

Thomas Jefferson University Jefferson Digital Commons

Department of Orthopaedic Surgery Faculty Papers

Department of Orthopaedic Surgery

10-1-2016

Evaluation and Management of Sleep Disorders in the Hand Surgery Patient.

Michael P. Gaspar Thomas Jefferson University, michaelpgaspar@gmail.com

Patrick M. Kane Thomas Jefferson University, patrick.kane@jefferson.edu

Sidney M. Jacoby Thomas Jefferson University, sidney.jacoby@jefferson.edu

Patrick S. Gaspar Harborside Surgical Center

A. Lee Osterman Thomas Jefferson University, a.osterman@jefferson.edu

Let us know how access to this document benefits you

Follow this and additional works at: https://jdc.jefferson.edu/orthofp Part of the <u>Orthopedics Commons</u>, and the <u>Surgery Commons</u>

Recommended Citation

Gaspar, Michael P.; Kane, Patrick M.; Jacoby, Sidney M.; Gaspar, Patrick S.; and Osterman, A. Lee, "Evaluation and Management of Sleep Disorders in the Hand Surgery Patient." (2016). *Department of Orthopaedic Surgery Faculty Papers*. Paper 93. https://jdc.jefferson.edu/orthofp/93

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Orthopaedic Surgery Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.

1	Title:
2	Evaluation and Management of Sleep Disorders in the Hand Surgery Patient
3	
4	Running Title:
5	Sleep Disorders in Hand Surgery
6	
7	Authors and affiliations:
8	
9 10	Michael P. Gaspar, MD ^a michaelpgaspar@gmail.com
10	inchaeipgaspai@ginan.com
12	Patrick M. Kane, MD ^a
13	pmkkane@gmail.com
14	
15	Sidney M. Jacoby, MD ^a
16	smjacoby@handcenters.com
17	
18	Patrick S. Gaspar, MD ^b
19 20	patrickgaspar@yahoo.com
20 21	A. Lee Osterman, MD ^a
22	alosterman@handcenters.com
23	
24	
25	^a The Philadelphia Hand Center, P.C.
26	Thomas Jefferson University
27	Department of Orthopedic Surgery
28	The Franklin Suite G114
29 30	834 Chestnut Street Philadelphia, PA 19107, USA
30 31	Philadelphila, PA 19107, USA
32	^b Harborside Surgical Center
33	Department of Anesthesiology
34	Oxon Hill, MD
35	
36	Corresponding Author:
37	Michael P. Gaspar, MD
38	The Philadelphia Hand Center, P.C.
39 40	The Franklin Suite G114
40 41	834 Chestnut Street Philadelphia, PA 19107
42	michaelpgaspar@gmail.com
43	(804) 363-9157
44	
45	Key Words:
46	Insomnia; Sleep Disorders; Hand Surgery; Carpal tunnel syndrome; Obstructive Sleep Apnea
47	

48 Abstract

- 49 Despite posing a significant public health threat, sleep disorders remain poorly understood
- 50 and often mismanaged. Though seemingly unrelated, hand surgeons should be particularly
- 51 mindful of sleep disorders, as numerous conditions of the upper extremity have known
- 52 associations with sleep disturbances which can adversely affect patient outcomes, function
- 53 and satisfaction. In addition, patients with sleep disorders are at significantly higher risk
- 54 for severe, even life-threatening medical co-morbidities, further supporting the important
- ⁵⁵ role of hand surgeons in the recognition and management of sleep disorders that are most
- 56 common in hand surgery.

58 Introduction

- 59 Sleep disorders are a major public health concern, affecting as many as 70 million adults in
- 60 the United States alone, while accounting for billions of dollars in financial costs, disability,
- and even death. [1-5] Sleep disorders are also associated with a myriad of medical
- 62 conditions including obesity, hypertension, diabetes heart disease, and overall higher
- 63 mortality risk. [6]
- 64
- 65 Unfortunately, despite these exorbitant socioeconomic and health costs, sleep disorders are
- often overlooked or improperly treated. [7,8] In hand surgery, numerous conditions have
- 67 known associations with sleep disorders, and sleep symptoms can directly affect patient
- outcomes, function and satisfaction. Thus, these disorders are important for hand surgeons
- 69 to recognize and manage. The purpose of this review is to provide an overview of sleep
- 70 disorders that are most common in hand surgery, with focus on the preoperative
- 71 evaluation, and perioperative management of these disorders.
- 72
- 73

74 Sleep Disorders in Hand Surgery

- 75 This discussion will focus primarily on two classes of disorders most relevant to hand
- surgery: (1) dyssomnias which are disorders that produce excessive sleepiness or difficulty
- in initiating or maintaining sleep and (2) sleep disorders associated with other medical
- disorders. [9] A more inclusive outline of general sleep disorders is presented in Figure 1.
- 79

