by step through problem solving to ensure that they are not
frustrated or confused” (National Council of Teachers of Mathematics [NCTM], 2014, p. 11),
and a teacher’s role is to tell the students what they need to know and demonstrate the process of
solving every mathematics problem. Furthermore, according to NCTM, many teachers and
parents believe mathematics should be taught the way they learned mathematics, through
memorization and algorithms; many teachers believe that if they wander from that method their
teaching will not be effective. Thus, for students to experience an instructional environment that
supports the development of positive mathematical dispositions, changes in teachers’ and

parents’ beliefs about how mathematics should be taught may be needed.



Changing Students’ Dispositions

Many mathematics educators and professional organizations report that problem solving
should be a main focus of school mathematics and could have a positive influence on students’
mathematical dispositions and identities (e.g., Aguirre, Mayfield-Ingram, & Martin, 2013;
Boaler, 2016; NCTM, 2014). Problem solving is

a situation that proposes a mathematical question whose solution is not immediately

accessible to the solver, because he [or she] does not have an algorithm for relating the

data with the unknown or a process that automatically relates the data with the

conclusion. Therefore, he [or she] must search, investigate, establish relationships,

involve his [or her] affect, etc., to deal with it. (Callejo & Vila, 2009, p. 112)
Boaler (2016) explained that mathematical problem solving should involve tasks that have
multiple methods, pathways, and representations; should be accessible to all students; and should
involve students in reasoning about solutions and presenting convincing justifications. Similarly,
NCTM (2014) recommended that the problems given to students should have multiple solution
approaches and promote mathematical reasoning. Aguiree, Mayfield-Ingram, and Martin (2013)
argued that problems should have high cognitive demand and allow students to debate and justify
their solution. They also noted that tasks should have different entry points so students of all skill
levels can interact with the problem and the problem should encourage collaboration among
students.

With the recent introduction of the Common Core State Standards in the United States,
problem solving may have become a main point of discussion, but the topic of problem solving
in mathematics education has been around since at least the 1980s. It became the theme of school

mathematics when NCTM released the Agenda for Action in 1980, which stated that the focus of



mathematics in schools should be problem solving. In 1989, NCTM recommended that problems
be given to students that contain no obvious solution and that could take “hours, days and even
weeks to solve” (p. 6). In 1992, Schoenfeld claimed that “solving problems is ‘the heart of
mathematics’ (p. 339).

The goals and recommendations set forth for problem solving since the 1980s have not
been fully realized or widely recognized (NCTM, 2014; Weiss & Pasley, 2004). As described
above, many teachers and parents still believe that mathematics should be taught through rules,
procedures, and memorization (NCTM, 2014). In a study conducted by Weiss and Pasley (2004),
59% of teachers observed by the researchers used a traditional, low-quality lesson structure of
demonstrate, guide practice, assign independent practice, and assess. Although many teachers do
present students with cognitively demanding problem-solving tasks (Smith & Stein, 1998),
research has shown that teachers have a tendency to implement those tasks in such a way that the
cognitive demand is diminished, resulting in students performing procedures rather than solving
problems (NCTM, 2014). As a result, during their school years, most students will have
experienced thousands of low-level tasks that have shaped their dispositions toward
mathematics. As Schoenfeld (1989) reported, “Whether or not the student is conscious of it, this
prior experience shapes the amount of time and effort that will be invested in [the problems they
encounter]” (p. 341). Yet, students’ engagement in tasks of high cognitive demand is “strongly
connected with their sense of identity, leading to increased engagement and motivation in
mathematics” (NCTM, 2014, p. 17). Therefore, it is critical that students have opportunities to
explore high cognitive demand tasks and persevere in solving challenging mathematics

problems.



Although there is an abundance of research on mathematical problem solving (e.g., Cai,
2003; Lester 1994; Schoenfeld, 1992), Lesh and Zawojewski (2007) stated that “a fresh
perspective of problem solving is needed—one that goes beyond current school curricula and
state standards” (p. 780). Unsolved problems have the potential to provide the kind of fresh
perspective called for.

There are many problems in mathematics that have yet to be solved (e.g., show that every
even integer greater than 2 can be expressed as the sum of two primes). Many of these different
unsolved mathematics problems are ones that elementary children can understand and attempt to
solve (Pachter, 2015). Schoenfeld (1992) explained that these types of unsolved problems are
similar to what a mathematician does on a daily basis but are different only on the scale of the
problem; he claimed that students’ mathematical experiences should “prepare them for tackling
such challenges” (p. 339). He further argued that students should participate in solving real
problems and work on problems that have similar difficulty levels to unsolved problems and that
are just as complex.

When students are engaged with unsolved problems, they may struggle because there is
not a clear path to the solution. However, struggle should not be avoided and can be productive
to the learning process. Productive struggle can occur when students investigate problems
deeply, engage in experimentation, and have perseverance to make sense of the mathematics at
hand, rather than purely pursuing a correct answer. The research literature has reported the
benefits of allowing students to struggle productively (e.g., Hiebert & Grouws, 2007; Reinhart,
2000). For example, Kapur (2010) completed a study comparing seventh-grade students who
were given the opportunity to struggle productively with students who were not given the

opportunity. The students who engaged in productive struggle while solving problems had long-



term benefits. They were able to significantly outperform the students who did not have an
opportunity to struggle on problem-solving tasks, and they were able to transform their
knowledge to new, higher-level concepts in mathematics that had yet to be taught. The benefits
of productive struggle for student learning are reflected in NCTM’s (2014) claim that “effective
teaching of mathematics consistently provides students, individually and collectively, with
opportunities and supports to engage in productive struggle as they grapple with mathematical
ideas and relationships” (p. 48).

Problem Statement and Research Question

Mathematicians view mathematics as a beautiful field of study and discovery. Although
we want students to develop views of mathematics that are similar to those of mathematicians,
students typically think of mathematics as something mathematicians have created that they now
need to learn (Fosnot & Dolk, 2002). Many students think that they do not have the
“mathematics gene” and have fear or anxiety about mathematics. However, Lampert (1990)
conducted a study in which fifth-grade students engaged in many of the common practices of
mathematicians. She found that when students engaged in these practices, they acted as
mathematicians and behaved differently than students who did not have this experience. More
recently, Boaler (2016) claimed that it could be empowering for students to work like a
mathematician. The work of mathematicians involves problems that have yet to be solved.

I became interested in students attempting unsolved mathematics problems when I read
Fermat’s Enigma: The Epic Quest to Solve the World’s Greatest Mathematical Problem by
Simon Singh (1997). The book discussed the history of the famous mathematics problem,
Fermat’s Last Theorem, that no three positive integers can satisfy the equation a™ + b™ = ¢" for

any integer value of n that is greater than two. Singh described the excitement people had at



attempting to solve the problem. Many people of all ages tried to win the prize money that would
be given to the first person to solve the problem. This was a problem that children and adults
could understand and work on. One particular child, Andrew Wiles, became interested in this
problem before he pursued a career in mathematics. After he became a mathematician, Wiles
spent many years attempting to solve this problem and was eventually successful.

As Iread Singh’s (1997) book, I wondered what would happen if all students were given
the opportunity to explore problems in mathematics that have yet to be solved. I wondered
whether that experience would change how students view mathematics, and whether they would
be empowered and develop dispositions similar to those of mathematicians. With these ideas in
mind, [ examined the following question:

What are the characteristics of students’ dispositions toward mathematics when they engage
in the exploration of unsolved problems?
Conceptual Framework

I believe that learning occurs through social practices and that students construct
understanding through active participation in learning communities. Thus, to investigate
students’ dispositions as they engaged in unsolved problems, I used a conceptual framework that
integrated communities of practice (Wenger, 1998), positional identities (Holland, Skinner,
Lachicotte, & Cain, 1998), and positioning theory (van Langenhove & Harr¢, 1999). First, [ used
communities of practice (Wenger, 1998) as an overarching framework. The ideas of dispositions
are very broad and I needed a way to narrow my focus. Thus, I used communities of practice as a
way to help focus my study. Identity is a large portion of communities of practice, and I used that
idea of narrow my focus. I believe students display and develop their identity through

dispositions. Thus, I investigated students’ mathematical dispositions and the dispositions they

10



display through their in-the-moment identity. Because of also looking at their identity, positional
identities (Holland et al.,1998) and positioning theory (van Langenhove & Harré, 1999) became
part of the conceptual framework.

Communities of Practice

The overarching lens of my dissertation study was the social theory of learning created by
Wenger (1998) called communities of practice. This theory is based on Lave and Wenger’s
(1991) theory of legitimate peripheral participation. I used this perspective as a way to create a
community of practice among the students that is similar to the practice of mathematicians and to
situate the students’ engagement with unsolved problems. Lesh and Zawojewski (2007) posited
that communities of practice is a useful theoretical perspective for research related to
mathematical problem solving.

Wenger (1998) claimed that learning is a fundamental part of our lives. When learning,
we are “active participants in the practices of social communities and constructing identities in
relation to these communities” (p. 4). The idea of practices and identities are two major
components of communities of practice.

Practice. Practice is “a process by which we can experience the world and our
engagement with it as meaningful” (Wenger, 1998, p. 51). The idea of practice is the doing and it
is always social. It draws on historical and social situations and gives meaning to the things we
do.

It includes what is said and what is left unsaid; what is represented and what is assumed.

