
Thomas Jefferson University
Jefferson Digital Commons

Department of Pharmacology and Experimental
Therapeutics Faculty Papers

Department of Pharmacology and Experimental
Therapeutics

5-4-2017

Guanylate cyclase C as a target for prevention,
detection, and therapy in colorectal cancer.
Allison A. Aka
Thoams Jefferson University, Allison.Aka@jefferson.edu

Jeff A. Rappaport
Thomas Jefferson University, Jeffrey.Rappaport@jefferson.edu

Amanda M. Pattison
Thomas Jefferson University, Amanda.Pattison@jefferson.edu

Takami Sato
Thomas Jefferson University, Takami.Sato@jefferson.edu

Adam E. Snook
Thomas Jefferson University, adam.snook@jefferson.edu

See next page for additional authors

Let us know how access to this document benefits you
Follow this and additional works at: https://jdc.jefferson.edu/petfp

Part of the Medical Pharmacology Commons

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas
Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly
publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and
interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in
Department of Pharmacology and Experimental Therapeutics Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For
more information, please contact: JeffersonDigitalCommons@jefferson.edu.

Recommended Citation
Aka, Allison A.; Rappaport, Jeff A.; Pattison, Amanda M.; Sato, Takami; Snook, Adam E.; and
Waldman, Scott A., "Guanylate cyclase C as a target for prevention, detection, and therapy in
colorectal cancer." (2017). Department of Pharmacology and Experimental Therapeutics Faculty Papers.
Paper 82.
https://jdc.jefferson.edu/petfp/82

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jefferson Digital Commons

https://core.ac.uk/display/83050019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://jdc.jefferson.edu?utm_source=jdc.jefferson.edu%2Fpetfp%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jdc.jefferson.edu/petfp?utm_source=jdc.jefferson.edu%2Fpetfp%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jdc.jefferson.edu/petfp?utm_source=jdc.jefferson.edu%2Fpetfp%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jdc.jefferson.edu/pet?utm_source=jdc.jefferson.edu%2Fpetfp%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jdc.jefferson.edu/pet?utm_source=jdc.jefferson.edu%2Fpetfp%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jeffline.jefferson.edu/Education/surveys/jdc.cfm
https://jdc.jefferson.edu/petfp?utm_source=jdc.jefferson.edu%2Fpetfp%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/960?utm_source=jdc.jefferson.edu%2Fpetfp%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.jefferson.edu/university/teaching-learning.html/


Authors
Allison A. Aka, Jeff A. Rappaport, Amanda M. Pattison, Takami Sato, Adam E. Snook, and Scott A. Waldman

This article is available at Jefferson Digital Commons: https://jdc.jefferson.edu/petfp/82

https://jdc.jefferson.edu/petfp/82?utm_source=jdc.jefferson.edu%2Fpetfp%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages


 1 

 1 
Review Article  2 

 3 

Guanylate Cyclase C as a Target for Prevention, Detection, and Therapy in Colorectal 4 

Cancer  5 

 6 

Contents 7 

1.0 Abstract 8 

2.0 Current challenges in colorectal cancer 9 

3.0 Genetic basis of colorectal cancer 10 

4.0 GUCY2C as a target in colorectal cancer 11 

5.0 GUCY2C agonists for colorectal cancer prevention 12 

5.1 Endogenous ligands 13 

5.2 Enterotoxins 14 

5.3 Synthetic peptides 15 

6.0 GUCY2C-targeted immunotherapies for metastatic colorectal cancer 16 

6.1 Vaccines 17 

6.2 Adoptive T-cell therapies 18 

6.3 GUCY2C-targeted immunotoxins 19 

7.0 GUCY2C as a biomarker for colorectal cancer detection 20 

7.1 GUCY2C mRNA as a biomarker 21 

7.2 GUCY2C as a target for diagnostic imaging agents 22 

8.0 Conclusion 23 

9.0 Expert Commentary 24 

10.0 Five Year View 25 

11.0 Key Issues 26 

 27 

 28 

  29 



 2 

1.0 Abstract 30 

Introduction: Colorectal cancer remains the second leading cause of cancer death in the 31 

United States, and new strategies to prevent, detect, and treat the disease are needed. The 32 

receptor, guanylate cyclase C (GUCY2C), a tumor suppressor expressed by the intestinal 33 

epithelium, has emerged as a promising target. 34 

Areas Covered: This review outlines the role of GUCY2C in tumorigenesis, and steps to 35 

translate GUCY2C-targeting schemes to the clinic. Endogenous GUCY2C-activating ligands 36 

disappear early in tumorigenesis, silencing its signaling axis and enabling transformation. 37 

Pre-clinical models support GUCY2C ligand supplementation as a novel disease prevention 38 

paradigm. With the recent FDA approval of the GUCY2C ligand, linaclotide, and two more 39 

synthetic ligands in the pipeline, this strategy can be tested in human trials. In addition to 40 

primary tumor prevention, we also review immunotherapies targeting GUCY2C expressed 41 

by metastatic lesions, and platforms using GUCY2C as a biomarker for detection and patient 42 

staging.  43 

Expert Commentary: Results of the first GUCY2C targeting schemes in patients will become 44 

available in the coming years. The identification of GUCY2C ligand loss as a requirement for 45 

colorectal tumorigenesis has the potential to change the treatment paradigm from an 46 

irreversible disease of genetic mutation, to a treatable disease of ligand insufficiency.  47 