80 Intrinsic Dyssomnias

- 81 Intrinsic dyssomnias either (a) originate or develop within the body, or (b) arise
- 82 from causes within the body. [9] This group includes psychological or medical disorders
- 83 that *produce* a primary sleep disorder.
- 84

85 Obstructive Sleep Apnea

- 86 Perhaps the most widely recognized intrinsic dyssomnia in surgical patients is obstructive
- 87 sleep apnea (OSA). Patients with OSA who are to undergo surgery require specialized
- 88 management, as these patients are at higher risk for adverse events in the intraoperative

89 and postoperative periods. In the perioperative setting, the primary concern is airway

- 90 management; due to OSA patients' decreased ability to protect their airway, procedures
- 91 that would otherwise be performed under sedation may require monitored anesthesia care
- 92 (MAC) or even general anesthesia for. [10,11] Ideally, open communication between the
- anesthesiologist and the hand surgeon allows these determinations to be made prior to the
- 94 day of surgery, so as to minimize delays or complications.
- 95

In addition to patients with a known diagnosis of OSA, surgeons are often tasked with 96 97 caring for patients who lack a formal diagnosis, despite exhibiting clinical risk factors for 98 OSA. [12] Chung et al reported an alarming 66% of patients lacking a preoperative OSA 99 diagnosis with difficult intubations were confirmed to have OSA upon further evaluation. 100 [13] Mutter et al found that those patients with undiagnosed OSA were at significantly 101 higher risk of postoperative cardiac arrest than confirmed OSA patients, and that both 102 groups faired worse than non-OSA patients, [14] These studies together point out the 103 importance for the hand surgeon to recognize and screen for OSA, which can be done 104 utilizing validated OSA screening methods, such as the STOP-Bang questionnaire (Table 1). 105 Surgeons should also have a low threshold for referring patients with positive findings on 106 OSA screening for further evaluation. [13,15] Postoperative management of OSA patients is 107 also critical in avoiding morbidity, and OSA patients should resume continuous- or bilevel 108 positive-airway-pressure (CPAP or BiPAP) treatment as soon as they are able. [15] 109 Postoperative pain control regimens in OSA patients also merit special attention, which will 110 be discussed shortly.

111

112 Extrinsic Dyssomnias

113 Extrinsic dyssomnias are those that originate or develop from causes outside of the body.

- 114 [9] External factors are necessary to produce these disorders, and their removal is often
- 115 therapeutic to the sleep disturbance. [9] In hand surgery, these most notably include both
- 116 drug-induced and drug-dependant sleep disorders.
- 117

118 Opioid-Induced Sleep Disorders

119 A true understanding of the complex interplay of pain, opioid medication, and sleep

- 120 disturbance remains elusive. Although evidence shows that pain and sleep exhibit a
- 121 circular relationship with one another (i.e. pain causes sleep disturbance and sleep
- disturbance intensifies pain), [16-19] opioids used to concomitantly treat both pain and
- secondary sleep disorders are not always successful. [20,21]
- 124
- 125 Opioid receptors in the brain are located in the same nuclei that are active in sleep 126 regulation and abnormal sleep architecture has been reported as a characteristic feature of 127 opioid use, with a reduction of rapid eve movement (REM), slow wave sleep stages, and 128 overall sleep quality. [18,20,22] Opioid use in OSA patients can be particularly 129 troublesome, as opioids not only impair arousal, but can worsen airway obstruction, even 130 in non-OSA patients. [21,23,24] Thus, alternative multimodal pain management 131 approaches are recommended to minimize the need for opioids for OSA patients. These 132 include: regional or local anesthesia when appropriate, continuous peripheral nerve 133 blockade, and non-opioid analgesics such as acetaminophen and NSAIDS. [15,23,25-27] 134 Recent evidence also supports use of low-dose ketamine or adjuvant clonidine injections 135 to potentiate local or regional nerve blocks. [23,28,29] Finally, conservative measures 136 aimed at decreasing postoperative pain and inflammation such as icing, elevation, and 137 compression should be emphasized, especially upon discharge home.
- 138
- 139 Sedative-Dependent Sleep Disorders

140 The use of short-acting sedative-hypnotics, particularly non-benzodiazepine sedative

141 hypnotics (NBSH, e.g. zolpidem), for treatment of insomnia has increased markedly in

- 142 recent decades. [30] Generally intended to treat short-term insomnia, NBSH
- 143 discontinuation may precipitate rebound insomnia, lasting up to weeks in extreme cases, or

