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5′-Terminal nucleotide variations in human cytoplasmic
tRNAHisGUG and its 5′-halves

MEGUMI SHIGEMATSU and YOHEI KIRINO
Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA

ABSTRACT

Transfer RNAs (tRNAs) are fundamental adapter components of translational machinery. tRNAs can further serve as a source of
tRNA-derived noncoding RNAs that play important roles in various biological processes beyond translation. Among all species
of tRNAs, tRNAHisGUG has been known to uniquely contain an additional guanosine residue at the −1 position (G−1) of its 5′-
end. To analyze this −1 nucleotide in detail, we developed a TaqMan qRT-PCR method that can distinctively quantify human
mature cytoplasmic tRNAHisGUG containing G−1, U−1, A−1, or C−1 or lacking the −1 nucleotide (starting from G1). Application
of this method to the mature tRNA fraction of BT-474 breast cancer cells revealed the presence of tRNAHisGUG containing U−1

as well as the one containing G−1. Moreover, tRNA lacking the −1 nucleotide was also detected, thus indicating the
heterogeneous expression of 5′-tRNAHisGUG variants. A sequence library of sex hormone-induced 5′-tRNA halves (5′-SHOT-
RNAs), identified via cP-RNA-seq of a BT-474 small RNA fraction, also demonstrated the expression of 5′-tRNAHisGUG halves
containing G−1, U−1, or G1 as 5′-terminal nucleotides. Although the detected 5′-nucleotide species were identical, the relative
abundances differed widely between mature tRNA and 5′-half from the same BT-474 cells. The majority of mature tRNAs
contained the −1 nucleotide, whereas the majority of 5′-halves lacked this nucleotide, which was biochemically confirmed
using a primer extension assay. These results reveal the novel identities of tRNAHisGUG molecules and provide insights into
tRNAHisGUG maturation and the regulation of tRNA half production.

Keywords: tRNA; tRNAHisGUG; tRNA half; SHOT-RNA; −1 nucleotide

INTRODUCTION

Transfer RNAs (tRNAs) are noncoding RNAs (ncRNAs) with
lengths of 60- to 90-nucleotide (nt) that play central roles as
adapter molecules in the translational machinery. Although
tRNAmolecules are stable and abundant, the expression pro-
files of individual tRNAs vary dynamically among different
cells and tissues (Dittmar et al. 2006; Pavon-Eternod et al.
2009; Zhou et al. 2009; Mahlab et al. 2012) and this variation
has been implicated in the translational regulation of mRNA
expression (Gingold et al. 2014), animal development
(Marshall et al. 2012; Rideout et al. 2012; Schmitt et al.
2014), and disease (Daly et al. 2005; Pavon-Eternod et al.
2010; Zhou et al. 2012; Clarke et al. 2016). Accumulating
evidence regarding tRNA-derived ncRNAs has further in-
creased the complexity of tRNA biology. In many organisms,
tRNAs are not always end products but are processed further
into smaller ncRNAs, many of which are known to be func-
tional molecules with roles in various biological processes
beyond translation (Garcia-Silva et al. 2012; Gebetsberger
and Polacek 2013; Anderson and Ivanov 2014; Saikia and

Hatzoglou 2015; Shigematsu and Kirino 2015; Telonis et al.
2015; Diebel et al. 2016). These tRNA-derived ncRNAs are
in general classified into two groups: tRNA halves that range
either from the 5′-end to the anticodon loop (5′-half) or from
the anticodon loop to the 3′-end (3′-half) of a mature tRNA,
and shorter tRNA-derived fragments (tRFs) that originate
from various regions of mature tRNAs or their precursor
transcripts (pre-tRNAs).
To date, two distinct classes of tRNA halves have been

