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It is well known that the smooth muscle contraction whether spontaneous or following 30 

pharmacological stimulation, occurs in two phases, the initial phasic followed by the tonic phase (1, 2, 5, 31 

6, 11, 12, 14, 16, 17, 22, 23, 25, 33, 37).  Initial phasic contraction is critically dependent on an increase 32 

in the intracellular levels of Ca2+ often caused by G protein-coupled receptor (GPCR) activation. The 33 

increase in intracellular Ca2+ promotes the phosphorylation of the regulatory light chain of myosin 34 

(MLC20) by the Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) (Figure 1A, B).   35 

The latter phase of tonic or sustained contraction has been described to be dependent on myosin light 36 

chain phosphatase (MLCP) inhibition that maintains higher levels of phosphorylated MLC20 (p-MLC20), 37 

otherwise, the initiated contraction would cease and the smooth muscle would revert towards a more 38 

relaxed state.  Therefore, the state and nature of contractility, whether phasic, tonic, a mixture of phasic 39 

and tonic, or a complete quiescence is determined by a balance between the Ca2+/calmodulin/MLCK 40 

stimulation and MLCP inhibition in different proportions of course a number of neurohumoral influences 41 

may also play an important modulatory role in this regard.  MLCP phosphorylation (which inhibits the 42 

phosphatase) can be mediated through the RhoA-associated kinase (RhoA/ROCK) and protein kinase C 43 

(PKC) pathways, as discussed below and illustrated in Figure 1A, B.   44 

MLCP is a heterotrimeric enzyme consisting of a catalytic 38-kDa type 1 protein phosphataseδ 45 

isoform (PP1cδ) and two regulatory subunits, a 110 kDa myosin phosphatase target subunit 1 (MYPT1) 46 

and a 20 kDa small regulatory subunit (M20).  RhoA/ROCK-mediated phosphorylation of MYPT1 (p-47 

MYPT1) at specific residues is associated with inhibition of MLCP leading to an increase in smooth 48 

muscle contraction (18, 36).  RhoA/ROCK can also increase p-MLC20 via an MLCK-like effect (29).  49 

Additionally, ROCK inhibits catalytic subunit of MLCP via phosphorylation of protein kinase C-50 

potentiated inhibitor (CPI-17) (p-CPI-17).  As such CPI-17 is known as an endogenous inhibitor of 51 

MLCP.  Phosphorylation of CPI-17 at threonine-38 (Thr38) increases the inhibitory potency of CPI-17  52 

~7000 fold (8).  Both ROCK and PKC can phosphorylate CPI-17 at Thr-38 residue (8, 19, 20).  53 

RhoA/ROCK and PKC inhibit MLCP via phosphorylation of MYPT1 and CPI-17 leading to a sustained 54 

increase in p-MLC20 thus maintaining the tone.  Some of the common ways to assess MLCP activity are 55 



to monitor phospho- levels of MYPT1 (at specific residues), CPI-17 and MLC20 (21).  In addition to 56 

inhibition of MLCP, actin polymerization and actin cytoskeleton reorganization (either associated with or 57 

independent of RhoA/ROCK  (38)) play an important role in the sustained contraction.  A number of 58 

studies in different smooth muscles have shown that the myogenic contraction is associated with ~40% 59 

reduction in the globular actin (G-actin) pool that constitutes ~10% of the total cellular actin, suggesting 60 

an increased actin polymerization and filamentous actin (F-actin) formation.  Dependence of such 61 

contractions on increased actin polymerization was further shown by their sensitivity to the 62 

polymerization inhibitors (7).  Actin cytoskeleton reorganization may involve stimulation of G-protein-63 

coupled receptor, monomeric G-proteins, and macromolecular adhesion complex formation. The role of 64 

actin polymerization and actin cytoskeleton reorganization however, in the IAS remains to be determined. 65 

The sphincteric smooth muscles and the SMCs from humans and different animal species have been 66 

shown to be characterized by the presence of higher levels of RhoA/ROCK, lower levels of MYPT1, and 67 

higher levels of p-MYPT1, CPI-17, p-CPI-17 and p-MLC20 (3, 26, 27, 29-31, 35, 39). 68 

Acknowledging the fact that pharmacological stimulation may disturb and complicate underlying 69 

molecular mechanisms for the original phasic or tonic states of the tissues, significant studies using purely 70 

phasic and tonic tissues in the basal or unstimulated state have been performed.  Examples of purely 71 

phasic smooth muscles are esophageal body (EB) and anococcygeus (ASM), and those of tonic tissues are 72 

the lower esophageal sphincter (LES) and internal anal sphincter (IAS) (14, 24, 26, 26, 27, 33, 41).  73 