144 after taking a single dose. [31-33] Thus, the dependency potential is relatively high. [34-36]

- 145 Use of zolpidem as a postoperative sleep aid or pain-adjuvant has recently been described
- 146 following knee and shoulder surgery with reported success in improving sleep quality and
- 147 function, while decreasing opioid requirements, pain and fatigue. [37-39] However, none of
- 148 these studies reported patient outcomes beyond the acute treatment period. [37-39] Its

- similar utility in hand surgery has not been reported. Perhaps surprisingly, antihistamines
- 150 used as sleep aids may warrant similar caution. [41] A recent survey of patients who took
- 151 the commonly-used sedative H1 antihistamine doxylamine found the majority of patients
- used the medication daily for at least six months, including 77% who experienced rebound
- insomnia when attempting to discontinue use. [41] These findings suggest that sedative
- 154 hypnotics and antihistamines should be used with judiciously in hand surgery patients
- 155 with sleep disorders.
- 156

157 Sleep Disorders Associated with Mental, Neurologic, or Other Medical Disorders

158 This second category includes a variety primary medical disorders that *secondarily* involve

159 sleep disturbance or excessive sleepiness as a major clinical feature, [9] including several

- 160 hand and upper extremity conditions.
- 161

162 Carpal Tunnel Syndrome

163 Insomnia is a nearly universal finding in patients with carpal tunnel syndrome (CTS), often 164 serving as the primary motivating factor for seeking surgical care. [42-48] Although the mechanism linking these two conditions is unclear, McCabe and colleagues reported that 165 166 patients with CTS are more likely to prefer sleeping on their side compared to control 167 patients. [42-44] The authors acknowledge, however, that these associative findings do not 168 necessary prove causation. In an effort to further characterize the severity of sleep 169 disturbance in CTS patients. Patel et al prospectively studied patients with CTS and found 170 that 78% of patients met the threshold for poor sleep quality using the Pittsburgh Sleep 171 Quality Index (PSQI), a validated sleep-quality outcome measure. [46,49,50] The authors 172 also noted a positive correlation between CTS-related functional impairment and severity 173 of sleep symptoms. [46] The authors did not study the potential association of preoperative 174 electrodiagnostic findings with sleep symptom severity, nor did they investigate the 175 potential therapeutic effect of median nerve decompression on sleep symptoms. Both of 176 these associations may warrant further study, as the ability to predict relief of sleep 177 symptoms following decompressive surgery would allow clinicians to better tailor 178 management for CTS patients whose primary complaints are sleep-related.

180 Rheumatoid Arthritis and Other Inflammatory Arthropathies

181 Sleep disturbances in patients with Rheumatoid Arthritis (RA) are multifactorial,

182 codependent on pain, fatigue, and depression. [51-53] In a prospective analysis of RA

183 patients seen at an outpatient clinic, Løppenthin et al reported that 61% met criteria for

184 poor sleep using the PSQI. [52] Westhovens et al found that RA disease activity showed

185 significantly positive correlation with worsening sleep symptoms, [53] while Fragiadaki et

- al reported improvement in sleep symptoms in a series of 15 RA patients treated with
- 187 tocilizumab, [54] together suggesting that primary management of underlying RA activity
- 188 may serve as an optimal strategy for co-managing sleep symptoms. Recent evidence has

also demonstrated a significant association between psoriatic arthritis and sleep disorders,

190 particularly OSA and insomnia. [55-58] Although etanercept was reported to improve

191 insomnia symptoms in patients with psoriatic arthritis, treatment with adalimumab did not

show a therapeutic effect on patients' OSA symptoms. [57,58] Patients with both psoriatic

193 arthritis and OSA who are to undergo hand surgery should be managed according to the

194 OSA principles discussed earlier.

- 195
- 196

197 Additional Management Considerations

Given the potential adverse effects associated with sedatives and opioid pain medication,
alternative treatment modalities for concomitant sleep disturbance and acute

200 postoperative pain warrant further discussion. Gamma-aminobutvric acid (GABA)

201 analogues gabapentin and pregabalin may have utility for treating concomitant pain and

sleep symptoms, either as primary therapeutic or adjuvant agents. [59,60] Gabapentin has

203 previously been shown as an effective treatment for both pain and sleep disturbance in CTS

204 patients, [61] although this finding has been both supported and refuted in more recent

- studies. [62,63] Pregabalin shows promise in the concomitant treatment of sleep and pain
- symptoms, albeit in patients with fibromyalgia, for which it is FDA-approved. [64,65] While
- 207 neither medication is currently FDA-approved for neuropathic pain associated specifically
- 208 with conditions of the upper extremity, further investigation to that end could be

