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Abstract 
 

Objective—The origin of the mesenchymal cells responsible for the intimal fibrosis in Systemic 

Sclerosis (SSc) has not been fully identified. Here, we investigated whether subendothelial 

mesenchymal cells may emerge through transdifferentiation of endothelial cells (EC) into 

myofibroblasts via endothelial-mesenchymal transition (EndoMT) in vitro and the signaling 

pathways involved in this process. 
 

Methods—Primary mouse pulmonary EC isolated by immunomagnetic methods employing 

sequential anti-CD34 and anti-CD102 antibody selection were cultured in monolayers. Cell 

morphology and diacetylated LDL uptake assays confirmed their EC characteristics. The induction 

of EndoMT was assessed by determination of α-smooth muscle actin (α-SMA), collagen type I, 

and VE-Cadherin expression and the expression of the transcriptional repressor Snail-1 was 

analyzed. The signaling pathways involved were examined employing small molecule kinase 

inhibitors and short RNA interference. 
 

Results—TGF-β1 induced α-SMA and type I collagen expression and inhibited VE-Cadherin. 

These effects were mediated by a marked increase in Snail-1 expression and were abolished by 

treatment with either the c-Abl tyrosine kinase inhibitor, imatinib mesylate or the protein kinase C 

δ (PKC-δ) inhibitor, rottlerin. The inihibitory effects of imatinib mesylate and rottlerin were 

mediated by inhibition of phosphorylation of GSK-3β at residue Ser9. These observations were 

confirmed employing short interfering RNA specific for c-Abl and PKC-δ. 
 

Conclusion—These results indicate that c-Abl and PKC-δ are crucial for TGF-β-induced 

EndoMT and that imatinib mesylate and rottlerin or similar kinase inhibitor molecules may be 

effective therapeutic agents for SSc and other fibroproliferative vasculopathies in which EndoMT 

plays a pathogenetic role. 
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Introduction 
 

Fibroproliferative vasculopathies characterized by accumulation of mesenchymal cells and 

fibrosis in the subendothelial space of medium size and small vessels are the pathological 

hallmark of a diverse group of disorders including transplant rejection and allograft 

vasculopathy (1), primary pulmonary hypertension (2), and systemic sclerosis (SSc) (3,4). 

The origin of the mesenchymal cells and myofibroblasts responsible for subendothelial 

intimal fibrosis remains elusive. Vessel wall resident fibroblasts and circulating 

mesenchymal cell progenitors, also known as fibrocytes, migrating into the vessel intima 

have been considered important sources. However, recent studies have shown that 

mesenchymal cells and myofibroblasts can also originate from endothelial cells in a process 

known as endothelial–mesenchymal transition (EndoMT) in which endothelial cells (EC) 

acquire a myofibroblastic phenotype (5,6). EndoMT has been reported to contribute to the 

myofibroblastic population in chronic pulmonary hypertension (7) and cardiac, renal, and 

pulmonary fibrosis (8–12), thus, the possibility that some of the fibrotic tissue-producing 

subendothelial mesenchymal cells responsible for the severe SSc fibroproliferative 

vasculopathy may also originate from endothelial cells is attractive. 
 

Transforming growth factor (TGF)-β1 plays a crucial role in tissue fibrosis and is implicated 

in the pathogenesis of numerous disorders including the fibroproliferative vasculopathies 

(13–17). Besides causing a potent stimulation of the expression of numerous genes 

participating in the fibrotic process, TGF-β is involved in the generation of myofibroblasts 

through epithelial to mesenchymal transition (EMT) (18–21) and EndoMT (7–12). Here, we 

examined the intracellular signaling pathways involved in TGF-β induced EndoMT in 

murine pulmonary EC. The results demonstrated that TGF-β1 caused a potent induction of 

α-SMA expression in murine pulmonary EC. This process was accompanied by a marked 

increase in the expression of the transcriptional repressor, Snail-1 and was abolished by 

treatment with the cAbl kinase inhibitor, imatinib mesylate or the PKC-δ inhibitor, rottlerin. 

The potent inhibition of TGF-β-induced α-SMA expression by small molecule c-Abl and 

PKC-δ inhibitors suggests that these or similar inhibitor molecules may be effective 

therapeutic agents for SSc fibroproliferative vasculopathy as well as for other pathologic 

conditions in which EndoMT plays a role. 

 
Materials and methods 

 

Materials 

Dulbecco’s modified Eagle’s medium (DMEM) was from Gibco (Carlsbad, CA). 