 48 

2.0 Current Challenges in Colorectal Cancer 49 

Colorectal cancer (CRC) remains the fourth most diagnosed cancer, and the second leading 50 

cause of cancer death in the United States [1]. Worldwide, it accounts for as many as 1.2 51 

million new cases and 600,000 deaths per year [2]. CRC incidence and mortality has 52 

declined since the 1980s, paralleling adoption of screening; however, available screening 53 

methods (e.g. fecal occult blood, flexible sigmoidoscopy, colonoscopy) vary in terms of 54 

sensitivity and specificity, risks, and evidence supporting their implementation. 55 

Unfortunately, no screening method has proven to reduce all-cause mortality [3]. 56 

Colonoscopy has become the gold standard, enabling removal of dysplastic lesions before 57 

progression to cancer. Yet, sensitivity decreases for lesions <1 cm, and the adenoma 58 

detection rate and completeness of polyp removal varies between providers [4, 5]. Indeed, 59 
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the superiority of colonoscopy over other screening approaches recently was questioned 60 

[6]. 61 

 62 

Complicating limitations of current screening tools, widespread and ill-defined risk factors 63 

for CRC make it difficult to develop screening guidelines. A fraction of new tumors arise in 64 

patients with known genetic syndromes (e.g. Lynch syndrome, familial adenomatous 65 

polyposis); however >90% of cases are thought to be sporadic [7]. Age and family history 66 

play a role, hence colonoscopy is indicated at age 50 for patients with average risk, and at 67 

age 40 for patients with a first degree relative diagnosed at a young age [2]. But other risk 68 

factors of unclear significance include high-fat diets, tobacco smoking, alcohol 69 

consumption, and body mass index [8, 9]. Patients with inflammatory conditions of the 70 

bowel, such as ulcerative colitis, are particularly predisposed to CRC [10], and several 71 

studies have suggested benefits from low dose non-steroidal anti-inflammatory drugs [11, 72 

12, 13]. However, a pathophysiological link between these risk factors and tumorigenesis 73 

remains unclear, delaying the development of disease prevention schemes. 74 

 75 

Despite progress in early detection and treatment, ~25% of patients present with late 76 

stage disease [14]. Many promising agents for metastatic disease have become clinically 77 

available (e.g. tyrosine kinase inhibitors, epidermal growth factor inhibitors, anti-78 

angiogenesis agents, etc.), but the five-year survival rate for this population remains only 79 

11.7% [2, 14]. Hence, strategies for prevention, detection, and treatment of primary and 80 

metastatic CRC are needed. 81 

 82 

3.0 Genetic Basis of Colorectal Cancer 83 

CRCs develop slowly, often requiring over a decade to accumulate mutations required for 84 

epithelial transformation (providing a long window for detection). The average tumor 85 

contains 90 different mutations [15], but despite this genetic heterogeneity, 70-80% of 86 

sporadic (non-hereditary) colorectal tumors arise by a series of mutations typically 87 

described as the adenoma-carcinoma sequence [7, 16]. Canonically, this sequence begins 88 

with an inactivating mutation of the adenomatous polyposis coli (APC) tumor suppressor 89 

gene. The APC protein normally inhibits the accumulation of β-catenin, the downstream 90 
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mediator of the Wnt signaling pathway. APC loss enables phosphorylation and aberrant 91 

translocation of β-catenin to the nucleus in the absence of the Wnt ligand, where it 92 

participates in oncogenic transcription (activation of c-MYC and cyclin D1) [17]. 93 

Subsequent activating mutations of oncogenes (e.g. KRAS), and deactivating mutations of 94 

tumor suppressors (e.g. TP53) characterize the progression from normal epithelium, to 95 

adenoma, to carcinoma [7, 16]. About 15% of sporadic tumors arise by a different 96 

mechanism, characterized by dysfunction of DNA mismatch repair genes, such as MLH1 and 97 

MSH2. Here, defective DNA repair permits accumulation of mutations in short repeated 98 

genetic sequences (microsatellite sequences), resulting in a microsatellite instability 99 

phenotype. Finally, a third tumorigenic pathway is characterized by aberrant gene silencing 100 

via CpG island methylation, an epigenetic phenomenon. These adenomas often harbor 101 

mutational activation of the BRAF oncogene, and exhibit a characteristic sessile serrated 102 

architecture [7, 16]. Many tumors contain elements of more than one pathway; for 103 

example, hypermethylation of the MLH1 mismatch repair gene contributes to a large subset 104 

of microsatellite unstable tumors.   105 

 106 

By comparison, tumors arising from hereditary CRC syndromes occur less frequently (3-107 

5% of cases), and arise from germline, rather than somatic, mutations in the 108 

aforementioned pathways [7, 16]. Hereditary non-polyposis CRC (HNPCC, or Lynch 109 

syndrome) occurs most commonly, and arises from mismatch repair gene mutation. 110 

Familial adenomatous polyposis (FAP) arises from germline mutations of APC, resulting in 111 

thousands of colonic polyps early in life and 100% risk of cancer by age 40.  112 