It includes the language, tools, documents, images, symbols, well-defined roles, specified

criteria, codified procedures, regulations, and contracts that various practices make

explicit for a variety of purposes. But it also includes all the implicit relations, tacit

11



conventions, subtle cues, untold rules of thumb, recognizable intuitions, specific

perceptions, well-tuned sensitivities, embodied understandings, underlying assumptions,

and shared world views. (Wenger, 1998, p. 47)

When someone is a member of a community of practice, he or she is a practitioner.

People have different experiences each day in their life. A person may experience
patterns in their life, but each experience is different and new and allows a person the process of
negotiation of meaning. Negotiation of meaning is the process by which a person views and
experiences the world and by which their participation is meaningful. The negotiation of
meaning includes participation. Our participation in the world is a “continual process of renewed
negotiation” (p. 54). Participation refers to the social experience a person has in their
community. It also involves the personal aspect of a person because it relates to a person’s
feelings and sense of belonging. Participation involves the whole person. According to Wenger,
participation shapes the experiences we have and the communities.

The relationship between practice and community defines a community of practice
(Wenger, 1998). The three dimensions of a community of practice are mutual engagement, joint
enterprise, and shared repertoire. There is mutual engagement because people must negotiate
meaning together and it is how the community is defined. Engagement is not mutual simply
because members of a community are in the same room or classroom but because “they sustain
dense relations of mutual engagement organized around what they are there to do” (Wenger,
1998, p. 74). For significant learning to occur there must be mutual engagement. The members
of the community interact and learn from each other and because of this the practices evolve.
The participation in learning allows a member or a group to build identity, change perspectives,

change the way they participate, and the way they experience life. There is a joint enterprise,
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which is defined by the participants, that comes from the mutual engagement from the
community and is a way to hold participants accountable for their goal. It allows for the
engagement to align and a way to have accountability. The shared repertoire of “practice
includes routines, words, tools, ways of doing things, stories, gestures, symbols, genres, actions,
or concepts that the community has produced or adopted in the course of its existence, and which
have become part of its practice” (Wenger, 1998, p. 83). It is a way to renegotiate “the meaning
of various elements” (p. 95). When a community of practice forms, there are several indicators,
including, (a) sustained mutual relationships, (b) a common way of engaging in a practice, (c)
having shared knowledge, (d) understanding what each person can do and how they contribute to
the enterprise, (€) shortcuts of ways to communicate with each other, (f) inside jokes or shared
stories, and (g) no preambles because the interactions and conversations are more of an ongoing
process (Wenger, 1998).

Identities. According to Wenger (2010)—in his social learning theory communities of
practice—identity is a reflection of the complex relationship between the personal and the social.
With a focus on identity, the framework of the social learning theory is extended because (a) “it
narrows the focus onto the person, but from a social perspective, [and] (b) it expands the focus
beyond communities of practice, calling attention to broader processes of identification and
social structures” (Wenger, 1998, p. 145). In other words, identity allows the framework to
swivel between an individual and the social, allowing each to be discussed in terms of the other.

Every act a person exhibits—whether private or public—reflects a person’s identity
(Wenger, 1998). How a person interprets her or his position, attempts to engage in a solving a

problem, what the person knows, or understand what he or she does is part of the person’s
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identity. These identities are “shaped by belonging to a community” (p. 146) and depend on their
engagement within the practice.

Wenger (1998) explained different ways identity is in practice, for example, as it relates
to one’s negotiated experience and community membership. When identity is looked at as
negotiated experience it is defined “by the ways we experience our selves through participation
as well as by the ways we and others reify our selves” (p. 149). When a person defines who they
are by the unfamiliar and the familiar, they are looking at their identity through their community
membership. More specifically, the dimensions of their identify within the community refers to
their mutual engagement within the community and their accountability towards the enterprise.
A person’s identify is ongoing, progressive, and shaped through effort.

Positional Identities

How Wenger (1998) and Holland, Skinner, Lachicotte, and Cain (1998) defined identity
is similar. Wenger defined identity as “a way of talking about how learning changes who we are
and creates personal histories of becoming in the context of our communities” (p. 5). Holland et
al. defined identity as “a concept that figuratively combines the intimate or personal world with
the collective space of cultural forms and social relations” (p. 5). Wenger mentioned how a
person acts reflects their identity; this is again similar to Holland et al. However, Holland et al.
gave this a name—positioning—and created a theoretical framework based on positioning and
identities. Positioning is a linguistic behavior (Holland et al., 1998). For example, if a person
says “please” and “thank you” they have positioned herself or himself as a moral person and then
also identified as a moral person.

Another part of Holland et al.’s (1998) theory pertains to the construct of figured worlds.

Figured worlds are similar in ways to communities of practice. Figured worlds are “developed
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through participants and their work ...[,] are social encounters in which participants’ positions
matter.... [, and] are socially organized and reproduced” (Holland et al., 1998, p. 41). Schools
could be defined as a figured world. The students in my study have only experienced
mathematics as the figured world of school mathematics.

Positional identities “have to do with behavior as indexical of claims to social
relationships with others. They have to do with how one identifies one’s position relative to
others” (Holland et al., 1998, p. 127). Holland et al. called people’s actions based on events as
social positions. The social positions “become dispositions through participation in,
identification with, and development of expertise within the figured world” (p. 136). The social
position develops into a positional identity over a long period of time. “The long term, however,
happens through day-to-day encounters and is built, again and again, by means of artifacts, or
indices of positions, that newcomers gradually learn to identify and then possibly to identify
themselves” (p. 133). Because of the short duration of my study, I was not able to examine the
positional identities that are enacted over a long period of time and there was not time for a new
figured world or a community of practice to fully develop. However, I was able to examine the
social positions, what I refer to throughout as in-the-moment identities, that were enacted day-to-
day.

Positional identity is displayed through students’ social position in terms of dispositions
and in-the-moment identities. These identities come from “a set of dispositions towards
themselves in relation to where they can enter, what they can say, what emotions they can have,

and what they can do in a given situation” (p. 143).
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Positioning Theory

My use of the term in-the-moment identity is similar to Wood’s (2013) term micro-
identity, which is how a student positions himself or herself or someone else positions them in
any instant of time. Wood claimed that positioning theory (van Langenhove & Harré, 1999) is a
way to understand students’ micro-identities because it documents the exact moment when the
identity was enacted. She reported that “framing identity as interactional positioning means that a
close examination of interactions can reveal how identities are assumed, abandoned, elaborated,
and altered over short periods of time and across situations” (Wood, 2013, p. 778). This is
because positions are fluid and change based on the different situations people encounter (van
Langenhove & Harré, 1999). Thus, I have drawn on positioning theory to inform my
examination of students’ in-the-moment identities.

Positioning theory is “the study of local moral orders as ever-shifting patterns of mutual
and contestable rights and obligations of speaking and acting” (van Langenhove & Harré, 1999,
p. 1). It examines the dense-texture of interactions between different people from a person’s own
point of view as well as others. It is “the discursive construction of personal stories that make a
person’s actions intelligible and relatively determinate as social acts and within which the
members of the conversations have specific locations” (van Langenhove & Harré, 1999, p. 16).
People can be positioned by themselves or by others in different ways such as being strong or
weak, good at math or bad at math, the boss or the follower, and so on. People are positioned
based on conversations and actions. These conversations create different storylines and how the
people position themselves become connected to the storylines. For example, a teacher could

position herself giving instructions and controlling the activities completed in the class. The
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conversations or actions of the teacher position the other people in the class as students. These
positionings reflect one’s personal identity (van Langenhove & Harré, 1999).
Use of Conceptual Framework

Aspects of the theories of communities of practice (Wenger, 1998), positional identities
(Holland et al., 1998), and positional theory (van Langenhove, & Harré, 1999) comprised a
conceptual framework for this study. I kept these ideas in the forefront throughout the whole
study. Communities of practice was an overarching theory. I wanted to have students experience
mathematics through a community of practice different from traditional school mathematics, and
experience it in a community more similar to that of a mathematician through the use of
unsolved mathematics problems. I use Holland et al.’s idea of identity as opposed to Wenger’s
idea of identity because I found his definition of identity more clear. Positional identities were a
way to define and make sense of student’s in-the-moment identities that were displayed through
their dispositions.

Chapter One Summary

Problem solving has been a major portion of mathematics education research (e.g., Cai,
2003; Lester 1994; Schoenfeld, 1992), but the idea of unsolved mathematics problems has yet to
be researched. We also know that students do not have the same dispositions about mathematics
that mathematicians have (Boaler, 2016). This study explores students’ dispositions while they
engage with unsolved problems. Communities of practice (Wenger, 1998), positional identities
(Holland et al., 1998), and positional theory (van Langenhove & Harré, 1999) make up the
conceptual framework used to explore the study.

The chapters that follow describe the details and results of my dissertation study on

elementary students engagement with unsolved mathematics problems. In Chapter II, I
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summarize the literature on elementary students’ problem-solving, dispositions, and in-the-
moment identities enacted during problem solving. In Chapter III, I describe the semi-structured,
task based interviews used for this qualitative research study, the participants, the after school
program demographics, the context of the problem-solving sessions, data sources, and data
analysis. In Chapter IV, I share the results from the analysis for the study. More specifically, I
discuss the results from the interviews, the dispositions the students displayed while they
engaged with unsolved mathematics problems, and two case studies from two students that
participated in the study. In Chapter V, I end the dissertation by providing the conclusions,

implications, limitations, and recommendations.