Glutamine, penicillin/streptomycin, sodium pyruvate, HEPES and non-essential amino acids 

were from Mediatech (Manassas, VA). Fetal bovine serum (FBS) was from Atlanta 

Biological (Lawrenceville, GA). Anti-CD34 and anti-CD102 antibodies were from BD 

Biosciences (Bedford, MA). Western blots and indirect immunofluorescence antibodies 

were: α-SMA (clone SPM332) and GAPDH (Abcam, Cambridge, MA), VE-Cadherin, 

collagen1A1, Snail-1 (Santa Cruz Biotechnology, Santa Cruz, CA), phospho-GSK-3β (Ser9) 

and total GSK-3β (Cell Signaling Technology, Danvers, MA). Cy3-conjugated secondary 

antibodies were from Sigma (St. Louis, MO). TGF-β1 was from R&D Systems 

(Minneapolis, MN). Endothelial cell growth supplement was from Sigma (St. Louis, MO). 

The kinase inhibitors used were: c-Abl inhibitor imatinib mesylate from LC Laboratories 

(Woburn, MA), p38 MAP kinase inhibitor SB 203580, the JNK MAP kinase inhibitor SP 

600125 and the Erk1/2 specific upstream inhibitor PD 98059 from Cayman Chemical (Ann 

Arbor, MI). The PI-3 kinase inhibitor LY294002 was from Cell Signalling (Danvers, MA) 

and the PKC-δ inhibitor rottlerin was from Alexis Biochemical (San Diego, CA). 
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Isolation and culture of pulmonary endothelial cells 

Pulmonary EC were isolated from C57BL/6 mice (8–12 weeks old) following IACUC 

approval with a modification of the Marelli-Berg method (22,23). Briefly, lungs were 

harvested, mechanically minced, and enzymatically digested with collagenase (30 mg/ 

100ml; Worthington, Lakewood, NJ) in 0.1% BSA at 37 °C for 1 h with constant gentle 

mechanical agitation. The resulting mixture of cells was filtered through a sterile 75 μm cell 

strainer (BD Biosciences, San Diego, CA). The single cell suspension obtained was 

incubated with rat anti-mouse CD34 antibody (1:50) at 4 °C for 45 min with gentle shaking, 

followed by magnetic bead separation using goat anti-rat IgG-conjugated microbeads (1:5, 

Miltenyi Biotec, Auburn, CA, USA). The isolated EC were cultured in DMEM with 20% 

FBS, 2 mM glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, 1 mM sodium 

pyruvate, 20 mM HEPES, 1% non-essential amino acids, 100 μg/ml endothelial cell growth 

supplement and 50 U/ml heparin in 2% gelatin pre-coated tissue culture dishes. Following 

expansion to 70–80% confluence (3–5 days), the cells were resuspended and a second 

immunologic separation carried out using rat anti-mouse CD102 antibody. The resulting 

cells were plated and their endothelial phenotype confirmed by cellular uptake of DiI- 

acetylated LDL (DiI-AcLDL, Biomedical Technologies, Stoughton, MA) and cell 

morphology. The proportion of cells taking up DiI-AcLDL compared to the number of cell 

nuclei representing the entire cell population, was used to assess the purity of the isolated 

EC populations. For TGF-β treatment, pulmonary EC were washed with serum-free medium 

and then incubated with 10 ng/ml TGF-β1 in endothelial cell culture medium containing 

0.5% FBS. The medium was changed and additives replenished every 2 days. Phase-contrast 

and fluorescent images were obtained using an inverted microscope with SpotBasic software 

(Sterling Heights, MI). 

 
Immunofluorescence staining 

Pulmonary EC were seeded onto glass culture slides and treated as described above. One or 

3 days following TGF-β1 treatment, cells were fixed with 3.7% formaldehyde and 

permeabilized with 0.1% Triton X-100 in phosphate-buffered saline (PBS) for 3 min. Slides 

were washed with PBS and blocked with 1% bovine serum albumin in PBS at room 

temperature for 1 h and then they were incubated with primary antibodies against α-SMA 

(1:200) or Snail 1 (1:50). Slides were then incubated with Cy3-conjugated secondary 

antibodies (1:500). 

 
Protein precipitation from cell culture medium 

The conditioned culture media from primary pulmonary EC that were treated with or 

without TGF-β1 for 3 days was mixed with 9 volumes of 100% ethanol, incubated at −80 °C 

for 15 min and subsequently centrifuged at 13,000 rpm for 15 min at 4°C. The pellet was 

resuspended in PBS and protein concentrations were assessed using the BCA assay kit (Bio- 

Rad, Hercules, CA). 