  113 

4.0 GUCY2C as a Target in Colorectal Cancer  114 

Although a wealth of genetic and epigenetic changes have been associated with intestinal 115 

transformation, a common causative agent has yet to be found. Recent studies have defined 116 

a role for the intestinal surface receptor, guanylate cyclase C (GUCY2C), as a tumor 117 

suppressor involved in the earliest stages of transformation.  118 

 119 

GUCY2C belongs to the particulate guanylate cyclase class of receptors, and appears on the 120 

apical brush border of the intestinal epithelium [18]. Early studies defined its role in 121 
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regulating luminal secretion, specifically as the receptor for the bacterial heat-stable 122 

enterotoxin, ST, the causative agent of traveler’s diarrhea [19]. ST binding to the 123 

extracellular domain of GUCY2C activates the intracellular catalytic domain, converting 124 

GTP to cyclic GMP [18]. This second messenger activates cGMP-dependent protein kinase II 125 

(PKGII), leading to downstream phosphorylation and activation events, including water 126 

and electrolyte secretion via the cystic fibrosis transmembrane conductance regulator 127 

(CFTR) [18]. Predictably, persons with activating or deactivating mutations of GUCY2C 128 

exhibit intestinal hyper- or hypo- secretory syndromes, respectively [20, 21]. Our 129 

understanding of GUCY2C-induced signaling has since expanded to include regulatory roles 130 

in epithelial renewal along the crypt-villus axis [22, 23], GI barrier integrity [24, 25], injury 131 

response [26, 27], and the gut-brain satiety axis [28, 29]. Importantly, GUCY2C is densely 132 

expressed throughout the intestine, and overexpressed by tumor tissue, features that can 133 

be exploited for diagnostic and therapeutic goals [30, 31, 32].  134 

 135 

Endogenous GUCY2C ligands, the peptides guanylin and uroguanylin, are among the most 136 

commonly lost gene products in mouse models and human CRC [33, 34, 35]. In a study of 137 

300 patients, >85% of colorectal tumors exhibited disappearance of guanylin mRNA and 138 

protein compared to normal adjacent tissue [33]. This loss occurs early in intestinal 139 

transformation, suggesting that an intact GUCY2C signaling axis opposes tumorigenesis [23, 140 

36, 37]. Indeed, mice in which GUCY2C expression is eliminated (Gucy2c-/-) exhibit a 141 

tumorigenic phenotype, including epithelial dysfunction, DNA mutation, cellular 142 

proliferation and migration, and metabolic reprogramming (Figure 1) [24, 37]. 143 

Interestingly, diet-induced obesity in mice also leads to guanylin loss and tumor formation, 144 

suggesting a mechanistic link between CRC and a well-described risk factor, obesity [28]. 145 

Conversely, GUCY2C activating ligands and downstream mediators suppress oncogenic 146 

drivers (e.g. pRb, cyclin D1, B-catenin, pAKT) and increase tumor suppressors (e.g. p21, 147 

p27) [23, 25, 38, 39]. These findings underlie the paracrine hormone hypothesis, whereby 148 

CRC arises from an environment of ligand loss and functional GUCY2C inactivation. This 149 

pathophysiological paradigm could transform colon cancer from an irreversible disease of 150 

genetic origin, to a treatable disorder of ligand insufficiency. Recent FDA-approval of the 151 
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GUCY2C ligand, linaclotide, and the entrance of two others in the clinical pipeline, makes it 152 

feasible to test ligand supplementation for chemoprevention of CRC in humans.  153 

 154 

5.0 GUCY2C Agonists for Colorectal Cancer Prevention 155 

GUCY2C peptide agonists available for chemoprevention of primary colorectal tumors 156 

include the endogenous peptides guanylin and uroguanylin, bacterial diarrheagenic heat-157 

stable enterotoxins (STs), and the synthetic peptides linaclotide, plecanatide, and 158 

dolcanatide. These ligands share structural homologies and conserved mechanisms of 159 

action through GUCY2C activation and downstream cGMP production.   160 

 161 

5.1 Endogenous Ligands 162 

Guanylin and uroguanylin, the endogenous ligands for GUCY2C in the intestine, were first 163 

described in the early 1990s [40, 41]. They are produced and stored as propeptides, and 164 

undergo processing to their mature 15-mer (guanylin) or 16-mer (uroguanylin) forms. The 165 

mature peptides are thought to act on GUCY2C in a paracrine fashion to maintain epithelial 166 

homeostasis and fluid secretion [18]. Uroguanylin also serves an endocrine role in gut-167 

brain satiety signaling [28]. The peptides exhibit complimentary roles along the axis of the 168 

intestine, with maximal uroguanylin expression in the small intestine, and guanylin in the 169 

large intestine [42]. However, even after two decades of study, the cells of origin remain 170 

controversial, and may continue to evolve as we elucidate the multiple roles of the GUCY2C 171 

signaling axis [43, 44, 45, 46]. Interestingly, despite >50% sequence homology, uroguanylin 172 

is principally active in acidic pH and guanylin in basic pH, further reflecting regional 173 

specificity [47].  174 

 175 

The disappearance of guanylin/uroguanylin early in colorectal tumorigenesis reflects a 176 

tumor suppressive function. Preclinical studies in mice have demonstrated the potential of 177 

therapeutic ligand replacement. For example, in Apcmin/+ mice (a CRC model) oral 178 

uroguanylin supplementation inhibited tumorigenesis [48]. In another model, mice 179 

genetically modified to overexpress guanylin were resistant to DSS-induced colitis [25]. 180 