209 worthwhile. [59]

211 Another promising agent for use in hand surgery is exogenous melatonin. Although its 212 sleep-promoting characteristics are widely-reported, melatonin possesses numerous 213 additional benefits which suggest an ideal role as a therapeutic agent in hand surgery. [66] 214 In vitro studies on chondrocytes demonstrate that melatonin is chondrogenic and 215 promotes matrix synthesis, and can also serve as a rescue agent for chondrocytes that are 216 exposed to damaging pro-inflammatory or cytotoxic factors. [67-69] In an animal model of 217 median nerve injury, sleep deprivation made rats more vulnerable to nerve injury-induced 218 neuropathic pain, while melatonin reversed nerve injury-induced hypersensitivity. [70] In 219 the lone clinical study evaluating its efficacy in hand surgery, melatonin was found to 220 improve tourniquet tolerance while decreasing opioid requirement in patients receiving 221 regional anesthesia intravenously. [71] Given this therapeutic potential and limited 222 adverse effect profile, use of melatonin in hand surgery certainly warrants ongoing trial 223 and further investigation.

- 224
- 225

226 Current Limitations and Future Directions

227 Due to the complex interplay of sleep with pain, psychiatric disorders, social factors, and 228 other associated conditions, the evaluation of sleep disorders in the hand surgery patient is 229 rarely straightforward. In a recent study by Peters and colleagues, the authors attempted 230 to determine a relationship between sleep disturbance and upper-extremity disability, and 231 found that psychological factors such as ineffective coping strategies were more likely to 232 predict arm disability than sleep symptoms. [72] The authors discussed the possibility that 233 sleep disturbance was also the product of these psychological factors, suggesting a 234 bidirectional relationship. Their study exemplifies the challenging nature inherent to 235 determining underlying pathology and causal relationships regarding sleep disturbances. 236 This is echoed by Shulman et al, who found that sleep disturbance following distal radius 237 fracture at long-term follow-up was more dependent on mental health than on functional 238 status. [73]

239

A second limitation of the current evidence regarding sleep disorders in hand surgery is

with respect to the heterogeneity of the patient populations studied; a shortcoming fully

- 242 acknowledged by Peters and colleagues. [72] In their study fractures, soft-tissue injuries,
- 243 and degenerative conditions were all treated as equivalent upper extremity disabilities.
- 244 Furthermore, CTS and cubital tunnel syndrome were lumped together although there is no
- 245 current literature that describes sleep disorders in patients with cubital tunnel syndrome.
- 246 Similarly, in their study of melatonin's utility in improving tourniquet tolerance and
- 247 decreasing opioid requirements, Mowafi and Ismail did not stratify or match patients based
- 248 on condition or procedure. [71] Future studies using larger, more homogenous patient
- 249 cohorts, would be critical to fully understanding the relationships between sleep disorders
- 250 and hand pathologies, and developing precise and effective regimens to treat coexisting
- sleep and hand disease.
- 252
- 253
- 254

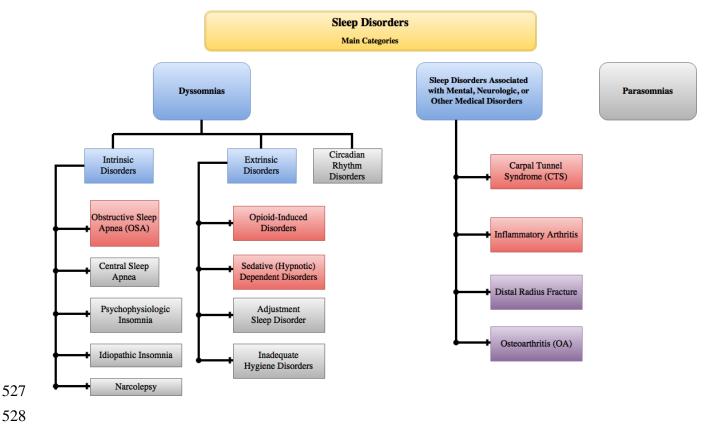
255	Re	ferences
256		
257	1.	Hillman DR, Murphy AS, Pezzullo L. The economic cost of sleep disorders. <i>Sleep</i> . 2006
258		Mar;29(3):299-305.
259		
260	2.	Daley M, Morin CM, LeBlanc M, Grégoire JP, Savard J, Baillargeon L. Insomnia and its
261		relationship to health-care utilization, work absenteeism, productivity and accidents.
262		<i>Sleep Med.</i> 2009 Apr;10(4):427-38.
263		
264	3.	Daley M, Morin CM, LeBlanc M, Grégoire JP, Savard J. The economic burden of insomnia:
265		direct and indirect costs for individuals with insomnia syndrome, insomnia symptoms,
266		and good sleepers. <i>Sleep</i> . 2009 Jan;32(1):55-64.
267		
268	4.	Hossain JL, Shapiro CM. The prevalence, cost implications, and management of sleep
269		disorders: an overview. <i>Sleep Breath</i> . 2002 Jun;6(2):85-102.
270		
271	5.	Léger D, Bayon V. Societal costs of insomnia. <i>Sleep Med Rev.</i> 2010 Dec;14(6):379-89.
272		
273	6.	Taylor DJ, Mallory LJ, Lichstein KL, Duurence HH, Riedel BW, Bush AJ. Comorbidity of
274		chronic insomnia with medical problems. <i>Sleep</i> . 2007;30(2):213-218.
275		
276	7.	Ohayon MM. Epidemiology of insomnia: what we know and what we still need to learn.
277		Sleep Med Rev. 2002;6:97–111.
278		
279	8.	Wittchen HU, Krause P, Hofler M, Pittrow D, Winter S, Spiegel B, et al. NISAS-2000: the
280		"nationwide insomnia screening and awareness study". Prevalence and interventions in
281		primary care. Fortschr Med Orig. 2001;119:9–19.
282		
283	9.	American Academy of Sleep Medicine (AASM). The International Classification of Sleep
284		Disorders: 2nd Edition. Westchester, IL: American Academy of Sleep Medicine; 2005.
285		