18



CHAPTER II: REVIEW OF LITERATURE

My examination of the current literature includes four main sections: unsolved
mathematics problems, problem solving, dispositions towards mathematics, and students’
mathematical identities when problem solving. These four topics are pertinent to my study. First,
unsolved problems and problem solving are the main focus of this study. The students engaged
with unsolved mathematics problems. Second, my research question is based on students’
dispositions while they engage with unsolved mathematics problems. This means dispositions
was a critical component of the study. Lastly, I explored the different in-the-moment identities
and statements of self-concept the students displayed through their dispositions while they were
engaged in unsolved problems, creating a need to review the literature on students’ mathematical
identities during problem solving.

Unsolved Mathematics Problems

Mathematics educators have suggested that students need to experience mathematics
similar to how mathematicians experience mathematics (Boaler, 2016; Lampert, 1990). Further,
several mathematics educators and mathematicians have suggested that students engage with
unsolved mathematics problems (Frenzel, Pekrun, Dicke, & Goetz, 2012; Hamiton & Saarnio,
n.d.; Schoenfeld, 1992; Patchter, 2015). Frenzel, Pekrun, Dicke, and Goetz (2012) and
Schoenfeld (1992) both have suggested all students should engage in unsolved or unexplored
problems as a way to create a positive emotional experience for students.

In 2013, mathematicians gathered with mathematics educators at a conference to discuss
and encourage unsolved problems in all grades, kindergarten through twelfth grade (Hamiton &
Saarnio, n.d.). At the conference, attendees selected 13 unsolved problems to be the

representative problems with one problem being selected per grade level. They also selected
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extra problems that would be appropriate for different grade levels. The goals of each problem
were that the problem be appropriate for the grade level curriculum, be engaging to students and
fun, not confuse students, and be easy and cheap for a teacher to implement. The authors did not
share why they thought students should engage with unsolved mathematics problems; they only
gave their goals for selecting the problems.

Lior Pachter (2015), a mathematician, claimed that “the emphasis on what K—12 students
ought to learn about what is known has sidelined an important discussion about what they should
learn about what is not known” (Pachter, 2015, para. 2). He reported that students should engage
with unsolved mathematics problems and he generated a list of unsolved problems that match the
Common Core State Standards for each grade level. His requirements for the problems included
that they must be interesting to the students, understandable, and have a balance with different
areas of mathematics focus. He stated that by introducing students to unsolved problems they
would be stimulated to ask questions in mathematics where the answer is unknown.

Through an Internet search, a blog—that is an anecdotal report only—was found. It was
by a mathematics professor at the University of Kentucky, Benjamin Braun (2015). In the blog,
Braun encouraged giving undergraduate mathematics student unsolved problems to does as class
work or homework. To do this, he began by giving an unsolved problem to the class. After they
worked on the problem for 15 minutes, he told the students that they had been working on an
unsolved problem. He found students then shift their perspective of the problem as something
that was simple to something that was nearly impossible. From presenting these problems, Braun
reported that students were surprised at how simple the problems seem, they shift their
perspective from only trying to get the correct answer to discussing the authentic nature of how

mathematicians work, the students thought more about sense making and perseverance than
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finding a correct answer, and students learned that failure was completely acceptable and normal
in the mathematics field. Braun had his students reflect in an essay on engaging with the
unsolved problems. Some of the students stated they had relief and joy because they could work
on the problems with no expectations of solving it. Other students said they felt defeated and
frustrated because they knew they would not be able to solve the problem. However, both groups
of students said that it was the best moment in the Braun’s course.

Some people (e.g., Frenzel et al., 2012; Hamiton & Saarnio, n.d.; Schoenfeld, 1992;
Patchter, 2015) have suggested that students should be presented with unsolved problems to
experience mathematics similar to how mathematicians experience it, learn about the unknown,
and ask questions in which the answer is not known, but none of them report on actually having
done so. Only an anecdotal report with undergraduate students has reported on students’
engagement with unsolved problems. With no research on students’ engagement with unsolved
problem, what do we know about elementary students engagement with problem solving?

Problem Solving

Problem-solving research primarily began and developed from Polya’s work (Kilpatrick,
1985; Lesh & Zawojewski, 2007). Polya’s (1957) reported on heuristic, which can be described
as “studying the methods of solution” (p. vii). In other words, Pdlya focused on the process and
strategies students used to solve problems. He created the famous four steps to address a
problem: (a) understand the problem, (b) devise a plan, (c) carry out the plan, and (d) look back.
From Pdlya’s work in the 1950s to now the emphases in the research on problem solving has
changed. Lester (1994) summarized the research focus shift from 1970 to 1994. From
approximately 1970 to 1982 the problem-solving research emphasis was on problem difficulty

and characteristics of people who were successful at solving problems. During the time of 1978
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to 1985, the primary research focus was on comparing successful and unsuccessful problem
solvers. Lester stated that the focus of problem solving research from 1982 to 1990 was focused
on metacognition, training in metacognition, affects, and beliefs in relation to problem solving.
However, other researchers, such as Lesh and Zawojewski (2007), argued that similar topics
were the focus of research before the 1990s (e.g., types of problems students were asked to solve
in schools, distinctions between good and poor problem solvers, and problem-solving
instruction).

Since the 1990s, the suggested focus of research has been on mathematical problem
solving outside of school settings (Lesh & Zawojewski, 2007). Mathematics educators have
suggested that problem solving research should focus on modeling and theory development
(Lesh & Zawojewski, 2007). Research in relation to problem solving has been completed on
authentic problem solving or modeling (e.g., Izsak, 2003; Magiera & Zawojewski, 2011;
Verschaffel & De Corte, 1997), critical mathematics or teaching mathematics for social justice
(e.g., Gregson, 2013; Gutiérrez, 2013; Gutstein, 2016), contextualized problem solving (e.g.,
Lubienski, 2000), and problem posing (e.g., Cai, Hwang, Jiang, & Silber, 2015). However, little
is known about how students learn in environments that are mathematically rich outside of a
school setting (Lester & Kehle, 2003).

A dominant part of elementary mathematics is whole number concepts and operations
(Verschaffel, Greer, & De Corte, 2007). Verschaffel, Greer, and De Corte (2007) summarized
the research on whole number concepts and operations for elementary students. They concluded
that when students beginning formal schooling (kindergarten), they can solve words problems
that are additive and multiplicative; however, by the time students are learning multiplication and

division, they have “some dissociations between calculations and situations, that is to say they
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have learned that, for the purposes of finding the answer, the calculation, once identified, can be
done ‘off line’” (p. 589). Vershaffel et al. furthered the argument by stating

that the stereotyped and artificial nature of word problems typically represented in

mathematics textbooks, and the discourse and activity around these problems in

traditional mathematics lessons, have detrimental effects on students’ disposition towards

mindful and realistic mathematical modeling and problem solving. (p. 603)
Vershaffel et al. shared an example of a question students answered from to help explain how
children just answer questions without making sense of what the question is asking, such as,
“There are 26 sheep and 10 goats on a ship. How old is the Captain?” (Vershaffel et al., 2007, p.
587). Overall, many students answer questions but do not take “into account realistic
considerations about the situations described in the text, or even whether the question and the
answer make sense” (p. 586).

Researchers have documented that students can struggle with problem solving because of
a dissociation and not making sense of the question and answer (Vershaffel et al., 2007).
However, there have been studies on how to advance student thinking (Carpenter, Fennema,
Peterson, Chiang, & Loef, 1989; Fraivillig, Murphy, & Fuson, 1999). After completing a study
by observing 19 Grade 1 classrooms over a course of 5 years, Fraivillig, Murphy, and Fuson
(1999) identified several strategies that could advance students’ mathematical thinking. These
strategies included having high expectations for all students as well as having students reflect
and draw generalizations, find relations hips between concepts, share and reflection on different
solution methods, create their own problems, and try different solution methods.

Carpenter, Fennema, Peterson, Chiang, and Loef (1989) found ways to help advance

students’ thinking through a project called cognitively guided instruction (CGI). This major
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research study was conducted with elementary students and their teachers on problem solving.
The CGI teams worked with the elementary teachers to have the elementary teachers’ students
learn addition and subtraction through word problems. The CGI teachers focused on problem-
solving and not number facts, they had students use multiple strategies to find solutions, and they
built on students’ existing knowledge during instruction. The results were that the students of the
CGI teachers had better fact recall and problem solving skills than the control students, and the
students self-reported they were more confident in participating in problem solving. Vershaffel et
al. (2007) shared a major conclusion from all the research conducted by the CGI team, that
“students’ thinking and problem solving can profoundly affect teachers’ cognitions and beliefs
about arithmetic classroom learning and instruction, their classroom practices, and most
important, their students’ learning outcomes and beliefs” (p. 607).
Dispositions

Students’ dispositions while they engage in problem solving are an important area of
research in mathematics education (Goldin et al., 2016). A disposition is a tendency “to act in a
certain manner under given circumstances” (disposition, 2017). So one’s tendency to act a
certain way when solving mathematics problems would be influenced by three factors: affective
(tendency to believe or exhibit an emotion about what math is), conative (tendency to display
diligence, effort, or persistence), and cognitive (tendency to use, or not, mathematical practices,
such as justifying). The following three sections will discuss affective, conative and cognitive.
Affective

We know that children use a variety of problem solving strategies when they engage with
problems in mathematics, however, “we know little about the affective factors that may

contribute to this variation” (Ramirez, Change, Maloney, Levine, & Beilock, 2016). Goldin et al.
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(2016) stated research on the area of affect in mathematics education “deserves greater attention’
(p. 2) because it is such an important process when children engage in nonroutine problems.
Affective dispositions towards mathematics include students’ beliefs about mathematics and
emotions they display when doing mathematics (Beyer, 2011). In this section I examine research
on affective dispositions in respect to the students’ beliefs about mathematics and the emotions
displayed while problem solving.