Further, it was recently shown that diet-induced obesity suppressed guanylin expression in 181 

mice, leading to tumorigenesis, and specific enforcement of guanylin expression prevented 182 



 7 

obesity-related tumors [49]. In all of these studies, no adverse effects were observed over 183 

the lifetime of the mice.   184 

 185 

5.2 Enterotoxins 186 

Heat-stable enterotoxins (STs) are produced by several diarrheagenic bacteria, including 187 

enterotoxigenic E. coli, K. pneumonia, V. cholera, and Y. enterocolitica [18]. First described 188 

as GUCY2C agonists in 1990, STs include a family of peptides with a conserved C-terminal 189 

region [19]. Structurally similar to guanylin and uroguanylin, STs contain an additional 190 

disulfide bond, contributing to their canonical heat stability and increased receptor binding 191 

affinity [18]. Ligand-receptor binding activates GUCY2C, leading to CFTR-driven fluid and 192 

electrolyte transport into the intestinal lumen, manifesting as secretory diarrhea. 193 

Enterotoxigenic E. coli is endemic in developing countries with poor sanitation 194 

infrastructure. Interestingly, these regions have a lower incidence of CRC, which may 195 

reflect life-long exposure to STs, increased GUCY2C activation, and suppression of epithelial 196 

dysplasia [39, 50]. 197 

 198 

5. 3 Synthetic Peptides 199 

Synthetic peptides sharing homology with natural GUCY2C ligands target the secretory 200 

function of GUCY2C for therapeutic purposes. The first agent developed, linaclotide 201 

(Ironwood Pharmaceuticals, Inc., Cambridge, MA), is an ST analog approved by the FDA for 202 

the treatment of chronic idiopathic constipation (CIC) and constipation-predominant 203 

irritable bowel syndrome (IBS-C). Linaclotide binds GUCY2C, inducing cGMP accumulation 204 

and fluid secretion. Double-blind, placebo-controlled, phase III clinical trials were 205 

completed for patients with IBS-C (MCP-103-302 and LIN-MD-31) and CIC (MCP-103-303 206 

and LIN-MD-01) [51, 52, 53]. Linaclotide met all primary endpoints, significantly reducing 207 

abdominal symptoms and severity of constipation. No differences in serious adverse events 208 

were observed between linaclotide and placebo. The most commonly reported side effect 209 

was diarrhea, an effect predicted by its mechanism of action. New agents, plecanatide and 210 

dolcanatide (Synergy Pharmaceuticals Inc., New York, NY), are uroguanylin analogs with 211 

increased potency [54]. Like linaclotide, these agents agonize GUCY2C and stimulate cGMP 212 

production. They reduced disease severity (e.g. weight loss, inflammatory infiltrate, 213 
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destruction of crypt architecture) in pharmacologic and genetic murine models of colitis 214 

[54]. In a phase I trial of 72 healthy volunteers, up to 48.6 mg of plecanatide was safe and 215 

well-tolerated [55]. Currently, plecanatide is in phase III clinical trials for CIC and IBS-C 216 

[56].  217 

 218 

Given their safety in human trials, these compounds could be used as oral-219 

chemopreventive agents for CRC. In principle, exogenous GUCY2C ligand administration 220 

would reconstitute the tumor-suppressing GUCY2C signaling axis, preventing colorectal 221 

tumorigenesis. A phase I trial is underway to identify oral linaclotide dosing regimens that 222 

stimulate GUCY2C in the rectum. Study participants receive a single oral dose of linaclotide 223 

daily for 7 days, and then are assessed for increases in cGMP levels in rectal biopsy, as well 224 

as safety and tolerability (Linaclotide Acetate in Preventing Colorectal Cancer in Healthy 225 

Volunteers, clinicaltrials.gov NCT01950403). 226 

 227 

6.0 GUCY2C-Targeted Immunotherapies for Metastatic Colorectal Cancer 228 

While prevention of CRC remains the clinical ideal, therapeutic strategies for advanced 229 

disease are also needed. A growing body of literature endorses immunotherapy for cancer 230 

treatment. The immune system has a remarkable ability to suppress neoplastic 231 

proliferation, as demonstrated by heightened cancer risk in immunocompromised patients 232 

[57, 58]. In part, this risk reflects diminished immune control of oncogenic viruses (e.g. 233 

human herpes virus 8 and Kaposi sarcoma, hepatitis B and C viruses and liver cancer, or 234 

Epstein-Barr virus and Hodgkin’s lymphoma) [58]; however, these patients also are 235 

predisposed to cancers without known infectious etiologies (e.g. melanoma, thyroid, and 236 

colorectal cancers) [58]. Instead, these are thought to arise from poor immune surveillance 237 

against cancer cells in tumors and the circulation. For example, the presence of 238 

lymphocytes in CRC tumors is associated with delayed metastasis and prolonged survival 239 