 
Western blot analysis 

Primary pulmonary EC were treated for 72 h with TGF-β1 (10 ng/ml) with or without small 

molecule kinase inhibitors as indicated. Following treatment, the cells were washed with 

cold PBS, harvested with a cell lifter, centrifuged and lysed with RIPA lysis buffer (25 mM 

Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% Na deoxycholate and 0.1 % SDS) 

supplemented with a complete protease inhibitor cocktail (Roche Diagnostics, Indianapolis, 

IN). Cellular proteins were resolved by SDS-polyacrylamide gel electrophoresis, and 

transferred to nitrocellulose membranes (Invitrogen, Carlsbad, CA). Blots were blocked for 

1 h in Tris-buffered saline (TBS)-Tween (10 mmol/L Tris-HCl, pH 8.0, 150 mmol/L NaCl, 

0.1% Tween 20) containing 5% nonfat dry milk (BioRad, Hercules, CA). Then, membranes 
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were incubated overnight at 4°C with mouse monoclonal α-SMA antibody (1:200) or rabbit 

polyconal Snail-1 antibody (1:1000), rabbit phospho-GSK-3β (Ser9) antibody (1:1000) or 

GAPDH polyclonal rabbit antibody (1:200) primary antibodies in a 5% nonfat dry milk/ 

TBS-Tween solution. Membranes were then washed with TBS-Tween, and incubated for 1 h 

with the appropriate horseradish peroxidase-conjugated secondary antibodies (GE 

Healthcare, UK). Signal was detected with an enhanced chemiluminescence detection kit 

(Pierce, Rockford, IL) and collected on an autoradiography film (Denville Scientific, 

Metuchen, NJ). The signals were quantified using NIH Image J software. 

 
Treatment with small molecule kinase inhibitors 

Primary EC cultures were treated for 72 h with TGF-β1, in the presence or absence of the 

following kinase inhibitors: p38 MAP kinase inhibitor SB 203580 (5μM), JNK MAP kinase 

inhibitor SP 600125 (1 μM), Erk1/2 specific upstream inhibitor PD 98059 (5μM), PI-3 

kinase inhibitor LY294002 (5 μM), PKC-δ inhibitor rottlerin (0.5 μM), or c-Abl kinase 

inhibitor imatinib mesylate (2μg/ml). 

 
RNA interference 

Transfection of short interfering RNAs (siRNAs) was performed in 6-well tissue culture 

plates employing the HiPerFect reagent (Qiagen, Valencia, CA). Two different sequences 

were targeted and the final concentration of the siRNAs used was 5 nM. Following siRNA 

transfection, 10 ng/ml TGF-β1 was added to the media, and incubation was continued for 72 

h. The siRNA target sequences were: murine Snail-1: 5′-CAG TTT ATT GAT ATT CAA 

TAA-3′ and 5′-ATG GTT AAT TTTA TAT ACT AAA-3′; murine c-Abl: 5′-CTC GAT 

GGA ACT CCA AGG AAA-3′ and 5′-CAG GCC CAC ACT GAT CAC CTA-3′; murine 

PKC-δ: 5′-AGG GAA GAC ACT GGT ACA GAA-3′ and 5′-CCG ATT CAA GGT TTA 

TAA CTA-3′. Control siRNA was obtained from Qiagen and was transfected employing the 

same conditions. 

 
Semi-quantitative reverse transcription (RT)-PCR 

Treated primary pulmonary EC were harvested, washed in cold PBS, and processed for 

RNA extraction (RNeasy kit; Qiagen). Total RNA (1 μg) was reverse-transcribed using 

Superscript II reverse transcriptase (Invitrogen) to generate first strand cDNA. The primers 

for RT-PCR were designed using Vector NTI 5 software (Invitrogen) and validated for 

specificity. The following primers were used: Snail-1; forward, 5′-ACC TTC CAG CAG 

CCC TAC GA-3′, reverse, 5′-AGC GTG TGG CTT CGG ATG TG-3′. Snail-2; forward, 5′- 

ACT ACA GCG AAC TGG ACA CA-3′, reverse, 5′-CTG GAG AAG GTT TTT GGA 

GCA-3′. GAPDH; forward, 5′-TGT GGA TGG CCC CTC TGG AA-3′, reverse, 5′-CGG 

CAT CGA AGG TGG AAG AG-3′. RT-PCR was performed following a standard 

amplification protocol. The products were electrophoresed on 1% agarose gels and stained 

with ethidium bromide. The reaction products were visualized with a FluorImager 

(Molecular Dynamics, Sunnyvale, CA). Images were quantitated using NIH Image J 

software and the signals were normalized to those obtained for loading controls. The values 

for the untreated control samples were set as 1 and all the experimental values were 

expressed as a multiple thereof. 