identified: tRNA-derived stress-induced RNAs (tiRNAs)
(Thompson et al. 2008; Fu et al. 2009; Hsieh et al. 2009;
Yamasaki et al. 2009; Saikia et al. 2012) and sex hormone-de-
pendent tRNA-derived RNAs (SHOT-RNAs) (Honda et al.
2015). Although both tiRNAs and SHOT-RNAs are pro-
duced from mature tRNAs via angiogenin (ANG)-mediated
cleavage of the anticodon loop (Fu et al. 2009; Yamasaki
et al. 2009; Honda et al. 2015), the molecular factors that trig-
ger their production are different. The expression of tiRNAs
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is triggered by a variety of stress stimuli, including oxidative
stress, heat/cold shock, and UV irradiation (Shigematsu
et al. 2014; Saikia and Hatzoglou 2015). The accumulation
of tiRNAs has been implicated in stress granule formation
(Emara et al. 2010; Lyons et al. 2016), translational regulation
(Yamasaki et al. 2009; Ivanov et al. 2011), and the pathogen-
esis of neurodevelopmental disorders (Blanco et al. 2014). In
contrast, the expression of SHOT-RNAs is promoted by sig-
naling pathways associated with sex hormones (e.g., estrogen
and androgen) and their receptors (e.g., estrogen receptor
[ER] and androgen receptor [AR]). SHOT-RNAs are specif-
ically expressed in ER- or AR-positive breast and prostate
cancers and have functional significance in cell proliferation
(Honda et al. 2015).

Because ANG leaves a 2′,3′-cyclic phosphate (cP) on its
5′-cleavage products (Shapiro et al. 1986), ANG-generated
5′-tRNA halves contain a cP at the 3′-end (Honda et al.
2015). These cP-containing RNAs cannot be captured
accurately by standard RNA-seq methods because they are
not ligated to a 3′-adapter during library preparation
procedure. We circumvented the issue by developing a
cP-RNA-seq method that can exclusively sequence cP-con-
taining RNAs (Honda et al. 2015, 2016) and used
this method to determine the expression repertoire of 5′-
SHOT-RNAs (5′-tRNA halves) in human BT-474 ER-posi-
tive breast cancer cells; accordingly, we identified eight
cytoplasmic (cyto) tRNA species as the major sources of
SHOT-RNAs (Honda et al. 2015). Although 5′-SHOT-
RNAs from cyto tRNALysCUU and tRNAHisGUG were particu-
larly enriched, the molecular mechanism by which specific
tRNAs are selectively cleaved for SHOT-RNA production
remains elusive.

Among all species of tRNAs, tRNAHisGUG is unique in that
it contains an additional guanosine residue at the−1 position
(G−1) of its 5

′-end (Sprinzl et al. 1998). This G−1 residue is
conserved across phyla and has been observed in bacteria
(Singer and Smith 1972; Orellana et al. 1986), yeast (Keith
and Pixa 1984), fruit fly (Altwegg and Kubli 1980), andmam-
mals (Boisnard and Petrissant 1981; Rosa et al. 1983). In
Escherichia coli, this G−1 residue is genome-encoded, and
anomalous RNase P cleavage of pre-tRNAHisGUG between
positions −1 and −2 yields G−1-containing tRNAHisGUG

(Orellana et al. 1986; Burkard et al. 1988). In yeast, G−1 is
not derived from the genomic sequence; instead, tRNAHis

guanylyltransferase (Thg1) post-transcriptionally adds this
residue to the 5′-end (Gu et al. 2003). The conservation of
G−1 residue addition via different mechanisms in different
organisms implies the functional significance of the G−1 res-
idue. Indeed, the G−1 residue is a critical determinant for the
aminoacylation of tRNAHisGUG by the cognate histidyl-tRNA
synthetase (HisRS) in both E. coli (Himeno et al. 1989) and
yeast (Rudinger et al. 1994; Rosen et al. 2006). In yeast, the
loss of this G−1 residue consequent to the depletion of
Thg1 or its polymerase activity causes a severe reduction in
the tRNAHisGUG aminoacylation levels, resulting in growth

impairment (Gu et al. 2005; Jackman and Phizicky 2008;
Preston and Phizicky 2010). The G−1 residue is also implicat-
ed in post-transcriptional nucleotide modification because
yeast lacking this residue has been shown to acquire addition-
al 5-methylcytidine (m5C) modifications (Gu et al. 2005;
Preston et al. 2013), although a biological role for the inter-
play between the absence of G−1 and the presence of m5C
is unknown. In contrast to the presence and significance of
G−1 in these studies, some organisms such as α-proteobacte-
ria (Wang et al. 2007; Jackman et al. 2012), Acanthamoeba
(Rao et al. 2013), and Trypanosoma (Rao and Jackman
2015) lack G−1. HisRS does not require G−1 for aminoacyla-
tion in these species.
Despite the advent of next-generation sequencing (NGS)