[59]. Tumor cells have a propensity to bypass or overcome these natural defense 240 

mechanisms, creating an unmet need for therapies that improve the immune response to 241 

cancer antigens (e.g. vaccines, adoptive T cell therapy) or target cancer cells directly (e.g. 242 

immunotoxins) [60, 61].  243 

 244 
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Effective CRC immunotherapies require antigenic targets that maximize immunogenicity 245 

and minimize autoimmunity. The most explored target, the glycoprotein carcinoembryonic 246 

antigen (CEA), is upregulated in CRC, but also appears in organs outside the GI tract, 247 

leading to potential autoimmunity and immunological tolerance [62, 63]. In contrast, 248 

GUCY2C has unique anatomic and biological characteristics that appear to circumvent 249 

these issues. GUCY2C is expressed by intestinal mucosa from the small bowel to the rectum, 250 

and is overexpressed in primary and metastatic colorectal neoplasms [30, 31, 32]. Further, 251 

expression is largely restricted to the luminal aspect of the GI mucosa, and its extracellular 252 

domain is antigenically distinct from other members of the guanylate cyclase family found 253 

in other tissues [64, 65, 66]. Importantly, GUCY2C resides in an immune privileged 254 

compartment, with minimal exposure to the systemic immune response [64, 65, 66]. 255 

Limited cross-talk between systemic and mucosal immune elements protects normal 256 

mucosa expressing GUCY2C from autoimmune toxicity, while also limiting systemic 257 

tolerance to the antigen [64, 65, 66]. These advantages have led to the exploration of 258 

several GUCY2C-targeted immunotherapeutic strategies (Figure 1). 259 

 260 

6. 1 Vaccines 261 

Similar to the yearly-recommended flu vaccine, cancer vaccines stimulate the immune 262 

system to destroy cancer cells by targeting tumor-specific antigens, while also generating 263 

long-lasting immunity [60]. Viral vector vaccines, engineered to contain the genes for 264 

cancer antigens, enhance antitumor immunity by stimulating the expansion of adaptive 265 

immune system elements, namely Type 1 CD4+ T-helper cells, cytotoxic CD8+ T cells and 266 

antibodies [61]. This paradigm forms the basis for a GUCY2C-targeted vaccine, designed to 267 

elicit immune responses to metastatic CRC. 268 

 269 

The first GUCY2C-specific vaccine incorporated replication-deficient type 5 recombinant 270 

adenovirus (Ad5) encoding the extracellular domain of GUCY2C (Ad5-GUCY2C) [64, 65, 66]. 271 

In a murine pre-clinical proof-of-concept study, the vaccine stimulated a GUCY2C-specific 272 

CD8+ cytotoxic T-cell response, which killed GUCY2C-expressing colon cancer cells. 273 

Remarkably, survival in mice with lung and liver metastases improved, without signs of 274 

inflammatory bowel disease, organ or metabolic dysfunction, or autoimmune tissue 275 
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damage [64]. Interestingly, the vaccine produced strong CD4+ T-cell, CD8+ T-cell, and B-cell 276 

responses in Gucy2c-/- mice, but produced only a modest CD8+ T-cell response in Gucy2c+/+ 277 

mice, which was attributed to GUCY2C-specific CD4+ T-cell tolerance [66]. To overcome 278 

this, the vaccine was modified to include an immunogenic T-helper epitope from foreign 279 

protein [66, 67]. This new vector reconstituted CD4+ T-cell, CD8+ T-cell, and memory 280 

responses [66]. This was the first demonstration that selective CD4+ T-cell tolerance blocks 281 

GUCY2C-specific immunity and memory responses. Importantly, this paradigm may extend 282 

to other antigens, including those in melanoma and breast cancer, suggesting that 283 

overcoming CD4+ T-cell tolerance may be a requirement in many cancer vaccine 284 

approaches [66, 68, 69]. 285 

 286 

Preliminary results were recently reported for a phase I clinical trial exploring the safety 287 

and immunogenicity of this vaccination scheme in stage I/II colon cancer patients 288 

(clincialtrials.gov NCT01972737)[70]. The vaccine is analogous to the murine vaccine, but 289 

encodes the human GUCY2C extracellular domain fused to the T-helper epitope PAn DR 290 

Epitope (Ad5-GUCY2C-PADRE). Preliminary findings are consistent with the pre-clinical 291 

studies, with patients responding to the vaccine by producing GUCY2C-specific CD8+ T-cell 292 

and B-cell responses, but not a CD4+ T-cell response, suggesting that selective CD4+ T-cell 293 

tolerance governs GUCY2C-specific immune responses in humans, as well as mice [70]. 294 

Moreover, like preclinical studies, the vaccine did not induce GUCY2C-targeted toxicity in 295 

any GUCY2C-expressing tissue. Importantly, these first findings in humans support Ad5-296 