286	10. LaPorte D, Vallera C. Sedation for Hand Surgery in Adults. J Hand Surg Am.
287	2011;36(7):1231-1233.
288	
289	11. Vallera C, LaPorte D. Monitored Anesthesia Care for Hand Surgery in Adults. J Hand Surg
290	<i>Am</i> . 2011;36(7):1235-1236.
291	
292	12. Kaw R, Michota F, Jaffer A, Ghamande S, Auckley D, Golish J. Unrecognized Sleep Apnea
293	in the Surgical Patient. <i>Chest</i> . 2006;129(1):198-205.
294	
295	13. Chung F, Yegneswaran B, Herrera F, Shenderey A, Shapiro C. Patients with Difficult
296	Intubation May Need Referral to Sleep Clinics. Anesth Analg. 2008;107(3):915-920.
297	
298	14. Mutter TC, Chateau D, Moffatt M, Ramsey C, Roos LL, Kryger M. A matched cohort study
299	of postoperative outcomes in obstructive sleep apnea: could preoperative diagnosis and
300	treatment prevent complications? <i>Anesthesiology</i> . 2014 Oct;121(4):707-18.
301	
302	15. Joshi GP, Ankichetty SP, Gan TJ, Chung F. Society for Ambulatory Anesthesia consensus
303	statement on preoperative selection of adult patients with obstructive sleep apnea
304	scheduled for ambulatory surgery. <i>Anesth Analg</i> . 2012 Nov;115(5):1060-8.
305	
306	16. Brennan MJ, Lieberman JA 3rd. Sleep disturbances in patients with chronic pain:
307	effectively managing opioid analgesia to improve outcomes. Curr Med Res Opin. 2009;
308	25: 1045-55.
309	
310	17. Kundermann B, Krieg JC, Schreiber W, Lautenbacher S. The effect of sleep deprivation
311	on pain. <i>Pain Res Manag</i> 2004;9:25-32.
312	
313	18. Onen SH, Onen F, Courpron P, Dubray C. How pain and analgesics disturb sleep. <i>Clin J</i>
314	Pain. 2005;21:422-31.
315	
316	19. Finan P, Goodin B, Smith M. The Association of Sleep and Pain: An Update and a Path