Beliefs. It has been documented that mathematicians have very positive dispositions
towards what mathematics is (e.g., Boaler, 2016; Burton, 1999; Thurston, 1994) and that many
students have vastly different views of what mathematics is (e.g., Allen, 2004; Beilock,
Gunderson, Ramirez, & Levine, 2010; Su, 2010). Not only do students have negative views of
mathematics, their mathematical dispositions tend to decline during middle school (Eccles et al.,
1993).

Students’ view of mathematics. Many people have been documented to have fear or
anxiety towards mathematics, including teachers and children as young as first grade (Beilock et
al., 2010). Based on research, all students tend to find mathematics to be procedural and
something unenjoyable (Allen, 2004). In 1992, Schoenfeld listed beliefs students have about
mathematics:

* Mathematics problems have one and only one right answer.

* There is only one correct way to solve any mathematics problem—usually the
rule the teacher has most recently demonstrated to the class.

* Ordinary students cannot expect to understand mathematics; they expect simply
to memorize it and apply what they have learned mechanically without

understanding.
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* Mathematics is a solitary activity, done by individuals in isolation.
* Students who have understood the mathematics they have studied will be able to
solve any assigned problem in five minutes or less.
* The mathematics learning in school has little or nothing to do with the real world.
(Schoenfeld, 1992, p. 359).
In 2007, Lesh and Zawojewski stated the students’ beliefs about the nature of mathematics
identified by Schoenfeld in 1992 have not changed. Masingila (2002) studied how middle school
students viewed mathematics. She found that many of them have a very narrow view of what
mathematics is. They described mathematics as something to learn in school, a set of rules, or
numbers. Only three of the 20 students she studied had a broader definition of mathematics and
viewed it as a way of thinking about something.

Research was found on how people at the undergraduate level view or described
mathematics (e.g., Crawford, Gordon, Nicholas, & Prosser, 1994; Petocz et al., 2007). Crawford,
Gordon, Nicholas, and Prosser (1994) conducted a study with 300-university freshman on their
perspectives of mathematics. They found that students viewed mathematics as a procedure to
learn through memorization or a set of rules to follow. Petocz et al. (2007) evaluated 1,200
undergraduate students’ dispositions towards mathematics from five different countries through
an open-ended survey containing three questions. They found the students’ dispositions ranged
from ideas that mathematics is calculations to be done with numbers, a way to manipulate
numbers, and a “collection of isolated techniques” (Petocz et al., 2007, p. 446). Students’ views
of the nature of mathematics are different when they are compared to how mathematicians

describe what mathematics is.
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Nature of school mathematics. There are three kinds of mathematics students can
experience in a school setting: school mathematics, mathematicians’ mathematics, and everyday
mathematics (Civil, 2002). Civil (2002) described school mathematics as traditional mathematics
in which students do computations, follow procedures, and memorize algorithms; there is a
teacher, a textbook, and an answer key; and the teacher always knows the answer.
Mathematicians’ mathematics in school is when students engage in discussions about
mathematics, collaborate on challenging tasks, have to give justifications, persist in a
mathematics task, and develop their own strategies for solving problems. Everyday mathematics
is described as the mathematics that is learned or that occurs outside of a school setting. This is
the type of mathematics when a person might not be aware he or she is doing mathematics or the
mathematics may be hidden. An example of this could be how a child might learn about giving
change back to someone when they conducting a lemonade sale.

It has been documented that students who experience school mathematics tend to find
mathematics as a subject that is procedural, structured, and rule-bound (Boaler, 2016; Lampert,
1990). There have also been studies on the topic of everyday mathematics that have documented
how people complete mathematics in different situations with little or no error in their everyday
lives, but when given a similar task on paper they might not do as well (e.g., Masingila, 1994;
Nunes, Schliemann, & Carraher, 1993; Saxe, 1988). Studies have been completed when students
explore mathematics like mathematicians through the use of robotics. They view the activity not
as learning mathematics and vastly different from school mathematics (e.g., Nickels & Cullen,
2017; Norton, 2006; Sklar, Eguchi, & Johnson, 2003). These studies document how mathematics
is viewed differently when it takes place outside of a school setting or through nontraditional

learning.
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Traditionally mathematics in classrooms gives students a limited view of what
mathematics is, and students view mathematics differently when it is outside of a school setting
(Masingila, 2002). It is important that we examine the different practices in place in a classroom.
Classroom practices are not only linked to what students learn (Boaler, 2016; Boaler & Greeno,
2000), but also “the nature of these practices has been shown to affect the ways that students
come to think about the domain” (Gresalfi & Cobb, 2006, p. 50).

Mathematics outside of school. Saxe (1988) and Nunes, Schliemann, and Carraher
(1993) explored the difference between street mathematics and school mathematics with
Brazilian children. Saxe’s study compared street vendors and school children that were 10-12
years old. Saxe found that the street vendors had developed strategies and were able to solve
arithmetic and ratio problems that contained large numerical values whereas the school children
were not able to. Nunes et al. found that nonschool children (street vendors) were better at
solving a problem in a real situation than during a formal testing situation. It was conjectured
that the children could solve the problem in context because they were able to have context and
understand the meaning of the problem while in the formal setting the context was dropped.

Similar to the studies done with Brazilian children using everyday mathematics,
researchers have found that when students are learning mathematics through robotics, they do
not make the connection that they are learning mathematics, do not view it as learning
mathematics, or view it as different from school mathematics (Nickels & Cullen, 2017; Norton,
2006; Sklar, Eguchi, & Johnson, 2003). Nickels and Cullen (2017) researched critically ill
students’ learning of mathematics through robotics. Nickels and Cullen focused on one student,
Amelia, who had Acute Lymphoblastic Leukemia. Prior to engaging in robotics, Amelia stated

that she “hated math.” After working with robots, which she did not view as school mathematics,
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she described her experience as, “I was learning math that was important to me. You never do
something only once with a robot, so the math I learned I used over and over again. I’ll never
forget it now” (p. 69). She viewed learning mathematics through robotics differently from how
she viewed school mathematics.

Norton (2006) found that when students engaged with robots, their mathematical content
improved, but they did not connect the mathematical concepts they learned to the mathematics
they learned in school. Norton explained that the connections needed to be discussed with the
students. Sklar, Eguchi, and Johnson (2003) researched students’ perceptions of their
mathematical improvement through competing in robotic competitions. They found only 30% of
students thought their mathematics knowledge improved through competing in robotic
competitions. However, 80% of the children’s leaders thought their mathematics skills improved.
In all three studies on students’ use of robotics, the students were learning mathematics through
the robotics, but they did not view it as learning mathematics or thought of it differently than
school mathematics.

Collaboration. Studies have been completed that document students’ thoughts or
opinions on collaboration (e.g., Florez & McCaslin, 2008; Gillies, 2003; Mulryan, 1994). Florez
and McCaslin (2008) documented that the Grades 3—5 students in their study enjoyed
collaboration. Gillies (2003) reported that the Grade 8 students in their study thought group work
allowed them the opportunity to complete quality work and found the group work enjoyable.
Mulryan (1994) described that the Grades 5 and 6 students in their study thought collaboration
allowed them chance to learn how to work with others and receive different ideas of how to
solve the mathematics. All three of these studies were self-reported data from the students in the

study.
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Two studies were found that documented collaboration as a way to develop students’
productive dispositions towards mathematics (e.g., Gresalfi, 2009; Jansen, 2012). Gresalfi (2009)
researched the ways dispositions were exhibited during moments of interaction in mathematics
classrooms and how classroom dynamics contributed to the dispositions. The data were collected
in two classrooms of eighth-grade students who were taught the same content but had different
teachers. One teacher taught using a collaborative approach, showed students strategies, and
communicated expectations for working together. The other teacher would have students work in
groups but focused on the mathematical work instead of emphasizing productive collaborative
practices. Based on the analysis of collected data and comparison of classrooms, Gresalfi
concluded that students’ dispositions towards productive beliefs about how mathematics was
learned were enhanced with opportunities for interaction with other students and those
interactions allowed students more opportunities to engage with mathematics content. She
claimed that one aspect for developing productive dispositions towards mathematics is through
successful collaboration and that teachers play an important role in the development of students’
dispositions.

Jansen (2012) observed two Grade 6 classrooms that contained a total of 54 students. The
classroom teachers held the belief that a person’s mathematical competence could be improved,
understanding a topic is more important than completing a task, and collaboration is valuable.
Jansen found that through teachers’ facilitation of group work, students could develop these
productive dispositions towards mathematics. It has been documented that collaboration could be
a way for students to develop positive dispositions towards mathematics (Yackel, Cobb, &

Wood, 1991). However, Jansen (2012) concluded, “more research is needed to identity
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conditions that lead to the development of students’ productive dispositions toward mathematics
in the context of group work” (Jansen, 2012, p. 38).