GUCY2C-PADRE as a promising therapeutic approach for patients with GUCY2C-expressing 297 

malignancies.   298 

 299 

6. 2 Adoptive T Cell Therapies 300 

The past decade has witnessed remarkable progress in an immunotherapy approach 301 

known as adoptive cell therapy (ACT). Rather than employing a vaccine or other drug to 302 

induce an immune response within a patient, this strategy employs ex vivo tissue culture to 303 

expand naturally-occurring immune effectors or create them de novo for administration to 304 

the patient [71]. One approach involves boosting the activity of naturally occurring 305 

immune responses present in tumors, called tumor-infiltrating lymphocytes (TILs), which 306 
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are suppressed by the tumor microenvironment [61]. TILs can be isolated from patient 307 

tumors, activated and expanded ex vivo, and reintroduced to the patient, bypassing 308 

immunosuppressive elements. Another approach involves ex vivo genetic manipulation of 309 

peripheral blood lymphocytes to retarget them to tumors by expressing cancer-specific T-310 

cell receptors (TCRs). Both TIL and TCR-gene transfer approaches have been efficacious in 311 

mouse models and humans with metastatic melanoma [72, 73, 74, 75, 76]. An ACT 312 

alternative approach employs chimeric antigen receptors (CARs). Here, T lymphocytes are 313 

modified to express an engineered receptor comprised of intracellular T-cell signaling 314 

motifs and an extracellular antibody domain that recognizes antigens in an MHC/HLA-315 

independent fashion [77, 78]. CD19-targeted CAR-T cells have shown remarkable promise 316 

in the treatment of refractory leukemia in humans [79, 80, 81]. Because CARs can 317 

theoretically employ antibodies targeting any cell surface antigen, ACT approaches may be 318 

vastly expanded and personalized for other malignancies, including solid tumors. 319 

 320 

While efficacious for certain cancers, ACT has had mixed results in CRC patients. A recent 321 

report demonstrated regression of lung metastases in a patient with colorectal cancer 322 

injected with TILs targeting mutant KRAS [82]. However, prior trials of ACT targeting CEA 323 

and Her-2 resulted in adverse autoimmune effects, including death [83, 84]. In contrast, 324 

GUC2YC-targeted CAR-T cells may target metastatic CRC cells without destroying healthy 325 

tissue, given the anatomical compartmentalization of GUCY2C on the luminal aspect of the 326 

intestine, beyond access by CAR-T cells, which recognize native GUCY2C. As a proof-of-327 

concept, CD8+ T cells bearing CARs targeted to mouse GUCY2C lysed murine colon cancer 328 

cells, eliminated colorectal cancer metastases, and prolonged survival in a mouse model of 329 

metastatic CRC, without toxicity [85]. 330 

 331 

6.3 GUCY2C-targeted Immunotoxins 332 

Antibodies offer several advantages as an immunotherapeutic tool, including 333 

immunomodulatory capacity, interference in ligand-receptor interactions, and relative ease 334 

of mass-production. Indeed, antibody-therapies are well-established in the clinic, with over 335 

50 FDA-approved therapeutics [86]. For example, the monoclonal antibody bevacizumab 336 

(Avastin), which targets the vascular endothelial growth factor pathway, is FDA-approved 337 
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as first line treatment for metastatic CRC. Others include cetuximab (Erbitux) and 338 

panitumumab (Vectibix), antibodies which bind to the extracellular domain of the 339 

epidermal growth factor receptor, blocking ligand binding and tumorigenic signaling [87, 340 

88]. Still, these agents offer limited improvements in survival: bevacizumab was approved 341 

as a first line agent for metastatic CRC in 2004, but only increased median survival from 15 342 

to 20 months [87]. 343 

The next generation of antibody therapies, antibody-drug conjugates (ADCs) enable 344 

targeted delivery of cytotoxic agents to specific tissues [89, 90]. ADCs are engineered by 345 

linking a cytotoxin to a monoclonal antibody, facilitating targeting to cells expressing 346 

cancer antigens, endocytic uptake, and intracellular delivery of the toxic payload. 347 

Conceptually, the targeted nature of ADCs reduces systemic exposure, and endocytic 348 

uptake reduces drug resistance by P-glycoprotein efflux pump, two of the pitfalls of existing 349 

chemotherapeutics [89]. However, as a relatively new drug class, ADCs historically have 350 

proven difficult to optimize, and have been associated with significant side effects due to 351 

non-specific targeting [90]. For this reason, only two have achieved FDA approval, 352 

adotrastuzumab emtasine and brentuximab vedotin, although several others have entered 353 

clinical trials. 354 

 355 

Recently, a model GUCY2C-targeted ADC was devised, consisting of a GUCY2C antibody, 356 

ricin toxin payload, and cleavable disulfide linker (4-succinimidyloxycarbonyl-𝛼-methyl-𝛼-357 

[2-pyridyldithio]- toluene; SMPT) [91]. The ADC specifically targeted GUCY2C, underwent 358 

endocytosis, trafficked to lysosomes, and delivered a toxic payload to colon cancer cells 359 

[91]. In mice with CRC lung metastases, the ADC prolonged survival without compromising 360 

normal tissue [91]. A subsequent phase I clinical trial was recently completed, examining a 361 

human IgG1 monoclonal antibody to GUCY2C conjugated via a protease-cleavable linker to 362 

monomethyl auristatin E, an anti-microtubule agent. The ADC (TAK-264) was tested for 363 

safety and tolerability in 41 patients with GUCY2C-expressing metastatic gastrointestinal 364 

disease. Four patients in the highest dose group experienced dose-limiting toxicity 365 

(neutropenia), but the safety profile was deemed manageable, and preliminary data 366 

suggest antitumor activity [92]. 367 
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7.0 GUCY2C as a Biomarker in Colorectal Cancer Detection 368 