technologies and their widespread use in RNA-seq for tran-
scriptome analyses, the −1 nucleotide of tRNAHisGUG has
not been investigated in RNA-seq-based studies. This could
be partly attributable to the expectation that tRNAHisGUG

contains post-transcriptional modifications that would inter-
fere with reverse transcription (Kellner et al. 2010), such as a
1-methyl-guanosine at nucleotide position 37 (m1G37)
(Boisnard and Petrissant 1981) (nucleotide position [np] is
based on the tRNA numbering system [Sprinzl et al. 1998]).
Indeed, human and Bombyx 3′-haves of cyto tRNAHisGUG,
possessing G37 (likely modified to m1G37), could not be
amplified by RT-PCR despite being successfully detected by
Northern blot (Honda et al. 2015). The presence of the
RT-interfering modification would lead to underrepresenta-
tion and bias in the tRNAHisGUG sequence information gen-
erated from RNA-seq data. While analyzing a cP-RNA-seq
library of 5′-SHOT-RNAs from BT-474 cells (Honda et al.
2015), we reasoned that this library would be useful for ob-
serving the −1 nucleotide on human cyto tRNAHisGUG for
the following reasons. First, 5′-SHOT-RNAHisGUG (5′-half
of cyto tRNAHisGUG) does not contain RT-inhibitory modifi-
cations, and therefore sequence analyses should not be biased
by modifications. Second, 5′-SHOT-RNAHisGUG is produced
from mature aminoacylated cyto tRNAHisGUG, and therefore
information about the −1 nucleotide in mature tRNA might
be retained in this 5′-half. Third, 5′-SHOT-RNAHisGUG was
the second most abundant species in the 5′-SHOT-RNA li-
brary from BT-474 cells, and thereby sufficient sequence
reads of the 5′-half are available for an estimation of the −1
nucleotide state.
In this study, we investigated the 5′-terminal nucleotides of

5′-SHOT-RNAHisGUG expressed in human BT-474 cells and
observed an unexpected level of variation that was not limited
to G−1. Furthermore, we developed a TaqMan qRT-PCR-
based method that could distinctively quantify each
tRNA variant containing a different 5′-terminal nucleotide
and thus clarified a 5′-terminal nucleotide variation of
the mature cyto tRNAHisGUG expressed in the same BT-474
cells. This identification and comparison of the 5′-terminal
nucleotides and their variations among mature cyto
tRNAHisGUG and 5′-half molecules have yielded insights
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into tRNAHisGUG identities and the regulatory mechanisms
underlying tRNAHisGUG maturation and cleavage.

RESULTS AND DISCUSSION

The majority of 5′-SHOT-RNAHisGUG molecules lack
the −1 nucleotide

The human nuclear genome contains 11 cyto tRNAHisGUG

genes that encode three different isodecoders (Supplemental
Fig. S1). In the 5′-SHOT-RNA sequence repertoire of BT-
474 cells, which was previously identified using cP-RNA-
seq (Honda et al. 2015, 2016), 5′-SHOT-RNAHisGUG

sequences constituted approximately 7.9 million reads,
comprising 27.5% of the total reads of 5′-SHOT-RNAs.
Accordingly, 5′-SHOT-RNAHisGUG is the second most
abundant 5′-SHOT-RNA species in BT-474 cells, after 5′-
SHOT-RNALysCUU. Almost all of the identified 5′-SHOT-
RNAHisGUG sequences corresponded to a single major isode-
coder of cyto tRNAHisGUG (Fig. 1A) that is encoded by nine of
the 11 genes (Supplemental Fig. S1), suggesting that this iso-
decoder is the major cyto tRNAHisGUG molecule expressed in
the cells. Almost all (98%) of the 5′-SHOT-RNAHisGUG had a
3′-terminal position at np 34 (Fig. 1B), indicating a focal
pattern of ANG cleavage between the anticodon first (G34)
and second (U35) letters during the production of 5′-
SHOT-RNAHisGUG. In contrast to the consistent 3′-termini,
six 5′-terminal variations were observed among the se-
quenced 5′-SHOT-RNAHisGUG (Fig. 1C). In contrast to pre-
vious reports of a major presence of the 5′-terminal G−1 in
tRNAHisGUG, a majority (>75%) of 5′-SHOT-RNAHisGUG

lacked the −1 nucleotide and initiated at np 1 (G1) (Fig.