Emotions. Researchers have claimed that students experience positive and negative
emotions when they engaged in problem solving (Goldin, 2000a; Hannula, 2015). However,
most of the research conducted on emotions and affect has been completed through surveys and
not during students’ engagement with problem solving (Hannula, 2015). Several research studies
were found that were conducted on children’s emotions during problem solving situations in the
classroom (e.g., Daher, 2015; Evans, Morgan, & Tsatsaroni, 2006; Hannula, 2015; Williams,
2002) and at home (e.g. Else-Quest, Hyde, & Hejmadi, 2008). Those researchers have
conjectured that students experience positive and negative emotions while engaged with
mathematical tasks (Hannula, 2015); students’ emotions are linked to their positionings (Daher,
2015; Evans et al., 2006); and when students displayed positive emotions, they were able to
develop mathematical understanding (Williams, 2002; Else-Quest et al., 2008).

Positive and negative emotions. Hannula (2015) researched the emotions of a 10-year-
old student while solving a geometric solids problem that was open-ended. The researchers
analyzed the student’s interactions with his teacher and two of his classmates who sat next to
him. The researchers main findings included that emotions are a crucial aspect of problem
solving. Different emotions are beneficial to student learning, and teachers need to be aware of
students’ emotions while problem solving. The emotions that had negative aspects on students’
problem solving skills included boredom and being emotionally flat. The emotions that help have
a positive aspect on students’ problem solving included the teacher being enthusiastic and the
students and teacher having emotion regulation. The teacher can demonstrate emotion regulation

through modeling as a way to increase emotion regulation in students. Students talking and
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joking with peers is a way for the students to deal with the different emotions they encounter
while problem solving.

Link between emotions and positionings. Two research studies on emotions during
problem solving in the classroom linked students’ emotions with their positionings (Daher, 2015;
Evans et al., 2006). Daher (2015) researched the positions and emotions of four Grade 7 students
while they engaged with a modeling activity relating to ratios. The students worked on the task
for 3 consecutive hours. The researchers found that three of the four students acted as insiders
(accepted by peers) on the task and one student acted as an outsider (rejected by peers) until the
completion of the task when he switched his positioning to an insider. Positive emotions were
experienced and expressed by the insiders while negative emotions were experienced and
expressed by the outsider. The researcher concluded that the positionings and emotions the
students experienced were based on the students’ previous learning experiences, being familiar
with group work, and the students’ characteristics such as authoritative and demanding. The one
student who was considered an outsider, by himself and his group members, experienced
negative emotions.

Evans, Morgan, and Tsatsaroni (2006) researched the emotions of three boys in Grade 8
while they worked together on a mathematical task that involved finding the edge lengths of a
rectangular trapezium to measure the distance a sprinkler could throw water. Two of the boys
took positions of insider and the other boy was considered an outsider. The researchers
anticipated that their positioning was already formed prior to the study. The insider students
displayed emotions of excitement while the outsider student exhibited emotions of anxiety while
working on the mathematical task. The researchers concluded the emotions presented by the

students were linked to the students’ positionings. Both research studies by Daher (2015) and
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Evan et al. found students who felt like insiders experienced positive emotions, and students who
were considered outsiders displayed negative emotions.

Positive emotions influence on mathematical understanding. Williams (2002) and Else-
Quest, Hyde, and Hejmadi (2008) found there was an association between students displaying
positive emotions during problem solving and being able to develop mathematical
understanding. Williams (2002) researched students’ emotions and their mathematical behavior
to see if there was an association. However, this study has limitations because Williams only
examined three high school students for 13 minutes. The three students were seniors in a calculus
class as they engaged in a challenging problem they were not familiar with. One student was
considered an outsider in the problem-solving situation because of engagement in other activities
during the problem solving. The other two students displayed numerous positive emotions during
the exploration and developed a new cognitive structure and mathematical insight. Overall, the
researcher concluded there was an association between positive affect (emotions) and the
students’ ability to develop a new cognitive abstraction.

Else-Quest et al. (2008) researched the emotions mothers and their children displayed
while they solved mathematical tasks at home. The children were 11 years old, and the tasks
were pre-algebra activities. The researchers analyzed 160 mother-child dyads. Both mothers and
children displayed positive and negative emotions during the study. The most displayed negative
emotions consisted of distress, frustrations, and tension. The most displayed positive emotions
were affection, joy, pride, and positive interest. The emotions displayed by the child were similar
to the emotions of the mother. The children who displayed positive emotions while working on
the tasks with their mothers had significantly higher performance on the posttest with controlling

for the children’s baseline performance than the children who displayed mostly negative
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emotions. These studies indicate that students who display positive emotions while engaged in
mathematics tasks can have a positive effect on mathematical outcome (Else-Quest et al., 2008;
Williams, 2002).

Conative

NCTM (2014), the NGA & CCSSO (2010), and the National Research Council (2001)
support students’ development of the productive disposition of perseverance, and research has
indicated that it is productive for students to develop perseverance (e.g., Hiebert & Grouws,
2007; Kapur, 2010; Warshauer, 2015). A person would display a positive conative disposition
when they persevere while solving a challenging task. Conative dispositions are defined as “a
tendency or inclination to purposively strive, exercise diligence, effort, or persistence in the face
of mathematical activity” (Beyers, 2011, p. 23). Schoenfeld (1989) questioned secondary
students’ mathematical beliefs on perseverance through a survey. He asked them how long they
would spend on a problem before they knew it was impossible. The average response was only
12 minutes. That amount of time on a task would not be considered to having displayed a
positive conative disposition. Previous research in mathematics education has found that
perseverance is related to mindset (Duckworth, Peterson, Matthews, Kelly, 2007) and self-
efficacy (Pajares, 1996). In the next three sections, I will discuss mindset, self-efficacy, and
productive struggle as it relates to research on perseverance in problem solving.

Mindset. Dweck (1999) has identified two different types of mindsets: growth and fixed
mindsets. A growth mindset is a belief that difficult tasks and challenges can be mastered
through one’s willingness to try. A fixed mindset is the idea that competence is innate and not
changeable. When a person has persistence or perseverance, they would be considered to have a

growth mindset (Duckworth et al., 2007). Hong, Chiu, Dweck, Lin, and Wan (1999) found that
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people with different mindsets solve problems in different ways. When someone with a fixed
mindset has trouble completing a mathematics task, her or she would take this as a lack of ability
or intelligence. They might believe working hard on a task would only result in a waste of time
or embarrassment. When a person with a growth mindset has trouble completing a mathematical
task or has negative results, he or she would then take it as a sign to work harder. A person with
a growth mindset has a tendency to show perseverance during a challenging task whereas
someone with a fixed mindset may not show perseverance. Other studies(e.g., O’Shea, Cleary, &
Breen, 2010; Shen, Miele, & Vasilyeva, 2016) have found similar results to Hong et al. (1999);
however, these studies were conducted with undergraduate students. Liu, Chiu, Chen, and Lin,
(2014) also found similar results to Hong et al. Liu et al. studied 264 high school seniors. They
surveyed participants that had a high fear of being laughed at to explore their perceived ability,
their perception of threat in relation to an unfamiliar challenge, how they confronted challenging
situtations, and how they perceived completing a cognitive task they were not familiar with. Liu
et al. concluded that students that viewed great value in confronting unfamiliar challenges and
confronting challenging tendencies had a lower fear of being laughed at than students who had
the opposite view. These results indicate that students who enjoy confronting challenges and are
not embarrassed if they make a mistake display a growth mindset.

To develop persistent and flexible problems solvers who have a growth mindset, they
need to experience mathematics instruction that enhances this idea. Suh, Graham, Ferrarone,
Kopeing, and Bertholet (2011) proposed that classroom practices can develop this idea. These
practices include: posing mathematical tasks that have different entry levels, engaging in
mathematics communication and discussions during activities, and establishing a community that

embraces challenges and mathematics inquiry.
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While Suh et al. (2011) documented ways to develop a growth mindset, other researchers
have found that a mindset can change from fixed to growth (e.g., Blackwell, Trzesniewski, &
Dweck, 2007; Good, Aronson, & Inzlich, 2003). Blackwell, Trzesniewski, and Dweck (2007)
conducted a comparison study with students in Grade 7. Students in both groups, the treatment
and the control, had declining grades prior to the study. The treatment group of students (N = 48)
participated in an eight sessions in which they learned about study skills and having a growth
mindset. The control group (N = 43) had the same number of sessions but only learned about
study skills. In the end, the treatment group had improved grades; however, the control group
continued to have a decline in grades. The researchers concluded that the participants in the
treatment group could change their mindset from fixed to a growth.

Self-efficacy. Self-efficacy is defined as, “beliefs in one’s capabilities to organize and
execute the courses of action required to produce given attainments” (Bandura, 1997, p. 3).
Bandura (1997) emphasized that if someone feels knowledgeable and proficient in something, he
or she will be more likely to persevere when engaging in a challenge. Pajares (1996) further
explained that self-efficacy determines “how much effort people will expend on an activity and
how long they will persevere—the higher the sense of efficacy, the greater the effort expenditure
and persistence” (p. 3)

There have been two major areas of focuses on research in self-efficacy (Goldin et al.,
2016). The first area of focus was on an examination of self-efficacy and career choice or course
selection. The second area of focus has been on the relationship between self-efficacy and
motivation and achievement. Several research studies has documented that self-efficacy predicts
persistence in solving problem, achievement, and interest in mathematics (Larson, Piersel, Imao,

& Allen, 1990; Pietsch, Walker, & Chapman, 2003). Larson Piersel, Imao, and Allen (1990)
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found from research conducted with undergraduate students that self-efficacy was a significant
predictor of successful problem solving and that the students with high self-efficacy had positive
coping strategies for problem solving such as focusing on the task and cognitive restructuring of
the task. Pietsch, Walker, and Chapman (2003) surveyed 416 high school students on their self-
concept and self-efficacy. They also examined students’ mathematics tests they took at the end

9 6

of a term. Pietsch et al. found that students’ “mathematics self-efficacy was more highly related
to performance in mathematics when compared with the competency component of mathematics
self-concept” (p. 598).