Features that elevate GUCY2C as a target for immunotherapy (overexpression by tumors, 369 

limited expression outside the gastrointestinal tract [30, 31, 32]) also have value for cancer 370 

detection and staging. Disease stage remains a key prognostic and therapeutic factor in the 371 

management of patients with CRC [93]. Whereas the resection of tumors restricted to the 372 

bowel wall (stage II) is often curative, patients with metastasis of tumor cells to lymph 373 

nodes (stage III) experience recurrence rates of up to 50% with surgery alone [2]. Although 374 

adjuvant chemotherapy remains controversial at stage II, progression to stage III is an 375 

indication for chemotherapy, increasing survival as much as 15% [2, 94]. Unfortunately, 376 

traditional staging by histopathological examination of lymph node tissue remains 377 

insensitive, leading to missed metastases, patient under-staging, and inappropriate patient 378 

management. For example, less than 0.01% of available tissue is typically reviewed, and as 379 

many as 25% of supposedly lymph node-negative (pN0) patients die of disease recurrence 380 

[93], suggesting undetected metastatic cells.  381 

 382 

7.1 GUCY2C mRNA as a biomarker 383 

The expression profile of GUCY2C makes it uniquely suited for the staging of primary 384 

colorectal tumors and occult metastases [32, 95]. In a blinded multicenter prospective trial, 385 

2570 lymph nodes from 257 pN0 colorectal cancer patients were examined for GUCY2C 386 

mRNA by quantitative real-time PCR [96]. Patients were followed for 24 months, and the 387 

primary outcome measure was time to recurrence. Remarkably, 87% of patients 388 

considered stage II by traditional histopathological techniques were found to harbor occult 389 

metastases by GUCY2C molecular staging, correlating with earlier time to recurrence. 390 

Furthermore, qRT-PCR was used to stratify patients by tumor burden, based on the 391 

number of positive nodes and relative GUCY2C expression across nodes [97]. For the first 392 

time, it was shown that patients with greater occult tumor burden had a greater risk of 393 

recurrence, and this method could be used to stratify patients based on prognostic risk. 394 

Importantly, molecular staging by GUCY2C RT-PCR has been validated across multiple 395 

users and laboratories and may replace conventional histopathologic evaluation for staging 396 

and therapeutic decision making in colorectal cancer [98, 99, 100].  397 

 398 



 14 

7.2 GUCY2C as a target for diagnostic imaging agents 399 

Positron emission tomography has become a mainstay for staging CRC and monitoring 400 

treatment response [101]. This method capitalizes on the increased metabolic demand, and 401 

therefore increased glycolysis, by cancer cells. Cancer cells take up the glucose analog, 2-402 

[18F]fluoro-2-deoxy-D-glucose (FDG) to a greater extent than surrounding normal tissue, 403 

allowing visualization by PET. However, glucose requirements by other tissues decreases 404 

specificity; false positives (due to inflammation, surgery, diverticulitis, etc.) lead to 405 

unnecessary follow-up colonoscopy or inappropriate staging [101]. Alternative imaging 406 

modalities using molecular targets, rather than metabolic patterns, may address these 407 

issues [102]. Targeting imaging probes to GUCY2C offers a sensitive means of detecting 408 

tumors derived from intestinal epithelium. Conjugates of radionuclides and GUCY2C 409 

ligands (e.g. ST, uroguanylin analogs) specifically target GUCY2C-expressing xenografts 410 

[103, 104]. These agents can be visualized with gamma camera scintigraphy, and 411 

accurately differentiate tumors of gastrointestinal origin from surrounding tissue [103, 412 

104]. Further, GUCY2C-directed antibodies accumulate in cells via clathrin-mediated 413 

endocytosis of the antibody-receptor complex, with the potential to amplify delivery of 414 

imaging agents or therapeutic cargo [91]. 415 

  416 

8.0 Conclusion 417 

Despite improvements in CRC screening, incidence and mortality are among the highest of 418 

all cancers, and while the genetic basis has been well described, therapeutic targets remain 419 

elusive. The intestinal receptor GUCY2C has emerged as a target uniquely suited for 420 

prevention, therapy, and diagnostics. Its role as a tumor suppressor, inactivated by ligand 421 

loss early in tumorigenesis, suggests a novel disease prevention paradigm focused on 422 

GUCY2C ligand replacement. A clinical program is underway ultimately to test this strategy 423 

with the FDA-approved agent, linaclotide, and other promising agents are emerging. 424 

Further, its expression profile in the intestinal lumen and metastatic CRC tumors offers an 425 

ideal target for a rapidly expanding array of cancer immunotherapies, including vaccines, 426 

T-cell therapies, and antibody-drug conjugates. Finally, GUCY2C can be exploited as a 427 

sensitive biomarker for the detection and staging of CRC. Translation to the clinics is 428 
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underway on multiple fronts. Novel approaches targeting GUCY2C could revolutionize the 429 

treatment of CRC.  430 

 431 

9.0 Expert Commentary 432 

 433 

Cancer research remains an ever-changing field, with exciting advances in the past few 434 

decades that have shifted traditional treatment approaches. Preventative strategies are the 435 

clinical ideal and successes have been achieved for several neoplasms, such as the 436 

decreased incidence of gastric cancer following the identification and reduction of H. pylori 437 

infections [1]. Likewise, colonoscopy has reduced the incidence of colorectal cancers by 438 

eliminating lesions before they become invasive and metastatic.  439 

 440 

While screening has reduced the incidence of colorectal cancer, it remains the fourth most 441 

diagnosed cancer, and the second leading cause of cancer death, with a 5-year survival 442 