1D). The second most abundant class
(>12%) of 5′-SHOT-RNAHisGUG con-
tained the −1 nucleotide; here, both
guanosine (G−1: 44.3%) and uridine
(U−1: 44.2%) were frequently present at
the −1 nucleotide. The other two nucle-
otides (A−1: 9%; C−1: 3%) were also de-
tected as minor −1 nucleotide species,
and a 5′-SHOT-RNAHisGUG initiating
from np 2 (C2: 11%) was also identified.

Experimental validation of the
predominant expression of 5′-SHOT-
RNAHisGUG lacking the −1 nucleotide

Because our cP-RNA-seq scheme in-
cludes several chemical and enzymatic
RNA treatments (Honda et al. 2015,
2016), unexpected variations of the 5′-
termini of 5′-SHOT-RNAHisGUG might
have resulted from undesired procedural
RNA damage. To exclude this possibility
and confirm that our cP-RNA-seq results

reflect the cellular state of RNA expression, we conducted a
primer extension assay for 5′-SHOT-RNAHisGUG. In this as-
say, a radiolabeled DNA primer complementary to np 6−25
of cyto tRNAHisGUG (Fig. 2A) was specifically hybridized to
5′-SHOT-RNAHisGUG present in gel-purified small RNA
fractions (20−50 nt) from BT-474 cells; subsequently, reverse
transcription was carried out from the primer. When using
synthetic tRNAHisGUG initiating from G1 as a template, the
5-nt primer extension was detected as a 25-nt band (Fig.
2B). In contrast, the use of synthetic tRNAHisGUG containing
G−1 yielded an additional extension of 1 nt and a 26-nt band
that was clearly distinct from the above-mentioned 25-nt
band. An equal mix of these two synthetic tRNAs yielded
two bands of equal abundance, indicating the ability of this
assay to estimate the presence or absence of the −1 nucleo-
tide. By performing reactions using dideoxynucleotides, we
confirmed that the reverse transcription was correctly run
on tRNAHisGUG in both synthetic RNA and cellular RNA
samples (Supplemental Fig. S2). Analyses of BT-474 small
RNA fractions revealed the marked and more abundant pres-
ence of the 25-nt band in comparison with the 26-nt band
(Fig. 2B). Quantification of the band intensities suggested
that ∼70% of the 5′-SHOT-RNAHisGUG lacks the −1 nucleo-
tide (Supplemental Fig. S3), which is consistent with the cP-
RNA-seq-based analyses shown in Figure 1. These results in-
dicate that the majority of the 5′-SHOT-RNAHisGUG mole-
cules expressed in BT-474 cells lack the −1 nucleotide and
initiate from G1. In the primer extension assay, we did not
observe a clear 24-nt band corresponding to 5′-SHOT-
RNAHisGUG initiating from C2; therefore, the presence of
such RNA in cP-RNA-seq data might result from undesired
procedural RNA damage.
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FIGURE 1. Terminal nucleotide analyses of BT-474 5′-SHOT-RNAHisGUG identified by cP-
RNA-seq. (A) The cloverleaf secondary structure of the major isodecoder of human cyto
tRNAHisGUG encoded by nine genes (Supplemental Fig. S1) on the genome. Nucleotide positions
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ecules were derived are shown in black; other regions are shown in gray. (B) Pie chart indicating
the 3′-terminal position of 5′-SHOT-RNAHisGUG. (C) The six 5′-terminal variations identified in
5′-SHOT-RNAHisGUG. (D) Pie charts showing the 5′-terminal positions of 5′-SHOT-RNAHisGUG.
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Development of a TaqMan qRT-PCR-based method for
the discriminative quantification of 5′-terminal variants
of mature cyto tRNAHisGUG