Working on purely tonic tissues, these and other investigators have shown that the initial phase of 74 

development of the basal tone is critically dependent upon Ca2+/calmodulin/MLCK.  In these studies, Ca2+ 75 

-free solutions and Ca2+-channel blockers maneuvers are routinely used to determine the levels of active 76 

tone have been shown to produce near obliteration of the tone.   Additionally, it has been reported that L-77 

type channel-mediated Ca2+ influx, and MLCK-mediated ryanodine receptor-induced spontaneous release 78 

of Ca2+ leading to activation of Ca2+-activated Cl current (Icl(ca)) (41), may play an important role in the 79 

sphincteric smooth muscle tone.  Conversely however, the later phase or the maintenance of tone is 80 



primarily dependent upon the MLCP inhibitory factors especially via RhoA/ROCK with some element of 81 

PKC (14, 31, 33, 35).   82 

Collectively, above studies (14, 31, 33, 35) in animals and humans investigated the adjoining 83 

phenotypic different tissues of purely tonic, phasic and mixed characteristics. These and additional studies 84 

(4, 14, 26, 27, 30-35) revealed a tight correlation between the activities of RhoA/ROCK activity, MLCP, 85 

and levels of p-MYPT1, p-CPI-17, and p-MLC20, associated with distinctly higher levels of RhoA/ROCK 86 

machinery in the IAS .  These studies monitored basal IAS tone and its changes before and after selective 87 

RhoA/ROCK activators/inhibitors and other molecular interventions, in the absence and presence of 88 

GPCR activation.  Additional data showed that in contrast to the tonic SM, the phasic smooth muscles 89 

have lower levels of RhoA and ROCK signaling machinery that are relatively less responsive to upstream 90 

activators, and direct manipulations of RhoA/ROCK.  Studies using selective molecular intervention by 91 

localized topical application of ROCKII-siRNA for transient silencing of ROCKII also demonstrated a 92 

significant decrease in the IAS tone (4).  Further evidence implicating the RhoA/ROCK pathway as 93 

responsible for the basal tone has emerged from studies of bioengineered and reverse engineered IAS 94 

reconstructs using human IAS SMCs (34).  These reconstructs were shown to have functional and 95 

molecular properties similar to the intact IAS, and demonstrated that the basal tone is dependent on 96 

RhoA/ROCK.  Altogether, these data suggest that the sphincteric tone is critically dependent upon 97 

RhoA/ROCK that may be either constitutively active or involve GPCR activation via autocrine control (6, 98 

32). 99 

In support of these concepts, recent studies by Drs. Zhang et al., (40) have employed state-of-the art 100 

methodologies involving conditional knock outs of MLCK and spontaneous transient inward currents 101 

(STICs) in mouse IAS model.  Data showed almost complete obliteration of the IAS tone by specific 102 

conditional MLCK deletion and specific inhibition of Ca2+-channels, ryanodine receptors (RyRs), L-type 103 

voltage-dependent Ca2+-channels (VDCCs) or TMEM16A Ca2+-activated Cl channels.  MLCK deletion-104 

associated decrease in the IAS tone was shown to be without changes in RhoA/ROCK/PKC/CPI-17 105 

suggesting independence of molecular mechanisms for the initial phase from those for the later phase of 106 



maintenance of the basal tone.  These data are in agreement with the above concept that the latter stage of 107 

activation of RhoA/ROCK/PKC responsible for MLCP inhibition follows the initial phase, and does not 108 

set in in the absence of initial development of tone.  Additionally, it has been shown that Ca2+ activation 109 

plays an important role in RhoA/ROCK activation (9).  These data are consistent with the role of 110 

Ca2+/calmodulin/MLCK pathway in the initiation (10, 21, 36), and Ca2+ sensitization via RhoA/ROCK 111 

activation for the maintenance of IAS tone.  However, the role of actin polymerization and cytoskeleton 112 

reorganization is likely and remains to be determined. 113 

Based on data showing enhanced sustained contraction in the gastrointestinal and vascular smooth 114 

muscles (15, 28), and characteristically lower levels of MYPT1 associated with the tone (26, 27), one 115 

would expect an increase in the basal IAS tone following genetic manipulation for the decreased 116 

expression of MYPT1.  However, the mouse IAS studies (40) showed no such effect following 117 

conditional knock out of MYPT1.  Whether this is related to the morphological changes such as 118 

hypertrophy following MYPT1 deletion (40), fibrosis, or other compensatory molecular changes in the 119 

smooth muscle is not known.  Noticeably, these studies did not monitor levels of p-MYPT1.  It has been 120 

reported that in spite of the lower levels of MYPT1, the sphincteric tissues have higher levels of p-MYPT 121 