 
Quantitative real time PCR 

Real-time PCR was performed using SYBR green employing a standard amplification 

protocol on a ABI 7900 HT Fast Real-time PCR system. The following primers were used: 

α-SMA, forward, 5′-GTG GCC CCT GAA GAG CAT C-3′, reverse, 5′-AAT CTG GGT 

CAT TTT CTC CCG-3′. Collagen I, forward, 5′-GCA TGG CCA AGA AGA CAT CC-3′, 

reverse, 5′-TCC ACG TCT CAC CAT TGG G-3′. 18S, forward, 5′-CGG CTA CCA CAT 
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CCA AGG AA-3′, reverse, 5′-GGG CCT CGA AAG AGT AAT GT-3′. The primers for 

Snail-1 amplification were the same as those used for RT-PCR (see above). To confirm the 

amplification specificity, the PCR products were subjected to melting temperature 

dissociation curve analysis. No amplification and no template controls were examined in 

parallel. The cycle number (CT) at which amplification entered the exponential phase was 

determined and used as an indicator of the amount of target RNA produced in the reactions. 

The control experiment levels were set as 1 and all the other values expressed as a multiple 

thereof. 

 
Statistical analysis 

Data are expressed as means ± SD. Means of different groups were compared using one-way 

analysis of variance. Statistical analysis was performed by using unpaired Student’s t test. A 

value of p < 0.05 was considered to be statistically significant. 

 
Results 

 

Isolation and characterization of murine pulmonary EC 

To ensure that there were no other contaminating cells, we performed a sequential 

immunomagnetic isolation procedure using an initial purification with anti-CD34 antibody 

followed by expansion in monolayer cell culture and a second immunomagnetic purification 

with CD-102 antibodies. These two antibodies are reported to be specific for endothelial 

cells. This procedure yielded 1–1.5 million pure EC from each pair of lungs with 95% 

viability. The pulmonary EC monolayer cultures showed classical EC cobblestone 

morphology and following confluency displayed the formation of characteristic capillary 

tubes (Figures 1A and 1B). The endothelial phenotype of the cultured cells was confirmed 

by uptake of DiI-Ac-LDL (Figure 1C), a specific procedure to identify EC in culture (24). 

The proportion of DiI-AC-LDL- positive cells indicated that greater than 99% of cells in the 

preparation were EC (Figure 1C and 1D). 

 
TGF-β1 induction of a myofibroblast phenotype in primary pulmonary EC 

Primary pulmonary EC cultures treated with TGF-β1 for 72 h lost their characteristic 

cobblestone-like morphology and expressed the myofibroblast-specific protein α-SMA 

(Figure 2A and 2B). Western blot analysis confirmed induction of α-SMA in these cells, 

whereas in cells cultured without TGF-β1 there was no detectable α-SMA expression 

(Figure 2C). We next examined whether TGF-β1-treated EC also displayed expression of 

the fibroblast phenotype-specific marker type I collagen. In the untreated cells there was no 

evidence of collagen I expression, whereas treatment with TGF-β1 induced significant 

(p<0.05 when compared with control cells) collagen I expression (Figure 2D). The TGF-β1- 

treated EC also lost the endothelial cell marker VE-cadherin. As expected, untreated cells 

displayed high expression of VE-cadherin, whereas treatment with TGF-β1 caused a marked 

and significant (p<0.05 compared with control cells) reduction in VE-cadherin expression 

(Figure 2E). We next studied the time course of α-SMA and collagen I mRNA expression 

following TGF-β exposure by quantitative real-time PCR. The results showed a marked 

increase in α-SMA mRNA expression at 12 h (p<0.05 when compared with control) with a 

further increase at 24 h. In contrast, collagen I mRNA displayed a significant increase only 

after 24 h (p<0.05 when compared with control, Figure 2F). 

 
TGF-β1 induction of Snail-1 expression in primary pulmonary EC 

The family of Snail proteins has been shown to regulate EMT and cell behavior during a 

variety of developmental processes (25–27). Therefore, we tested whether Snail-1 also 

participates in EndoMT in pulmonary EC. Snail-1 expression examination by 
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immunofluorescence staining showed a very low level of expression in untreated cells that 

was confined to the nuclei. In contrast, TGF-β1 treatment significantly increased Snail-1 

expression (p<0.05 when compared with control cells) in pulmonary EC (Figure 3A and 

3B). The results were confirmed by assessment of Snail-1 mRNA levels by RT-PCR. In 

untreated cells we observed a very low level of basal expression of Snail-1, however, TGF- 

β1 treatment caused a potent stimulation of its expression. In contrast, Snail-2 showed 

higher constitutive levels of expression, however, there was no stimulation of its expression 

following TGF-β1 treatment (Figure 3C). Further quantification of mRNA expression by 

quantitative real-time PCR showed that following 24 h TGF-β1 treatment, there was a 

significant increase in Snail-1 mRNA expression (p<0.05 when compared with control cells; 

Figure 3D). 