SHOT-RNAs originate from mature aminoacylated tRNAs
(Honda et al. 2015); accordingly, we reasoned that the 5′-ter-
minal variations of 5′-SHOT-RNAHisGUG wouldmirror those
of mature cyto tRNAHisGUG, although these variations did
not match the canonical, reported variations in mature
tRNA. Because RNA-seq data are not appropriate for analyses
of mature tRNAHisGUG sequences, we developed a TaqMan
qRT-PCR-based method that can discriminatively quantify
each 5′-terminal variant of mature cyto tRNAHisGUG contain-
ing G−1, U−1, A−1, C−1, or G1 as the 5

′-terminal nucleotide.
We focused on a single major isodecoder encoded by nine of
11 genes in the human genome (Supplemental Fig. S1).

In the developed method, mature tRNA fractions (70−90
nt) were first gel-purified from total RNA, after which an
acceptor-stem disrupter (AS-disrupter), a DNA oligo com-
plementary to np 55−76 (3′-end) of the cyto tRNAHisGUG,
was hybridized to the purified fractions (Fig. 3A,B;
Supplemental Fig. S4). Subsequently, a DNA/RNA chime-
ric 5′-adapter was ligated to the 5′-ends of mature
tRNAHisGUG, and the ligation product was amplified and
quantified by TaqMan qRT-PCR to eventually generate an
86- (tRNA starting from G1) or 87-bp cDNA (tRNA contain-
ing −1 nucleotide). The AS-disrupter was utilized to disrupt
mature tRNAHisGUG structure; this disruption was expected
to enhance the accessibility of the adapter, primer, and en-
zymes to the tRNA and thereby increase the reaction efficien-
cies following hybridization. In addition, dimethyl sulfoxide
(DMSO) and polyethylene glycol (PEG) 8000, both of which
enhance RNA ligation efficiency, were added to the adapter
ligation reaction. Indeed, the combined inclusion of the

AS-disrupter hybridization step and addition of PEG/
DMSO to the ligation reaction increased the detection
efficiency of synthetic tRNAHisGUG with G−1 by more than
95-fold and prevented the synthesis of nonspecific cDNA
bands (Fig. 3C). The TaqMan probe was designed to target
the boundary of the adapter and the 5′-end of mature
tRNAHisGUG, thus allowing an exclusive analysis of the
tRNA 5′-end in the ligation product. Indeed, we were unable
to detect an amplification signal in the absence of T4 RNA li-
gase (Fig. 3C). Because the TaqMan probe has a single-nucle-
otide resolution (Ranade et al. 2001; Honda and Kirino
2015), our design scheme was expected to distinctively quan-
tify each 5′-terminal variant of tRNAHisGUG without cross-
reactivity with other variant species. We confirmed the exclu-
sive specificity of our TaqMan probes to quantify perfectly
matched target sequences without cross-reactivity from other
variants (Supplemental Table S1). To examine the quantifi-
cation ability, our method was applied to different amounts
of synthetic mature tRNAHisGUG (0.1–100 fmol). To mimic
tRNA quantification using a total tRNA fraction, an E. coli
tRNA fraction was mixed with synthetic RNA as a carrier;
we confirmed that the E. coli tRNA fraction did not yield
an amplification signal in our system. For all five synthetic
5′-terminal variants, the quantifications demonstrated clear
linearity between the log of tRNA input and the Ct value
(Supplemental Fig. S5), indicating that this method has a dy-
namic range of at least three orders of magnitude, and dis-
criminately quantifies the 5′-terminal variants. We further
validated our method by quantifying a mixture of different
synthetic tRNA variants. Since 5′-SHOT-RNAsHisGUG start-
ing from G1, G−1, and U−1 were mainly detected (Fig. 1D),
corresponding mature synthetic tRNAsHisGUG were mixed
at several different ratios and subjected to the method with
an E. coli tRNA carrier. The amount of each detected tRNA
was calculated based on the standard curves (Supplemental
Fig. S5). As shown in Figure 3D, the resultant relative abun-
dances of detected tRNAs well reflected those of the tRNAs
added to the reactions, allowing us to conclude that our
method can estimate the relative abundance of 5′-terminal
variants of mature tRNAHisGUG.