317	Forward. J Pain. 2013;14(12):1539-1552.
318	
319	20. Wang D, Teichtahl H. Opioids, sleep architecture and sleep disordered breathing. <i>Sleep</i>
320	<i>Med Rev.</i> 2007; 11: 35-46.
321	
322	21. Yue HJ, Guilleminault G. Opioid medication and sleep-disordered breathing. Med Clin
323	North Am. 2010; 94: 435-46.
324	
325	22. Dinsdale J, Norman D, DeJardin D, et al. The effect of opioids on sleep architecture. J Clin
326	<i>Sleep Med.</i> 2007; 3: 33-6.
327	
328	23. Mulier JP. Perioperative opioids aggravate obstructive breathing in sleep apnea
329	syndrome: mechanisms and alternative anesthesia strategies. Curr Opin Anaesthesiol.
330	2016 Feb;29(1):129-33.
331	
332	24. Arora N, Cao M, Javaheri S. Opioids, Sedatives, and Sleep Hypoventilation. Sleep Med
333	<i>Clin</i> . 2014;9(3):391-398.
334	
335	25. Lalonde D. Minimally invasive anesthesia in wide awake hand surgery. Hand Clin. 2014
336	Feb;30(1):1-6.
337	
338	26. Fingerman M. Regional Anesthesia for Outpatient Hand Surgery: Ultrasound-Guided
339	Peripheral Nerve Block. J Hand Surg Am. 2011;36(3):532-534.
340	
341	27. Richman J, Liu S, Courpas G et al. Does Continuous Peripheral Nerve Block Provide
342	Superior Pain Control to Opioids? A Meta-Analysis. Anesthesia & Analgesia.
343	2006;102(1):248-257.
344	
345	28. Macintyre, PE, Loadsman JA, Scott DA. Opioids, ventilation and acute pain management.
346	Anesth Int Care. 2011;39:545–58
347	

348	29. Kaur S, Saroa R, Aggarwal S. Effect of intraoperative infusion of low-dose ketamine on
349	management of postoperative analgesia. J Nat Sci Biol Med. 2015; 6:378–382.
350	
351	30. Moloney M, Konrad T, Zimmer C. The Medicalization of Sleeplessness: A Public Health
352	Concern. Am J Public Health. 2011;101(8):1429-1433.
353	
354	31. Mendelson WB, Jain B. An assessment of short-acting hypnotics. Drug Saf. 1995
355	Oct;13(4):257-70.
356	
357	32. Kales A, Manfredi RL, Vgontzas AN, Bixler EO, Vela-Bueno A, Fee EC. Rebound insomnia
358	after only brief and intermittent use of rapidly eliminated benzodiazepines. Clin
359	Pharmacol Ther. 1991 Apr;49(4):468-76.
360	
361	33. Monti JM, Attali P, Monti D, Zipfel A, de la Giclais B, Morselli PL. Zolpidem and rebound
362	insomniaa double-blind, controlled polysomnographic study in chronic insomniac
363	patients. Pharmacopsychiatry. 1994 Jul;27(4):166-75.
364	
365	34. Victorri-Vigneau C, Gérardin M, Rousselet M, Guerlais M, Grall-Bronnec M, Jolliet P. An
366	update on zolpidem abuse and dependence. <i>J Addict Dis</i> . 2014;33(1):15-23.
367	
368	35. Victorri-Vigneau C, Dailly E, Veyrac G, Jolliet P. Evidence of zolpidem abuse and
369	dependence: results of the French Centre for Evaluation and Information on
370	Pharmacodependence (CEIP) network survey. Br J Clin Pharmacol. 2007
371	Aug;64(2):198-209.
372	
373	36. Manthey L, Lohbeck M, Giltay EJ, van Veena T, Zitman FG, Penninx BW. Correlates of
374	benzodiazepine dependence in the Netherlands Study of Depression and Anxiety.
375	Addiction. 2012 Dec;107(12):2173-82.
376	
377	37. Tompkins M, Plante M, Monchik K, Fleming B, Fadale P. The use of a non-
378	benzodiazepine hypnotic sleep-aid (Zolpidem) in patients undergoing ACL

379	reconstruction: a randomized controlled clinical trial. Knee Surg Sports Traumatol
380	Arthrosc. 2011 May;19(5):787-91.
381	
382	38. Gong L, Wang Z, Fan D. Sleep Quality Effects Recovery After Total Knee Arthroplasty
383	(TKA)A Randomized, Double-Blind, Controlled Study. J Arthroplasty. 2015
384	Nov;30(11):1897-901.
385	
386	39. Cho CH, Lee SW, Lee YK, Shin HK, Hwang I. Effect of a sleep aid in analgesia after
387	arthroscopic rotator cuff repair. Yonsei Med J. 2015 May;56(3):772-7.
388	
389	40. Chung SD, Lin CC, Wang LH, Lin HC, Kang JH. Zolpidem Use and the Risk of Injury: A
390	Population-Based Follow-Up Study. <i>PLoS One</i> . 2013 Jun 27;8(6):e67459.
391	
392	41. Roussin A, Bouyssi A, Pouché L, Pourcel L, Lapeyre-Mestre M. Misuse and dependence
393	on non-prescription codeine analgesics or sedative H1 antihistamines by adults: a
394	cross- sectional investigation in France. <i>PLoS One</i> . 2013 Oct 3;8(10):e76499.
395	
396	42. McCabe S, Uebele A, Pihur V, Rosales R, Atroshi I. Epidemiologic Associations of Carpal
397	Tunnel Syndrome and Sleep Position: Is There a Case for Causation?. HAND.
398	2007;2(3):127-134.
399	
400	43. McCabe S, Xue Y. Evaluation of sleep position as a potential cause of carpal tunnel
401	syndrome: preferred sleep position on the side is associated with age and gender.
402	HAND. 2010;5(4):361-363.
403	
404	44. McCabe S, Gupta A, Tate D, Myers J. Preferred sleep position on the side is associated
405	with carpal tunnel syndrome. <i>HAND</i> . 2010;6(2):132-137.
406	
407	45. Patel J, McCabe S, Myers J. Characteristics of sleep disturbance in patients with carpal
408	tunnel syndrome. <i>HAND</i> . 2011;7(1):55-58.
409	