 
Effects of kinase inhibitors on TGF-β1-induced α-SMA and Snail-1 expression in primary 

pulmonary EC 

To examine the intracellular signaling pathways that may be involved in the induction of α- 

SMA and Snail-1 expression by TGF-β1, we treated the cells with a variety of small 

molecule kinase inhibitors. The results employing a p38 MAP kinase inhibitor (SB 203580), 

a JNK MAP kinase inhibitor (SP 600125), or an Erk1/2 specific upstream inhibitor (PD 

98059) with or without TGF-β1 are shown in Figure 4A. Treatment with either the p38 

MAP kinase inhibitor or the JNK MAP kinase inhibitor decreased but did not abrogate TGF- 

β1-induced α-SMA and Snail-1 expression. Treatment with the Erk1/2 inhibitor had no 

significant effects. Studies with the PI3K inhibitor (LY294002) or the PKC-δ inhibitor 

(rottlerin) with or without TGF-β1 are shown in Figure 4B. Treatment with the PKC-δ 

inhibitor almost completely abrogated TGF-β1-induced α-SMA and Snail-1 expression, 

whereas treatment with the PI-3K inhibitor had no detectable effects. 

 
Imatinib mesylate abrogates TGF-β1-inducedα-SMA expression in primary pulmonary EC 

To examine the participation of c-Abl on TGF-β1-induced α-SMA expression pulmonary 

EC were treated with TGF-β1 in the presence or absence of imatinib mesylate for 72 h. As 

shown in Figure 5A, imatinib mesylate almost completely abolished TGF-β1-induced α- 

SMA expression. Moreover, in the few cells that displayed α-SMA staining following 

treatment with imatinib, α-SMA was distributed diffusely in the cells and did not organize 

into any typical α-SMA stress fibres. Western blot assay confirmed that imatinib mesylate 

caused a potent decrease in TGF-β1-induced α-SMA expression (p<0.05 compared with 

control cells; Figure 5B). 

 
Effects of imatinib mesylate on TGF-β1-induced Snail-1 mRNA and protein expression in 

primary pulmonary EC 

To examine whether the effects of imatinib mesylate on TGF-β1-induced α-SMA expression 

were accompanied by parallel changes in Snail-1 expression, we examined Snail-1 transcript 

levels using reverse transcription PCR. As shown in Figure 5C, TGF-β1 induced a marked 

increase in Snail-1 expression, and treatment with imatinib mesylate reduced significantly 

(p<0.05) these levels to almost baseline values. The effects of imatinib mesylate on TGF-β1- 

induced Snail-1 expression were confirmed by Western blots (p<0.05 compared with control 

cells; Figure 5D). To determine whether the potent inhibition of TGF-β induced EndoMT by 

imatinib mesylate was mediated through blockade of the canonical Smad2/3 cascade, we 

measured phospho-Smad2 levels. Although TGF-β1 significantly induced phospho-Smad2 

levels, this effect was not suppressed by imatinib mesylate (data not shown), indicating that 

the canonical Smad pathway does not participate in imatinib inhibition of TGF-β1-induced 

Snail-1 expression. 
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Effects of Snail-1 knockdown on TGF-β1 induced-SMA expression in primary pulmonary 

EC 

To determine whether Snail-1 is required for TGF-β1 induced α-SMA expression, we 

transfected Snail-1 siRNA into primary pulmonary EC followed by treatment with TGF-β1. 

As control, we transfected siRNA consisting of a sequence that has no known homology to 

any mammalian gene. As shown in Figure 5E, transfection of Snail-1 siRNA caused a 

significant (p<0.05) inhibition of TGF-β1-inducedα-SMA expression. 

 
Effects of MAP kinase, c-Abl, and PKC-δ inhibition on TGF-β1-induced GSK-3β 

phosphorylation 

Numerous previous studies have demonstrated that GSK-3β phosphorylation at residue Ser9 

plays a crucial role in the regulation of EMT (27). To examine whether GSK-3β 

phosphorylation is also important in EndoMT we studied the changes in TGF-β1-induced 

GSK-3β Ser9 phosphorylation following treatment with various kinase inhibitors. As shown 

in Figure 6A and 6B, TGF-β1 caused potent stimulation of Ser9 GSK-3β phosphorylation 

and treatment with the MAP kinase inhibitors did not have any effect. In contrast, both the 

c-Abl inhibitor imatinib mesylate and the PKC-δ inhibitor rottlerin almost completely 

abrogated the TGF-β1-induced GSK-3β Ser9 phosphorylation (p<0.05 for both compounds 

when compared with the TGF-β1 treated group). 