The majority of the mature tRNAHisGUG molecules
contain the −1 nucleotide

Given the high specificity and quantification ability of our
TaqMan qRT-PCRmethod, we utilized this method to deter-
mine the relative abundances of the 5′-terminal variants of
endogenous mature cyto tRNAHisGUG expressed in BT-474
cells. Using our synthetic tRNA results as standards, we deter-
mined the relative abundances of the five potential 5′-termi-
nal variants of tRNAHisGUG. In contrast to the 5′-terminal
variations of 5′-SHOT-RNAHisGUG, which were dominated
by G1 (Fig. 1C), ∼60% of the mature tRNAHisGUG contained
G−1 as a 5

′-terminal nucleotide (Fig. 4A). A significant pro-
portion of tRNAs contained U−1 (∼20%), and a similar
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tion of 5′-SHOT-RNAHisGUG. (A) The cloverleaf secondary structure
of 5′-SHOT-RNAHisGUG used as a primer extension template. The 5′-
end-labeled 20-nt primer, which was hybridized to the D-arm of
tRNA, is shown as a black solid line; nascent cDNA synthesized from
the primer is indicated as a gray dotted line. Reverse transcription
from the primer terminates at np 1 or −1 to yield a cDNA band with
a length of 25 or 26 nt, respectively. (B) Synthetic mature tRNAHisGUG

containing either G1 or G−1, or a 30- to 50-nt small RNA fraction of
BT-474 cells were subjected to a primer extension assay for an analysis
of the 5′-terminal position of 5′-SHOT-RNAHisGUG. An assay without
template RNA was also performed as a negative control experiment.
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proportion lacked the –1 nucleotide. We could not detect
amplification signals from tRNAs containing A−1 and C−1,
likely because those tRNA species were not expressed at suf-
ficient levels to allow detection by our system. The predom-
inance of the –1 nucleotide-containing tRNAHisGUG was
validated by a primer extension assay using the mature
tRNA fractions from BT-474 cells. In contrast to the 5′-
SHOT-RNAHisGUG analyses, in which the 25-nt band was

more abundant than the 26-nt band
(Fig. 2B), mature tRNA analyses revealed
a predominance of the 26-nt band (Fig.
4B). Because of the low resolution of
this method for mature tRNA, no clear
band around 25 nt appeared, and thereby
it was difficult to estimate the relative
abundance of the –1 nucleotide lacking
tRNA. However, this result at least
validated our TaqMan qRT-PCR result
that the –1 nucleotide-containing
tRNAHisGUG is the major mature species
in BT-474 cells.

Potential mechanisms by which
distinct 5′-terminal variations are
formed in mature cyto tRNAHisGUG

molecules and 5′-halves

This study identified the 5′-terminal
variations of human mature cyto
tRNAHisGUG in BT-474 cells. Although
more than half of the tRNAs contained
G−1, substantial amounts of previously
unreported mature tRNA species either
containing U−1 or lacking the –1 nucleo-
tide were also identified. In earlier stud-
ies, mammalian cyto tRNAHisGUG from
HeLa cells and sheep liver were analyzed
using chromatography, and neither U−1-
containing nor –1 nucleotide-lacking
tRNAs were detected (Boisnard and
Petrissant 1981; Rosa et al. 1983). This
difference might be attributable to differ-
ences in the detection method sensitivi-
ties. During the course of this study, an
advanced tRNA sequencing method has
been reported in which methylations, in-
cluding m1G, were removed from tRNAs
via engineered AlkB demethylase prior to
reverse transcription, thereby reducing
sequencing bias from these methylations
(Zheng et al. 2015). We investigated the
–1 nucleotide variations of tRNAHisGUG

in the reported less-biased tRNA se-
quencing data set from HEK293T cells
(Supplemental Table S2). As a result,

we observed a major population of mature tRNAHisGUG con-
taining G−1 (47%), and substantial populations of mature
tRNAs containing U−1 (18%) or lacking the –1 nucleotide
(30%); these results were similar to the 5′-variations that
we observed inmature tRNA fromBT-474 cells. These results
suggest the universality of the presence of mature
tRNAHisGUG containing U−1 or lacking the –1 nucleotide,
as well as molecules containing G−1, among human cultured