<15% in metastatic disease. GUCY2C appears to play a pivotal role in epithelial 443 

homeostasis, including intestinal barrier integrity and obesity, known risk factors for colon 444 

cancer, suggesting novel molecular pathways that may be pharmacologically targetable. 445 

The revelation of GUCY2C ligand loss and receptor silencing early in tumorigenesis may 446 

have a transformative impact, supported by the exploration of multiple translational 447 

avenues. With regards to cancer prevention, reactivation of the GUCY2C tumor suppressor 448 

pathway with exogenous peptides has shown promise in pre-clinical models. Though 449 

initially formulated for the treatment of irritable bowel disease and chronic constipation, 450 

the translation of the FDA-approved GUCY2C ligand, linaclotide, to CRC is feasible, as safety 451 

and efficacy are already established. However, long-term effects of linaclotide and other 452 

synthetic GUCY2C ligands have not yet been defined and longitudinal chemoprevention 453 

trials are required. 454 

 455 

In the context of CRC treatment, the identification of GUCY2C as a biomarker and cell-456 

surface target of metastatic CRC cells may usher in new biologics and immunotherapies. 457 

GUCY2C-targeted vaccines and antibody-drug conjugates have advanced into clinical 458 

testing. Further, detection of GUCY2C mRNA in lymph nodes offers a sensitive means of 459 
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staging the disease, enabling more accurate identification of patients at risk for disease 460 

recurrence. Appropriate intervention in patients with previously unrecognized occult 461 

metastases may improve survival, especially as targeted therapeutics enter the clinic. 462 

 463 

Another area of interest and debate is the nature of cancer inception, and implications for 464 

targeting strategies. Traditionally, disease recurrence and treatment failure are thought to 465 

result from the inevitable acquisition of mutations and epigenetic changes that allow 466 

cancer cells to evade destruction [105]. However, evidence increasingly indicates the 467 

presence of “cancer stem cells”, a subpopulation of cancer cells with stem-like 468 

characteristics (e.g., tumorigenesis, self-renewal, and differentiation) that underlie 469 

metastasis, recurrence, and chemoresistance [106]. Identification and targeting of cancer 470 

stem cell markers could enhance CRC therapies. For example, a recent study demonstrated 471 

co-expression of CD133 and the breast cancer resistance protein (BCRP)/ATP-binding 472 

cassette subfamily G member 2 (ABCG2) by human colorectal tumors [107]. 473 

Downregulation of ABCG2 inhibited self-renewal capabilities and enhanced 474 

chemotherapeutic effects in double-positive colon adenocarcinoma cells. Dual-therapies, 475 

potentially targeting a universal CRC marker like GUCY2C as well as a marker of the stem 476 

cell subpopulation may be a new translational avenue. As we better-characterize these 477 

neoplastic markers, therapeutic strategies will continue to evolve. 478 

 479 

10.0 Five Year View 480 

A large body of work across multiple laboratories supports the hypothesis that GUCY2C 481 

ligand loss is a necessary step in tumorigenesis. In the next five years, the molecular steps 482 

in this process likely will be defined, potentially leading to new clinical targets. 483 

Furthermore, results of the first trials translating GUCY2C-targeting schemes to the clinic 484 

will become available, including the effectiveness of GUCY2C ligand supplementation with 485 

linaclotide, a GUCY2C-targeted vaccine, a GUCY2C-targeted antibody-drug conjugate, and 486 

GUCY2C-targeted CAR-T cells. Additional GUCY2C ligands (dolcanatide and plecanatide) 487 

entering the pipeline will likely be explored for similar use as chemoprevention agents. 488 

Ultimately, the next five years should provide the first insights into the potential for 489 

GUCY2C-targeting to influence human colorectal cancer outcomes. 490 
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 491 

11.0 Key Issues 492 

• The gastrointestinal epithelial receptor, guanylate cyclase C (GUCY2C) has been 493 

described as a novel tumor suppressor and reliable biomarker of colorectal cancer. 494 

• Endogenous GUCY2C ligand loss has been widely-described as an early step in 495 

colorectal tumorigenesis, suggesting a therapeutic strategy of ligand replacement 496 

for chemoprevention. The GUCY2C agonist linaclotide is FDA approved for other 497 

indications and a phase I clinical trial examining its use for colorectal cancer 498 

prevention is underway.  499 

• GUCY2C is overexpressed in colorectal cancer metastases and several 500 

immunotherapies targeting GUCY2C are being explored, including adoptive T-cell 501 

therapy with GUCY2C-targeted CAR-T cells, a viral vector vaccine, and a GUCY2C-502 

targeted antibody-drug conjugate. The latter two are currently in early human trials.  503 

• Cancer staging and imaging strategies targeting GUCY2C also are being explored. 504 

GUCY2C mRNA is a sensitive biomarker of occult lymph node metastases, improving 505 

cancer detection and staging.  506 
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