 
Effects of c-Abl, and PKC-δ knockdown on TGF-β1 induced-SMA and Snail-1 expression in 

primary pulmonary EC 

To further confirm the role of c-Abl and PKC-δ in TGF-β1 induced SMA expression, we 

transfected c-Abl and PKC-δ siRNA into primary pulmonary EC followed by treatment with 

TGF-β1. Preliminary experiments (data not shown) indicated that transfection of the 

selected siRNA caused nearly complete inhibition of expression of the corresponding genes. 

As shown in Figure 6C and 6D, knockdown of either c-Abl or PKC-δ employing siRNA 

caused a potent inhibition of TGF-β1-induced α-SMA and Snail-1 expression. 

 
Discussion 

 

One of the most characteristic histopathologic alterations in SSc is a severe 

fibroproliferative vasculopathy affecting the microvasculature as well as some larger 

vessels. The proliferative vasculopathy of SSc has two distinct components. The first one is 

a marked proliferation of smooth muscle cells in the media of medium size and small size 

arterioles, a process which plays a crucial role in SSc-associated pulmonary hypertension. 

The second component is most prominent in the small arterioles of parenchymal organs such 

as the lungs and is characterized by the subendothelial accumulation of activated fibroblasts 

or myofibroblasts and the production of abundant fibrotic tissue. The origin of mesenchymal 

cells responsible for the fibrotic microvascular occlusion in SSc is not known but recent 

studies have suggested that at least some of these cells may result from EndoMT, i.e., the 

transdifferentiation of EC into subintimal fibroblasts induced by locally-secreted cytokines 

and growth factors. 
 

The purpose of our study was to examine the transdifferentiation of pulmonary EC into 

mesenchymal cells in vitro and the signaling pathways involved in this process. Our results 

have shown that: (1) primary murine pulmonary EC undergo EndoMT in response to TGF-β 

with initiation of expression of α-SMA and assembly of typical intracellular α-SMA stress 

fibers, and loss of VE-cadherin in vitro; (2) TGF-β induction of EndoMT was associated 

with a strong upregulation in the expression of the transcriptional repressor Snail-1 

indicating that Snail-1 is directly involved TGF-β-induced α-SMA expression; and (3) 

induction of α-SMA expression in pulmonary EC was mediated by c-Abl and PKC-δ, as 
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specific inhibition of their kinase activity with imatinib mesylate and rottlerin, respectively, 

or by knockdown of their corresponding transcripts with specific siRNA abrogated the 

marked increase in TGF-β induced α-SMA and Snail-1 expression and protein levels. 
 

EndoMT is a recently recognized process of non-malignant cellular transdifferentiation in 

which highly differentiated endothelial cells acquire the expression of specific mesenchymal 

cell markers such as α-SMA, vimentin, and type I procollagen, lose the expression of VE- 

cadherin, and change their typical endothelial cell morphology becoming elongated and 

acquiring the ability to migrate into surrounding tissues. This process, initially identified 

during development of the cardiac atrioventricular cushion and the cardiac septum in 

embryonic life, has more recently been demonstrated to occur in adult tissues and to play an 

important role during the development of pathologic cardiac, pulmonary and renal fibrosis 

(5–12). Indeed, by using endothelial lineage tracing in transgenic mice, it was shown that 

30–50% of all myofibroblasts in renal fibrosis arise from endothelial cells via EndoMT 

(9,10) and that a significant amount of fibroblasts in bleomycin-induced lung fibrosis are EC 

derived (11). 
 

Given the crucial role of TGF-β in the development of tissue fibrosis and its participation in 

the pathogenesis of numerous fibrotic diseases, we examined the mechanisms involved in 

the induction of EndoMT by this pleotropic growth factor and studied the intracellular 

transduction pathways involved in this process employing primary pulmonary EC in culture. 

We confirmed the occurrence of EndoMT following TGF-β and demonstrated that the 

downstream signaling pathway initiated by TGF-β ligation resulted in strong upregulation of 

the transcriptional repressor Snail-1. Snail-1 is a zinc-finger transcription factor that causes 

potent inhibition of the E-cadherin gene transcription in cultured cells (28,29) and plays an 

important in the process of EMT (26,27). Our observation that TGF-β1 also induced Snail-1 

expression in EC confirm previous studies (30) and indicate that EndoMT and EMT very 

likely share similar molecular mechanisms. 
 