Schunk and Richardson (2011) described strategies for improving students’ self-efficacy
towards mathematics. They shared to use activities with students that would be of high-interest
to them and where they can work in small groups because the students will be more motivated to
learn and engaged which in turn increases their self-efficacy. Next, they suggested having the
students set goals and evaluate their own progress. Lastly, they suggested that teachers teach
self-regulatory skills. Schunk and Richardson concluded that most of the research conducted on
self-efficacy has been in relation to computation and procedural skills, but a new trend and
something to investigate is “motivation and self-efficacy with higher-order mathematical
concepts and thinking” (p. 26).

Productive struggle. A student may exhibit a range of emotions when persevering with a
mathematics problem. Struggle is when students use intellectual effort to make sense of a
mathematics topic or solve a problem that does not make immediate sense and is challenging
(Hiebert & Grouws, 2007). It is expected when students engage with unsolved problems, they

will experience struggle. The research literature in mathematics education has reported that

having students engage in productive struggle is beneficial for their mathematics learning
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(Hiebert & Grouws, 2007; Kapur, 2010; Reinhart, 2000; Warshauer, 2015), but according to
Warshauer (2015) and Zeybek (2016), there have been few studies completed on examples of
students engaged in productive struggle and the previous studies have been limited to only that
struggles occur. Because of this, Warshauer and Zeybek completed an exploratory study to
examine what productive struggle looks like with middle school students and preservice
teachers.

Warshauer (2015) studied 327 middle school students engaged but struggling through
proportional reasoning tasks at three different middle schools. Warshauer not only found that
productive struggle was an important tool in supporting students in doing mathematics and could
enhance their understanding of mathematics, but she also found that students’ persistence in
productive struggle was related to the classroom sociomathematical norms. Classrooms that
focused discussion and allowing students to explain their solutions had more success with
students staying engaged and on task while struggling as compared to classrooms that did not
have students explain their solutions. Lastly, Warshauer found that teacher responses or moves
while students were engaged in struggle had an effect on their struggle and whether it remained
productive or became unproductive. These responses or moves are based on individual students’
beliefs and content knowledge. An example of a move or response might be to focus the student
without lowering the cognitive demand by questioning, clarifying, probing, or confirming what a
student is thinking.

Zeybek (2016) completed a study on the types of struggles preservice teachers experience
while they are engaged in a high cognitive demand task that is nonroutine. The participants were

48 middle level preservice mathematics teachers. Zeybek concluded that the preservice teachers
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struggled to begin and carry out the task. Also, they made errors, exhibited misconceptions, and
were unable to explain their ideas.

Kapur (2010) researched productive struggle with Grade 7 students; he compared two
groups of students, one that had students learn through productive struggle with complex
problems and the other that had students participate in a traditional lectures. The students who
experienced productive struggle significantly outperformed the students who learned through
lectures on a posttest. Upon completing his research, Kapur recommended that to keep students
engaged in productive struggle, students should choose the problem they want to engage with,
explain or discuss their work, and compare different types of solutions or strategies to solve
problems.

Cognitive

Beyer (2011) proposed a conceptual framework for dispositions with respect to
mathematics, however it is not well developed. This framework includes affective and conative
dispositions, which is consistent with the mathematics education literature towards dispositions.
He also included the idea that there are cognitive mental functions. He developed this idea from
a 1958 psychology dictionary from English and English, which defined cognition, affection, and
conation as “the three categories under which all mental process are classified” (pp. 92-93). He
also used Snow, Corno, and Jackson (1996) to further agree why cognitive should be a
disposition. They argued that all of the mental processes organisms enact are distinguished
through cognition, affect, and conation (Snow, Corno, & Jackson, 1996). That is different from
how the National Research Council (2001) defined a productive disposition. They said it is “the
tendency to see sense in mathematics, to perceive it as both useful and worthwhile, to believe

that steady effort in learning mathematics pays off, and to see oneself as an effective learner and
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doer of mathematics” (p. 131). The National Research Council’s definition includes the affective
and conative aspect but does not completely include the cognitive aspect. However, I believe it is
important to include a cognitive aspect so people can learn if they students can make sense of the
unsolved problems and have successful, meaningful engagement. Therefore, I will include one
cognitive aspect—attempting to justify—in this research study.

According to Beyer (2011) a cognitive mental function in mathematics is when a person
engages in a cognitive mental process, such as giving a justification or proof. Mathematical
proving is something that is not typically introduced to students until middle school (Lin & Tsai,
2016) or high school (Stylianides, 2007). At the elementary level, mathematics is typically
focused on finding answers and correctness and does not include students justifying their
answers (Kieran, 2004). Carpenter, Franke, and Levi (2003) have stated that there are three ways
students tend to give a justification or argument for a mathematical idea: (a) appeal to authority,
(b) justification by example, and (c) generalizable argument. Appeal to authority would be when
a student shares a rule or procedure that a teacher or someone in authority has taught them. An
example would be when a student makes a case about something being true through an example
such as three plus three is six and six is an even number, therefore whenever you add an odd with
an odd, you will get an even number. For a generalized argument, students would share a logical
argument that would apply to all cases in the conjecture.

Elementary students do not typically give generalizable arguments, but as they advance
in grade level, students should see how just giving examples limits their arguments and should be
encouraged to develop more generalized arguments (Carpenter, Franke, & Levi, 2003). This idea
has been documented at the middle school level. O’Dell et al. (2016) found Grade 8 students

originally could only give an explanation of area of a circle through appealing to authority by
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stating a formula they had been given. However, after completing three tasks of guided
discovery, they were able to justify the area formula for a circle through using a triangle that had
the height of a radius and a base equal to the length of the circumference.

At the elementary level, most justification is completed through examples, but this can be
improved with teacher support and students engaging in mathematical reasoning and discussion
(Keith, 2006). Ball (1993), Keith (2006), and Lin and Tsai (2016) all explored mathematical
justification of the sum of even and odd numbers with second or third grade students. Keith
found second grade students’ justifications were based on the definition of even and odd
numbers and they used blocks to determine whether the sums were shared equally when divided
in half or if one block was left over. Ball’s third grade students gave similar justifications but
also concluded that an even number is a multiple of two and an odd number is a multiple of two
plus one. Lin and Tasi found students were able to advance from examples or a sequence of
examples to give generalizable arguments that included the definition of odd and even similar to
the way the students did it in Ball and Keith’s studies. Similarly, Rumsey (2012) examined if
students’ justification at the elementary level could develop when instruction promoted
mathematical argument. She focused on the development of arithmetic properties and found that
argumentation was beneficial for teaching students arithmetic properties. However, due to the
short span of the study, she did not find changes in the development of students’ arguments.

It has been documented that elementary students can make conjectures and develop
mathematical claims (Ball, 1993; Keith, 2006; Lin & Tsai, 2016). Carpenter et al. (2003) stated
that to help students develop justification teachers could restate a conjecture, give examples, and
build on conjectures that have been justified. Visual representation also helps students’

development of justifications (Schifter, Monk, Russell, & Bastable, 2008). Many researchers
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have recommend that students engage in proof and argumentation in all grade levels and in all
mathematics content areas (e.g., Ball & Bass, 2003; Carpenter et al., 2003; NCTM, 2014;
Stylianides, 2007).
Identity
A person’s actions based on their mathematical identities can be called a social position,
and these social positions are demonstrated through dispositions (Holland et al., 1998). Two
mathematics educators, Martin (2006) and Bishop (2012) both define identity in relation to
activity, positioning, self-concept, and beliefs/disposition. Martin defined it as
mathematics identity refers to the dispositions and deeply held beliefs that individuals
develop, within their overall self-concept, about their ability to participate and perform
effectively in mathematical contexts and to use mathematics to change the conditions of
their lives. A mathematics identity encompasses a person’s self-understanding of himself
or herself in the context of doing mathematics.” (p. 206)
Bishop defined identity as
the set of beliefs that one has about who one is with respect to mathematics and its
corresponding activities. An identity is dependent on what it means to do mathematics in
a given context; as such, it is individually and collectively defined. Identities include
ways of talking/acting/being as well as how other positions one with respect to
mathematics. (p. 41)
Bishop further described that “identity is enacted through discourse, and at the same time, it
influences one’s discourse” (p. 45). I explored students’ in-the-moment identities while they
engaged in unsolved problems. Because of this, I describe previous research conducted on

identity during problem solving situations.
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There has been research completed on how identities can shift or develop through
different mathematical experiences (Andersson, Valero, & Meaney, 2015; Bishop, 2012; Cobb,
Gresalfi, & Hodge, 2009; Turner, Dominquez, Maldonado, & Empson, 2013; Wood, 2013;
Yamakawa, Forman, & Ansell, 2009). Mathematical identities can shift during a period of a year
(Andersson et al., 2015) or be influenced during one problem-solving situation (Wood, 2013).
Discourse, interactions, and teachers’ responses to students can influence students’ mathematical
identities (Bishop, 2012; Turner et al., 2013; Yamakawa et al., 2009).