(26, 27).  Such information could provide important clues for the molecular traffic in relation to the basal 122 

tone before and after conditional knock outs.  Additionally, in contrast with others, these studies (40) 123 

monitored basal tone and its changes in ice-cold buffer; whether this accounts for certain unexpected 124 

results remains unknown.  It is also possible that not knowing the exact nature of unique sphincteric 125 

smooth muscle-specific MYPT1 (13), the selected MYPT1 for deletion may not have been tissue and 126 

species-specific.   127 

In closing, there are presently substantial data to support the concept that Ca2+/calmodulin/MLCK 128 

activation are critical for the initial phasic stage of IAS tone development, whereas MLCP-inhibition 129 

primarily by RhoA/ROCK pathway plays a crucial role in the tone maintenance (Figure 1A, B).  130 

Molecular insights into the mechanisms underlying the spontaneous tone in the gastrointestinal smooth 131 



muscles represented by the IAS and LES are crucial in the pathophysiology and therapeutic targeting of a 132 

number of debilitating motility disorders such as fecal incontinence. 133 

 134 
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FIGURE LEGENDS 270 

Fig. 1.   271 

A.  A simplified model showing basic differences in the myogenic molecular mechanisms responsible for 272 

the initation of contraction followed by its fade in the phasic (denoted by white tracing line) vs. 273 

development of tone followed by its maintenance in the tonic (denoted by red tracing line) smooth 274 

muscles.  Typical examples of truly phasic smooth muscles are those of esophageal body (EB) and 275 

anococcygeus and (ASM), while those of tonic smooth muscles are lower esophageal sphincter (LES) and 276 

internal anal sphincter (IAS).  In this illustration, smooth muscle contraction in rat ASM (induced by 277 

electrical field stimulation) and spontaneous tone in the rat IAS (without any stimulus) represent phasic 278 

and tonic activities, respectively.  Initial events for the contractility both in the phasic and tonic smooth 279 

muscles are similar as they are dependent upon increase in intracellular Ca2+ [(Ca2+)i], followed by 280 

formation of Ca2+/calmodulin complex and activation of MLCK leading to increase in p-MLC20.  The 281 

triggers for the initial phasic contraction and tone maintenance have been discussed in the text.  As 282 

indicated by highlighted bold letters, myosin-light-chain phosphatase (MLCP) plays a critical role in the 283 

characteristic fading of contraction in the phasic, and in the maintenance of developed tone in the tonic 284 

smooth muscle.  Once initiated, the phasic contraction quickly fades because of dephosphorization of p-285 

MLC20 by active MLCP, and lack of other support mechanisms to maintain high levels of p-MLC20.  286 

However, in the tonic smooth muscles, the basal tone is sustained because higher levels of p-MLC20 are 287 

maintained primarily via inhibition of MLCP by RhoA/ROCK-mediated phosphorylation of regulatory 288 

subunit of MLCP (p-MYPT1), and other effects as laid out in panel B.  In the tonic smooth muscles, 289 

RhoA/ROCK may be either constitutively active or GPCR-activated.  This figure does not reveal the 290 

source of increase in [(Ca2+)i], and the role of actin polymerization and cytoskeleton reorganization in the 291 

smooth muscle contractility.  These feature are however are discussed in the text. 292 



↑↓, denote an increase or decrease respectively in the expression or activity; *, for simplicity only the 293 

major target of RhoA/ROCK (MYPT1 which is phosphorylated by RhoA/ROCK) is shown here.   294 

RhoA/ROCK does however have the additional ability to increase p-MLC20 as shown in panel B.  295 

B. This panel illustrates different mechanisms by which RhoA/ROCK can increase p-MLC20 for the 296 

sustained contraction initiated by Ca2+/calmodulin/MLCK as follows via:  1). inhibition of MLCP through 297 

phosphorylation of its regulatory subunit MYPT1 (p-MYP1); 2). phosphorylation of protein kinase C-298 

potentiated inhibitor (CPI-17) (p-CPI-17) that causes subsequent inhibition of MLCP via its catalytic 299 

subunit PP1c and via p-MYPT1; and 3). MLCK-like effect.  In addition, this illustration suggests a partial 300 

role of PKC in the mediation of basal smooth muscle tone by phosphorylation of CPI-17; and double 301 

arrow between RhoA/ROCK and PKC suggests a cross-talk between the two pathways.  An increase in p-302 

MLC20 initiated by Ca2+/calmodulin/MLCK and sustained by RhoA/ROCK activation leads to smooth 303 

muscle contraction, and its dephosphorylation via MLCP causes relaxation.  For more details, consult 304 

text. 305 

 306 
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