The intracellular signaling studies described here showed that TGF-β1-induced EndoMT 

involving the participation of c-Abl and PKC-δ. The potent inhibitory effects of imatinib 

mesylate and rottlerin were shown to be accompanied by inhibition of phosphorylation of 

the Ser9 residue in GSK-3β. These results are in agreement with recent studies 

demonstrating that phosphorylation of this specific Ser9 residue in GSK-3β inactivates the 

kinase which in turn induces the nuclear accumulation of Snail-1 as well as a profound 

increase in the expression of its corresponding gene and in stabilization of the protein (31– 

33). These events result in a marked increase in the transcriptional effects of Snail-1 and 

eventually in the increased expression of mesenchymal cell proteins such as α-SMA and 

collagen I. 
 

Imatinib mesylate, a small-molecule tyrosine kinase inhibitor widely used for the treatment 

of chronic myelogenous leukemia has recently been proposed as a novel antifibrotic therapy 

(34–36). It has been shown to have anti-fibrotic effects in mice models of systemic fibrosis 

(37–38), and it also can attenuate bleomycin-induced pulmonary fibrosis (34,39). On the 

other hand, several studies have shown that PKC-δ participates in the pathogenesis of tissue 

fibrosis in SSc (40,41). Here, by using primary pulmonary EC, we showed that imatinib 

mesylate can inhibit TGF-β1-induced EndoMT and Snail-1 expression. Furthermore, our 

studies showed that inhibition of PKC-δ with the highly selective inhibitor rottlerin also 

abrogated EndoMT induction by TGF-β and blocked the increased expression of α-SMA 

and Snail-1 indicating that this kinase is also intimately improved in this process. The role of 

PKC-δ was confirmed employing siRNA knockdown which caused similar abrogation of α- 

SMA and Snail-1 expression as rottlerin (Figure 6). These latter results indicated that the 
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effects of rottlerin were related to specific inhibition of PKC-δ and were not the result of 

other non-specific effects. 
 

In conclusion, the results described here identify c-Abl and PKC-δ as two important 

components of the process of TGF-β-induced EndoMT and suggest that targeting these 

components may be a feasible therapeutic goal to modify crucial steps in the development of 

SSc fibroproliferative vasculopathy and may also be of value in the treatment of other 

fibrotic disorders in which EndoMT plays a pathogenetic role. Obviously, subsequent 

preclinical studies employing suitable animal models will be required to further support the 

potential therapeutic role of c-Abl and PKC-δ inhibition for the proliferative vasculopathy of 

SSc and other disorders. 
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Figure 1. Characterization of pulmonary EC 

A. Phase contrast of pulmonary EC in culture isolated employing sequential anti-CD34 and 

anti-CD102 antibody selection. B. Characteristic tube-formation at confluence. C. Ac-LDL 

uptake assay. D. Cells in the same field as IC stained with DAPI for nuclear staining. 

Pulmonary EC display cobblestone morphology, form multicellular tubes (arrow) and 

express high levels of Ac-LDL confirming their endothelial phenotype. Size bar = 100μm 
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Figure 2. TGF-β1 induced α-SMA expression in primary pulmonary EC 

A, B. Primary pulmonary EC were treated with TGF-β1 for 72 h, fixed and stained with α- 

SMA. Note the phenotypic change of EC which acquire a fibroblast-like appearance and 

initiate expression of α-SMA. C, D, E. Primary lung EC were treated with TGF-β1 for 72 h, 

and cell lysates were electrophoresed and probed in Western blots with specific antibodies to 

α-SMA (C), collagen I (D) and VE-cadherin (E). GAPDH was used as loading control. 

Fluorescence density of α-SMA expression and quantitative densitometry of Western blots 

were analyzed using NIH Image J software. F. Quantitative real-time PCR analysis of TGF- 

β1 induction of α-SMA and collagen I mRNA expression in primary pulmonary EC. 

Amplification of 18S RNA was used as internal control. Data represent the mean ± SD of 

one of two independent experiments in which each sample was analyzed in triplicate. *p < 

0.05 when compared with controls. Size bar = 50μm. 
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Figure 3. TGF-β1 induced Snail-1 expression in primary pulmonary EC 

A, B. Primary pulmonary EC were treated with TGF-β1 for 24 h, fixed and stained by 

indirect immunofluorescence with Snail-1. Note a marked increase in expression of Snail-1 

following treatment with TGF-β. B. Fluorescence density of α-SMA expression analyzed 

using NIH Image J software. C. Primary pulmonary EC were treated with TGF-β1 for 72 h. 