Identities can be Shifted or Developed

Identities have been documented that they are able to shift or develop over time during a
mathematics class, during problem-solving situations, and in-the-moment identities can shift in
response to different contexts during one class period. Cobb, Gresalfi, and Hodge (2009) found
that how students position themselves during problem-solving situations can influence their
mathematical identities. Next, I describe how Andersson, Valero, and Meaney (2015) and Wood
(2013) described and found shifting identities.

Andersson et al. (2015) researched secondary students’ identities over a 1-year period to
examine their shifts in participation. The students’ identities were determined through
interviews, surveys, and observations. The researchers focused on two students. One student
thought mathematics was boring, and the other student said that she hated mathematics. Through
observations, the researchers determined that these identities were not stable over the course of
the year. The two students’ identities shifted with context. When the mathematics class was
focused on textbook work, the students reported that their mathematics identities were consistent,
but when the mathematics activity shifted to open classroom discourses and group projects, the

students’ identities shifted through their use of terms like good, interesting, and useful to
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describe the mathematics. The researchers concluded that the identity narratives were determined
over a longitudinal period but were “changeable when different aspects of context changed” (p.
157) and that identities are not stable as past research and literature indicated.

Wood (2013) researched fourth grade students’ micro-identities (similar to how I am
using the term in-the-moment identities) to examine how these identities can be shifted,
negotiated, resisted, or taken-up during a mathematics lesson. Wood focused on one student,
Jakeel, during a mathematics class to explore the micro-identities he displayed. Jakeel displayed
different positions such as the mathematical student, the mathematical explainer, and the menial
worker based on his interactions with the teacher, other students, and the mathematical tasks.
These different positions gave him micro-identities as both mathematically capable and
mathematically incapable. Similarly to Andersson et al. (2015), Wood concluded that
mathematical identities could shift in response to different contexts.

Influence on Mathematical Identities

It has been documented that identities can change or shift (Andersson et al., 2015; Cobb
et al., 2009; Wood, 2013). There are different reasons researchers have found for these shifts. I
will describe three studies that demonstrate different ways that can influence the shifts in
identity.

Bishop (2012) researched two seventh grade students’ discourse of 13 days while they
were engaged in a technology based mathematics unit to examine how the discourse patterns
might affect students’ mathematics identities. Through examining the students’ discourse,
Bishop concluded that the students positioned one student, Teri, as being the “smart one” and the
other, Bonnie, as being the “dumb one.” Teri took an authoritarian role during the problem

solving and positioned herself as the mathematical expert while Bonnie positioned herself as

44



dependent and mathematically helpless. Bishop concluded that with respect to mathematics how
people interact and talk with each other can and does influence their identities.

Turner et al. (2013) researched students’, who were English Learners, and their
positioning during a mathematical discussion on problem-solving activities. The study took place
in an after-school program for Grade 4 and 5 students. The researchers examined the different
ways the students were positioned as agentive problem-solvers. They concluded that the teachers
inviting students to share their thinking, giving students explicit statements to validate a solution
or mathematical reasoning, and positioning students’ ideas as important were ways to develop or
contribute to positive identity development.

Yamakawa, Forman, and Ansell (2009) examined a third grade classroom twice a week
for 4 months during their mathematics instruction. The researchers focused on two of the
students, Ophrah and Pulak. Ophrah tended to take leadership roles during group work and liked
to share her solutions during class discussions. Pulak was considered a “good math thinker” by
other students and was highly proficient in mathematics. The classroom teacher revoiced
Ophrah’s and Pulak’s contributions differently. She used Ophrah to communicate strategies and
positioned her as mathematically proficient. The teacher positioned Pulak as advanced, however,
very rarely would revoice his strategies to solve problems during class discussions. Throughout
the study, Ophrah changed her positional identity from average to above average and Pulak’s
positional identity did not change. The authors concluded how teachers and others position a
student can effect and influence the student’s positional identity. For this dissertation study, I
examined students’ in-the-moment identities and described whether they shifted or developed

based on students’ positioning.
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Chapter Two Summary

My goal for this study is to describe students’ mathematical dispositions while they
engage with unsolved problems. In this chapter I discussed the four main components of this
research study: unsolved problems, problem solving, dispositions, and identity. In the next
chapter I describe the design of the study, the problem-solving sessions, the analytic framework,
and the phases of analysis. In the fourth chapter, I describe students’ dispositions towards their
beliefs about mathematics, the emotions they experience, and their perseverance with problem
solving. I also describe several cognitive aspects students attempted to make while engaging with
the unsolved problems. Lastly, I share detailed case studies of two participants in the study in

reference to their in-the-moment identities and positioning.
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CHAPTER III: METHODS

This study was conducted using a qualitative research methodology. The major purpose
of qualitative research in education is to “discover and understand a phenomenon, a process, or
the perspective and worldviews of people involved” (Merriam, 1998, p. 11). It helps us
understand a phenomenon from the perspective of the participant and to “make sense of their
work and the experience they have in the world” (p. 6). This methodology was appropriate for
examining the research question that guided this study:

What are the characteristics of students’ dispositions toward mathematics when they

engage in the exploration of unsolved problems?
I used a descriptive case study approach to examine students’ dispositions as they engaged with
unsolved mathematics problems. A descriptive case study “presents a detailed account of the
phenomenon under study” (Merriam, 1998, p. 38) and gives a basic description of what happens.
Descriptive case studies are useful in education research to examine an idea in which little
research has previously been conducted (Merriam, 1998). This idea is consistent with this
dissertation study because elementary students’ engagement with unsolved problems has not
been previously studied before. Miles, Huberman, and Saldana (2014) define a case as “a
phenomenon of some sort occurring in a bounded context” (p. 29). The case for this study is
students’ dispositions as they experience unsolved problems. This is the appropriate method for
the study because it will allow a vivid and illuminating story to emerge.

Participants

The participants of the study included 10 Grades 4 and 5 students from an after-school

program in the Midwestern region of the United States. I used purposeful sampling to identify

the participants for the study. Purposeful sampling was an appropriate method because it “is
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based on the assumption that the investigator wants to discover, understand, and gain insight and
therefore must select a sample from which the most can be learned” (Merriam, 1998, p. 61).
There were several reasons for choosing elementary students to be the focus of this study;
these reasons were based on the research literature and grounded in my own experiences as a
teacher. Research has shown that as students transition from elementary to middle school, their
level of motivation in mathematics tends to decline (Haselhuhn, Al-Mabuk, Gabriele, Groen, &
Galloway, 2007). It is important then, that students in the elementary grades develop strong,
positive dispositions about mathematics. According to Middleton and Jansen (2011),
if students have positive experiences in mathematics—experiences that present an
appropriate level of challenge, coupled with a sense of control—they begin to anticipate
their future engagement in mathematics optimistically, with a sense of enjoyment. If,
however, students are not challenged, they may perform well in mathematics but their
interest will wane over time. If they lack a sense of control, they can develop seriously
negative motivations, including math anxiety and learned helplessness. (p. 29)
Frenzel et al. (2012) found that positive emotional experiences in mathematics were more
beneficial for younger students (i.e., fifth graders) than older students (i.e., ninth graders).
Moreover, they suggested that a way to create a positive emotional experience for students
would be by having students work on exciting, real-life problems including unsolved or
unexplored problems. This resonated with my own experience as an elementary school teacher. I
witnessed Grade 4 students becoming excited with mathematics when it was presented to them in
a problem-solving setting, and I suspected that working with unsolved problems would have the

same effect.

48



I chose to conduct the study in a nonschool setting to avoid possible negative associations
with students’ school-mathematics experiences. Goldin (2000b), whose research has involved
engaging students in task-based interviews, warned that

children drawn from their regular classes to participate in interviews may see the

interview as fundamentally a school activity, and respond both mathematically and

emotionally as if the expectation is for them to produce “school mathematics” correct
answers through previously learned algorithms although that is not the interviewer’s

intent. (p. 534)

He further explained:

Consider again an interview taking place in an elementary school, whose purpose the

child may believe is to test his or her understanding of the mathematics taught in school.

The child may respond very differently to the mathematical content of the interview tasks

both cognitively and affectively according to whether or not the mathematical topics were

discussed in class recently, discussed long before, or never encountered previously, or

according to whether or not they were tested in class. (pp. 534-535)

The nonschool setting I selected, the Midwestern After-School Program (pseudonym), is
part of a community center. The program director, Leann (pseudonym), organizes a staff of
volunteers that include community members and college students. Students work with program
volunteers either one-on-one or in pairs. The goal is to help students reach their grade level in
reading and to be promoted to the next grade level. During the after-school program, students are

given a healthy snack, read for a minimum of 20 minutes, and complete all of the homework
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assigned by their classroom teacher. They also have some free time and participate in different
enrichment activities.

The after-school program is funded almost entirely by donations that allow the students
to attend for free or at a very low cost. To attend, students must be from low-income families or
considered at risk (i.e., students who do not have a safe place to go after school because their
parents or guardians are working or not at home). Students are recommended for participation by
their school principal. At the time of this study, the after-school program had approximately 50
students in Kindergarten through Grade 5.

The Midwestern After-School Program was suggested to me by a professor from Illinois
State University whose students have served as volunteers. I emailed Leann a description of my
study and was granted permission to conduct research during the after-school program. I began
volunteering to become a recognized figure for the students so they would be more comfortable
working with me during the study.