410	46. Patel A, Culbertson M, Patel A et al. The Negative Effect of Carpal Tunnel Syndrome on
411	Sleep Quality. Sleep Disorders. 2014;2014:1-7.
412	
413	47. Becker S, Makanji H, Ring D. Expected and Actual Improvement of Symptoms With
414	Carpal Tunnel Release. J Hand Surg Am. 2012;37(7):1324-1329.e5.
415	
416	48. Kadzielski J, Malhotra L, Zurakowski D, Lee S, Jupiter J, Ring D. Evaluation of
417	Preoperative Expectations and Patient Satisfaction After Carpal Tunnel Release. J Hand
418	Surg Am. 2008;33(10):1783-1788.
419	
420	49. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality
421	Index: a new instrument for psychiatric practice and research. Psychiatry Res
422	1989;28:193-213.
423	
424	50. Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro CM, Colantonio A. The
425	Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and
426	non-clinical samples: A systematic review and meta-analysis. Sleep Med Rev. 2016
427	Feb;25:52-73.
428	
429	51. Luyster FS, Chasens ER, Wasko MC, Dunbar-Jacob J. Sleep quality and functional
430	disability in patients with rheumatoid arthritis. J Clin Sleep Med. 2011 Feb 15;7(1):49-
431	55
432	
433	52. Løppenthin K, Esbensen BA, Jennum P, Østergaard M, Tolver A, Thomsen T, Midtgaard J.
434	Sleep quality and correlates of poor sleep in patients with rheumatoid arthritis. Clin
435	<i>Rheumatol</i> . 2015 Dec;34(12):2029-39.
436	
437	53. Westhovens R, Van der Elst K, Matthys A, Tran M, Gilloteau I. Sleep problems in patients
438	with rheumatoid arthritis. <i>J Rheumatol</i> . 2014 Jan;41(1):31-40.
439	

440	54. Fragiadaki K, Tektonidou MG, Konsta M, Chrousos GP, Sfikakis PP. Sleep disturbances
441	and interleukin 6 receptor inhibition in rheumatoid arthritis. J Rheumatol. 2012;39:60-
442	2.
443	
444	55. Gupta MA, Simpson FC, Gupta AK. Psoriasis and sleep disorders: A systematic review.
445	Sleep Med Rev. 2015 Sep 21;29:63-75.
446	
447	56. Egeberg A, Khalid U, Gislason GH, Mallbris L, Skov L, Hansen PR. Psoriasis and Sleep
448	Apnea: A Danish Nationwide Cohort Study. J Clin Sleep Med. 2015 Dec 22.
449	
450	57. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, et al. Etanercept and clinical
451	outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled
452	randomised phase III trial. <i>Lancet</i> 2006;367:29e35.
453	
454	58. Maari C, Bolduc C, Nigen S, Marchessault P, Bissonnette R. Effect of adalimumab on
455	sleep parameters in patients with psoriasis and obstructive sleep apnea: a randomized
456	controlled trial. J Dermatol Treat. 2014;25:57e60.
457	
458	59. Brunton L, Laporte D. Use of Gabapentin and Pregabalin for Hand Surgery Patients. J
459	Hand Surg Am. 2012;37(7):1486-1488.
460	
461	60. de la Calle JL, De Andres J, Pérez M, López V. Add-on treatment with pregabalin for
462	patients with uncontrolled neuropathic pain who have been referred to pain clinics. Clin
463	Drug Investig. 2014 Dec;34(12):833-44.
464	
465	61. Duman I, Aydemir K, Ozgul A, Kalyon TA. Assessment of the efficacy of gabapentin in
466	carpal tunnel syndrome. <i>J Clin Rheumatol</i> . 2008 Jun;14(3):175-7.
467	
468	62. Eftekharsadat B, Babaei-Ghazani A, Habibzadeh A. The Efficacy of 100 and 300 mg
469	Gabapentin in the Treatment of Carpal Tunnel Syndrome. Iran J Pharm Res. 2015
470	Fall;14(4):1275-80.