RNA was purified and reverse transcribed and assessed by PCR for Snail-1 and Snail-2 

expression. GAPDH was used as control. Note very low level basal expression of Snail-1. 

Treatment with TGF-β1 increased Snail-1 expression. In contrast, Snail-2 levels displayed 

higher constitutive expression and did not show any change following TGF-β treatment. D. 

Quantitative real-time PCR analysis of TGF-β1 induction of Snail-1 mRNA expression. The 

data represent the mean ± SD of one of two independent experiments in which each sample 

was analyzed in triplicate (*p < 0.05 when compared with controls). Size bar = 50μm 
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Figure 4. Effect of kinase inhibitors on TGF-β1-induced α-SMA and Snail-1 expression in 

primary pulmonary EC 

Primary pulmonary EC were treated with either 5μM p38 MAP kinase inhibitor SB 203580, 

1μM JNK MAP kinase inhibitor SP 600125, or 5μM Erk1/2 specific upstream inhibitor PD 

98059 (A), or with 5μM PI3-kinase3 inhibitor LY294002 or 0.5μM PKC-δ inhibitor rottlerin 

(B) in the presence or absence of TGF-β1 for 72 h, then cell lysates were probed in Western 

blots for α-SMA. GAPDH was used as loading control. Note that SB 203580 and SP 600125 

decrease TGF-β1-induced α-SMA expression, treatment with the PKC-δ inhibitor rottlerin 

almost completely abolished TGF-β1-induced α-SMA expression, whereas treatment with 

either the Erk1/2 inhibitor or the PI-3 kinase inhibitor had no significant effects. The 

quantitative densitometry of α-SMA was analyzed using NIH Image J software and the data 

represent one of two independent experiments *p < 0.05 when compared with the TGF-β1- 

treated group. 
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Figure 5. Effect of imatinib mesylate on TGF-β1-induced α-SMA and Snail-1 expression in 

primary pulmonary EC 

A. Primary pulmonary EC were treated with imatinib with or without TGF-β1 for 72 h, fixed 

and stained with α-SMA. Imatinib significantly decreased TGF-β1-induced α-SMA 

expression. Also note that in imatinib-treated cells, α-SMA was distributed homogenously 

and did not organize into α-SMA stress fibers. B, C. Cell lysates were probed by Western 

blots for α-SMA (B) and Snail-1 (C). GAPDH was used as loading control. Quantitative 

densitometry was analyzed using NIH Image J software and the data represent one of two 

independent experiments in which each sample was analyzed in triplicate. D. Primary 

pulmonary EC were treated with imatinib with or without TGF-β1 for 72 h. Transcript levels 

were assessed by PCR. GAPDH was used as control. The quantitative densitometry was 

analyzed using NIH Image J software. Note that imatinib significantly downregulated 

Snail-1 protein levels (5C) and mRNA expression (5D). E. Primary EC were transfected 

with Snail-1 siRNA or with control siRNA followed by TGF-β1 treatment for 72 h, cell 

lysate proteins were probed with α-SMA. GAPDH was used as loading control. The data 

represent one of two independent experiments. *p < 0.05 when compared with TGF-β1- 

treated group. Size bar = 50μm. 
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Figure 6. Effect of MAP kinase, c-Abl, and PKC-δ inhibition on TGF-β1-induced GSK-3β 
phosphorylation 

A, B. Primary pulmonary EC were treated with 5μM p38 MAP kinase inhibitor SB 203580, 

5 μM JNK inhibitor SP 600125 (A), or 2μg/ml c-Abl inhibitor imatinib mesylate or 0.5 μM 

PKC-δ inhibitor rottlerin (B) for 72 h then cell lysates were probed in Western blots with 

phospho-GSK-3β (Ser9) and total GSK-3β antibodies. Note that the MAP kinase inhibitor 

did not have any effect on TGF-β1-induced GSK-3β Ser9 phosphorylation (A) whereas, both 

the c-Abl inhibitor imatinib and the PKC-δ inhibitor rottlerin almost completely abrogated 

TGF-β1-induced Ser9 GSK-3β phosphorylation (B). C, D. Primary EC were transfected with 

either c-Abl or PKC-δ specific siRNA or with control siRNA followed by TGF-β1 treatment 

for 72 h. Cell lysates were probed in Western blots for α-SMA and Snail-1. GAPDH was 

used as loading control. The data represent one of two independent experiments. The 

quantitative densitometry was analyzed using NIH Image J software. *p < 0.05 when 

compared with the TGF-β1-treated group. 
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