FIGURE 3. TaqMan qRT-PCR method to analyze the 5′-terminal nucleotide of mature
tRNAHisGUG. (A) Schematic representation of the TaqMan qRT-PCR analysis used to quantify
each 5′-terminal variant of mature tRNAHisGUG. (B) Sequences and/or positions of the mature
tRNAHisGUG and the following TaqMan qPCR components: adapter, AS-disrupter, primers,
and TaqMan probe. (C) Under the indicated conditions, this method was applied to synthetic
mature tRNAHisGUG containing G−1. The reaction containing only T4 RNA ligase ( far left) was
set to one, and fold changes relative to this reference are shown; bars indicate SD from three in-
dependent experiments. Amplified cDNA bands observed in native PAGE after 40 cycles of PCR
are also shown. (D) Synthetic mature tRNAsHisGUG starting from G1, G−1, and U−1 were mixed at
the indicated ratios and quantified by the TaqMan qRT-PCR. Detected amounts were calculated
using standard curves (Supplemental Fig. S5), and the relative abundances of detected tRNAs
containing each 5′-terminal nucleotide are shown. Bars indicate SD from three independent ex-
periments. N.D. indicates that the reaction did not amplify detectable cDNA signals.
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cell lines. The mechanism underlying the formation of these
5′-variations in mature tRNA and the functional significance
remain to be determined. Because Thg1 or a Thg1-like pro-
tein (TLP) from Bacillus, archaea and yeast can attach not
only to guanosine, but also to uridine, to the −1 position
of the tRNA in vitro (Jackman and Phizicky 2006; Rao
et al. 2011), Thg1 might incorporate both G−1 and U−1
into human mature tRNAHisGUG. It will be intriguing to an-
alyze the efficiency of human HisRS aminoacylation toward
each mature tRNAHisGUG 5′-variant to determine whether
these variations affect the regulation of aminoacylation.
Because human Thg1 is associated with cell cycle regulation
(Guo et al. 2004), the biological significance of these 5′-var-
iations in mature tRNAHisGUG might also include cell growth
regulation.

The 5′-terminal variations of 5′-SHOT-RNAHisGUG exhib-
ited a pattern distinct from that of mature tRNA; specifically,
5′-SHOT-RNAHisGUG molecules mostly lack the –1 nucleo-
tide. This inconsistency might be attributable to ANG cleav-
age activity to generate SHOT-RNAs. ANG might selectively
cleave –1 nucleotide-lacking tRNAs, resulting in a consider-
able accumulation of –1 nucleotide-lacking SHOT-RNA
molecules. However, ANG is a small protein, and thus selec-
tive cleavage should be facilitated by cofactors. Alternatively,
ANG might cleave tRNA irrespective of the 5′-terminal
nucleotide; SHOT-RNA lacking the –1 nucleotide might
then be more stable within the cells than SHOT-RNA con-
taining G−1, or an unknown ribonuclease might trim the
–1 nucleotide from SHOT-RNAs. The generative mechanism
and biological significance of these 5′-terminal variations in
mature tRNAHisGUG molecules 5′-halves remain to be
elucidated.

MATERIALS AND METHODS

Bioinformatics analyses of 5′-SHOT-RNAHisGUG

Human cyto tRNAHisGUG sequences were identified using the
tRNAscan-SE program (Lowe and Eddy 1997) and are shown in
Supplemental Figure S1. The 5′-SHOT-RNA library was previously
obtained by cP-RNA-seq of gel-purified 30- to 50-nt RNAs from
BT-474 cells (Honda et al. 2015) and can be found in the Gene
Expression Omnibus Database (GEO accession no. SRX1060214).
Reads previously mapped to mature cyto tRNAHisGUG sequences
(Honda et al. 2015) were extracted and used for this study.