471	
472	63. Hui AC, Wong SM, Leung HW, Man BL, Yu E, Wong LK. Gabapentin for the treatment of
473	carpal tunnel syndrome: a randomized controlled trial. Eur J Neurol. 2011
474	May;18(5):726-30.
475	
476	64. Roth T, Lankford DA, Bhadra P, Whalen E, Resnick EM. Effect of pregabalin on sleep in
477	patients with fibromyalgia and sleep maintenance disturbance: a randomized, placebo-
478	controlled, 2-way crossover polysomnography study. Arthritis Care Res (Hoboken).
479	2012 Apr;64(4):597-606.
480	
481	65. Roth T, Bhadra-Brown P, Pitman VW, Resnick EM. Pregabalin Improves Fibromyalgia-
482	Related Sleep Disturbance. Clin J Pain. 2015 May 28.
483	
484	66. Landis CA. Is Melatonin the Next " New " Therapy to Improve Sleep and Reduce Pain ?
485	Sleep. 2014;37(9):1405-1406.
486	
487	67. Lim H-D, Kim Y-S, Ko S-H, et al. Cytoprotective and anti-inflammatory effects of
488	melatonin in hydrogen peroxide-stimulated CHON-001 human chondrocyte cell line
489	and rabbit model of osteoarthritis via the SIRT1 pathway. J Pineal Res. 2012;53(3):225-
490	237.
491	
492	68. Liu X, Xu Y, Chen S, et al. Rescue of proinflammatory cytokine-inhibited chondrogenesis
493	by the antiarthritic effect of melatonin in synovium mesenchymal stem cells via
494	suppression of reactive oxygen species and matrix metalloproteinases. Free Radic Biol
495	Med. 2014;68:234-246.
496	
497	69. Pei M, He F, Wei L, Rawson A. Melatonin enhances cartilage matrix synthesis by porcine
498	articular chondrocytes. J Pineal Res. 2009;46(2):181-187.
499	

500	70. Huang C-T, Chiang RP-Y, Chen C-L, Tsai Y-J. Sleep deprivation aggravates median nerve
501	injury-induced neuropathic pain and enhances microglial activation by suppressing
502	melatonin secretion. <i>Sleep</i> . 2014;37(9):1513-1523.
503	
504	71. Mowafi HA, Ismail SA. Melatonin improves tourniquet tolerance and enhances
505	postoperative analgesia in patients receiving intravenous regional anesthesia. Anesth
506	Analg. 2008;107(4):1422-1426.
507	
508	72. Peters RM, Menendez ME, Mellema JJ, Ring D, Vranceanu AM. Sleep Disturbance and
509	Upper-Extremity Disability. Arch Bone Jt Surg. 2016 Jan;4(1):35-40.
510	
511	73. Shulman BS, Liporace FA, Davidovitch RI, Karia R, Egol KA. Sleep disturbance after
512	fracture is related to emotional well-being rather than functional result. J Orthop
513	<i>Trauma</i> . 2015 Mar;29(3):e146-50.
514	
515	
516	
517	
518 519	
520	

- 521 **Figure 1.** Flow chart outlining the key types of sleep disorders relative to hand surgery in
- 522 the context of a broader overview of all sleep disorder categories. The first level represents
- 523 the three main categories of sleep disorders. Note that boxes in grey are not relevant to this
- 524 discussion, those in red highlight the key types of sleep disorders known to be related to
- 525 hand surgery patients, and those in purple represent conditions that are likely to be
- 526 associated with sleep disorders based on current evidence.

Table 1. STOP-BANG Questionnaire to assess for risk of Obstructive Sleep Apnea (OSA).

531 The first section (STOP) consists of four history or symptom-related questions for the

532 patient to answer, while the second section (BANG) consists of four items that may be

533 objectively measured by the clinician. Answers of "Yes" to any question or measure results

534 in a point, while "No" does not result in a point. Patients with total scores of 0-2, 3-4 and 5-

535 8 points are considered low, intermediate, and high risk of having OSA, respectively.

536

529

Question or Variable	YES	NO
STOP		
Do you SNORE loudly (louder than talking or loud enough to be heard through closed doors)?	1	0
Do you often feel TIRED , fatigued, or sleepy during daytime?	1	0
Has anyone OBSERVED you stop breathing during your sleep?	1	0
Do you have or are you being treated for high blood PRESSURE ?	1	0
BANG		
BMI more than 35kg/m2?	1	0
AGE over 50 years old?	1	0
NECK circumference > 16 inches (40cm)?	1	0
GENDER: Male?	1	0