Although the setting of the study was purposefully selected, the identification of students
to participate in the study was based on whether they typically were assigned homework by their
classroom teacher. Because completing homework was an important part of the after-school
program, Leann identified potential participants from those students who usually had few
homework assignments. I invited all of the students she identified to participate in the study.
Eleven students agreed to participate, but one was present for only the first problem-solving
session. Thus, there were 10 participants in the study: Alia, Amanda, Becca, Bernice, Edward,
Hector, Iris, Joella, Karly, and Trevor (all names are pseudonyms). Five of the students spoke
English as their second language. All of the students and their guardians signed informed consent

(See Appendix A) and assent (see Appendix B) forms in order to be a part of the study.
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Study Design

In order to study the students as they engaged with unsolved problems, I involved them in
a sequence of seven problem-solving sessions. These problem-solving sessions followed
Goldin’s (2000b) methods for conducting semi-structured, task-based interviews, which he
developed from his experiences researching mathematical problem solving. According to Goldin,
task-based interviews involve an interviewer and the subjects (problem solvers) “interacting in
relation to one or more tasks (questions, problems, or activities) introduced . . . in a preplanned
way” (p. 519). He suggested that “subjects should engage in free problem solving during the
interview to the maximum extent possible, in order to allow observation of their spontaneous
behaviors and their reasons given for spontaneous choices before prompts or suggestions are
offered” (p. 542). The problem-solving sessions in my study were not structured as interviews,
per se. Rather, the students worked in table groups and I circulated among the groups. However,
students were encouraged to engage in free problem solving as Goldin suggested. In this way, I
was able to acquire detailed and illustrative records of students’ interactions and focus
specifically on the processes students used to tackle the tasks I posed.
Context of Problem-Solving Sessions

The seven problem-solving sessions took place over 3 weeks—three in Week 1 (Nov. 28,
29, and Dec. 1), two in Week 2 (Dec. 5 and Dec. 8), and two in Week 3 (Dec. 12 and Dec. 13).
Each problem-solving session lasted between 35 minutes and 45 minutes. Prior to conducting the
problem-solving sessions, I had an overview of the different ideas I wanted to include but due to
not knowing how far or where the students would take each activity I modified or adapted each

lesson plan in between every problem-solving session.
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I was the person in charge of all the problem-solving session; however, at times, other
people were present during the sessions. During Session 1, two volunteers from the after-school
program were in the room, one was a fellow doctoral student and the other was an undergraduate
student majoring in education; I refer to them as Volunteers A and B. During Sessions 3 and 5 a
professor from Illinois State, Dr. Amanda Cullen attended the sessions and helped several
students. During Session 5, another professor from Illinois State, Dr. Schupp (a pseudonym)
joined the problem-solving session to observe and interact with several students. For Sessions 6
and 7, a different undergraduate student who volunteered at the after-school problem was present
for the problem-solving sessions. I refer to her in the rest of the study as Volunteer C.

During each problem-solving session, students worked on an aspect of the Graceful Tree
Conjecture; the Collatz Conjecture was introduced in the last session. A conjecture in
mathematics is a statement that is thought to be true but has not been proven to be true.
Mathematicians think these two conjectures are most likely true. Infinite classes of cases have
been settled for both conjectures, but no formal proof has been reported for either; thus, they are
referred to as unsolved problems. Although the students in this study explored these unsolved
problems only through the infinite classes that have been settled, I refer to their work as
engaging with unsolved problems.

Graceful Tree Conjecture. Graph theory is a study of mathematical structures, called
graphs, involving points (nodes or vertices) and lines between pairs of points (edges). The order
of a graph is the number of nodes or vertices and the size is the number of edges. A tree graph is
a connected (one piece) graph with no cycles (see Figure 1). A cycle is a connected graph where
each node is an endpoint of two edges (see Figure 2). An acyclic graph contains no cycles. An

acyclic graph in layman terms means that if you follow a path from node to node along edges on
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the tree you will never cycle back to the same node without repeating an edge; that is, the nodes
do not make a circuit. This means that the number of edges (the size) is always one less than the

number of nodes (the order).

edge
edge &
node node
Figure 1. Tree graph Figure 2. Cycle graph

There are many different types of tree graphs (e.g., paths, stars, and caterpillars). For
example, a path is a tree graph where each node is an endpoint to at most two edges (see Figure
3). A star is a tree that has one central node (called the center) and each edge has the center as an
endpoint (see Figure 4). A caterpillar tree starts like a path graph but then edges and nodes

extend from the central path creating a tree that looks like a caterpillar (see Figure 5).

Figure 3. Path graph
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Figure 4. Star graph Figure 5. Caterpillar graph

Graphs are labeled by assigning numbers to the nodes that induce labelings on the edges.
In the late 1960s, Alexander Rosa first introduced the notion of graceful labelings. A tree graph
of order m is labeled gracefully if every node is labeled distinctly from 1 through m and when the
edges are labeled with the absolute value of the difference of the labels on their endpoints, the
resulting edge labels are distinct (see Figure 6 for a tree labeled gracefully and Figure 7 for a tree

that is not labeled gracefully).

5 3 2 2 2 4
) 1
4 4 1 3
1 2
1
1 3 5
Figure 6. Graph labeled gracefully Figure 7. Graph not labeled gracefully

Following Rosa’s introduction of graceful labeling, Ringel and Kotzig advanced the

Graceful Tree Conjecture (Superdock, 2013), which posits that all trees can be labeled
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gracefully. I selected the Graceful Tree Conjecture as the main unsolved problem for this study
because it is accessible to fourth- and fifth-grade students—students need only the ability to
subtract and identify and analyze patterns. In 2003, there was a conference at the Banff
International Research Station for mathematicians and educators called Unsolved K—12
(Hamiton & Saarnio, n.d.). At the conference, one unsolved mathematics problem was selected
for students in each grade of Kindergarten through Grade 12. The criteria for selecting each
problem was that it matched the curriculum, was fun for students, would not confuse students,
and would be easy for a teacher to implement. The problem selected for Grade 3 was the
Graceful Tree Conjecture.

Collatz Conjecture. This conjecture was first proposed by Lothar Collatz in 1937
(Hamilton & Saarnio, n.d.). The conjecture is: Take any positive integer n. If n is even, divide it
by 2. If n is odd, multiply it by 3 and add one. Repeat this process. The conjecture states that no
matter the positive integer you begin with, you will always reach the number one. I chose to have
the students explore this unsolved problem so they were able to see that there were other types of
unsolved problems and to see what happened to their engagement, dispositions, and in-the-
moment identity with a different problem. This problem was the chosen problem for Grade 4
students at the Unsolved K—12 conference conducted at Banff International Research Station
(Hamiton & Saarnio, n.d.). Because this was the focus problem chosen for fourth grade, I
decided to implement it during the last problem-solving session so students would be able to
experience a second unsolved problem.

Overview of Problem-solving Sessions
The first six problem-solving sessions involved the Graceful Tree Conjecture. I structured

the activities from the easiest types of graphs to make a generalized statement about to the types
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of graphs to were more difficult to make a generalized statement about: star graphs, path graphs,
caterpillar graphs, and comet graphs. To begin, I first had to introduce students to what a tree
graph is and have them develop a definition for themselves before they could really explore the
Graceful Tree Conjecture. Because of this, at the beginning of the Sessions 2—4, in addition to
gracefully labeling graphs, I also had the students explore in more depth what a tree graph is
compared to what it is not and that tree graphs can be oriented differently but still be the same
class of graph. During the last session, I introduced a new unsolved problem because I thought it
was important for students to see a different unsolved problem.

Problem-solving session 1. My goal for Session 1 was to generate excitement about
unsolved problems and the work of mathematicians and to introduce the Graceful Tree
Conjecture. To begin the session, I asked students if they knew who mathematicians are. One
student responded that it was a person who was good at math. I told them it is a person who
studies patterns and numbers. I then told the students that we would be working on an unsolved
problem called the Graceful Tree Conjecture. I explained that a mathematician at Illinois State
University was working on the same problem. I also explained that because the problem was
unsolved, if they were able to figure it out, they would become famous and could get one million
dollars. The students were very excited about the possibility of getting one million dollars.
Although they were not sure what a mathematician was, they were very excited about the
prospect of getting one million dollars.

Next, I asked students if they had ever heard of a graph. Many students came up with
examples of graphs they had learned about in school such as a line graph, bar graph, picture
graph and several other graphs I have never heard of like a book graph and full graph. I

introduced the types of graphs we would be working on, tree graphs, by drawing a tree graph that
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had six nodes and five edges in the shape of a path graph. I used a drawing to define and
illustrate what an edge and node are. I had the students count the edges and nodes on the graph

(see Figure 8 for image on the poster paper).

Teee Groph
5 node
A/\/ﬂdge
o nodes
Bedaes

Figure 8. Drawing on poster paper when students were introduced to tree graphs, edges, and

nodes

Then I asked them to draw a tree graph with five nodes and four edges. Almost all of the
students were able to do this by drawing a path graph similar to the example I had showed them.
One student noticed that she was not able to make the edges connected and still have a graph
with five nodes and four edges. We came back together and the students shared their graphs with
the whole group. I explained that the graphs we were exploring, tree graphs, were neither cyclic
nor connected. Knowing that I would have the students further explore this idea the next day, I
was not concerned if they did not understand that idea.

To introduce the idea of graceful labeling, I drew two star graphs, one with graceful
labels and one without graceful labels (see Figure 9). I asked the students to talk at their tables
about what was different between the graphs. They saw that one had all different numbers and no

repeats. I explained that was a graceful label. I then told the