Cell culture

BT-474 cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Life Technologies) containing 10% (v/v) FBS.

In vitro synthesis of tRNAHisGUG

Templates for the in vitro synthesis of human cyto tRNAHisGUG

(with or without N−1 nucleotide) were prepared by annealing two
ssDNAs (5′-GCTTAATACGACTCACTATAGCCGTGATCGTATA
GTGGTTAGTACTCTGCGTTGTGGC-3′ and 5′- mUmGGTGCC
GTGACTCGGATTCGAACCGAGGTTGCTGCGGCCACAACGC
-3′) in a solution containing 10 mM Tris–HCl (pH 8.0) and 20
mM MgCl2. After blunting the formed duplex using sequenase
(Affymetrix), the resultant dsDNAs were used as templates for
transcription with T7 RNA polymerase (New England Biolabs).
Synthesized RNAs were gel-purified using denaturing PAGE.

5′-End identification of tRNAHisGUG by TaqMan
qRT-PCR

The sequences of the adapter, AS-disrupter, primers, and TaqMan
probes for TaqMan qRT-PCR are shown in Supplemental Table S4.
The 70- to 90-nt RNA fraction, which contained mature tRNAs,
was initially gel-purified from total RNA using denaturing PAGE.
To ligate the 5′-adapter, to the 5′-end of cyto tRNAHisGUG, 500 ng
of the tRNA fraction were incubated with 100 pmol of AS-disrupter
in a 4-µL reaction mixture at 90°C for 2 min and subsequently incu-
bated at 37°C.RNAwas then added immediately to a ligation reaction
mixture (total volume: 10 µL) containing 200 pmol of 5′-adapter, T4
RNA ligase 1 (New England Biolabs), 10% (v/v) DMSO, and 5%
PEG8000 and incubated at 37°C for 1 h, followed by an overnight in-
cubation at 4°C. Next, 1 µL of the ligation mixture was subjected to
cDNA synthesis with 1 µM of RT primer and SuperScript III
(Invitrogen). For TaqMan qPCR quantification, the cDNA product
(0.5 µL of the RTmixture)was added to a reactionmixture (total vol-
ume: 10 µL) containing 5 µL of qPCRMaster Mix (TaKaRa), 0.2 µM
each of reverse and forward primers, and 0.1 µM of TaqMan probe.
Using a StepOne Plus Real-time PCR machine (Applied
Biosystems), the reaction mixture was incubated at 95°C for 20 sec,
followed by 40 cycles of 95°C for 1 sec and 65°C for 20 sec.

Primer extension assay

To detect 5′-SHOT-RNAHisGUG, 30- to 50-nt RNAs were first gel-
purified from BT-474 total RNA. Subsequently, 50 ng of gel-purified

FIGURE 4. Variations in 5′-terminal nucleotide from mature
tRNAHisGUG expressed in BT-474 cells. (A) Of note, 70- to 90-nt mature
tRNA fractions of BT-474 cells were subjected to TaqMan qRT-PCR
quantification of each 5′-terminal variant of mature tRNAHisGUG.
Expression levels were estimated using standard curves from synthetic
tRNAs (Supplemental Fig. S5), and the relative abundances of mature
tRNAs containing each 5′-terminal nucleotide are shown. Bars indicate
SD from three independent experiments. N.D. indicates that the reac-
tion did not amplify detectable cDNA signals. (B) A primer extension
assay to analyze the 5′-terminal positions of mature tRNAHisGUG was
performed using the 70- to 90-nt mature tRNA fraction from BT-474
cells.
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RNA or 0.1 pmol of synthetic tRNAHisGUG were incubated with
SuperScript III, the corresponding reaction buffer (Invitrogen),
and 0.1 pmol of 5′-32P-labeled DNA primer (5′-GTACTAACCAC
TATACGATC-3′) at 55°C for 30 min. The reaction mixtures were
developed using denaturing PAGE containing 7 M rea and 20%
formamide. To analyze mature tRNAHisGUG, 70- to 90-nt mature
tRNAs were gel-purified from the total RNAs extracted from
BT-474 cells. Gel-purified RNAs (1 µg) were then subjected to a
primer extension assay as described above.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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