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Cleavage of DFNA5 by caspase-3 during
apoptosis mediates progression to secondary
necrotic/pyroptotic cell death
Corey Rogers1, Teresa Fernandes-Alnemri1, Lindsey Mayes1, Diana Alnemri2, Gino Cingolani1 & Emad S. Alnemri1

Apoptosis is a genetically regulated cell suicide programme mediated by activation of the

effector caspases 3, 6 and 7. If apoptotic cells are not scavenged, they progress to a lytic and

inflammatory phase called secondary necrosis. The mechanism by which this occurs is

unknown. Here we show that caspase-3 cleaves the GSDMD-related protein DFNA5 after

Asp270 to generate a necrotic DFNA5-N fragment that targets the plasma membrane to

induce secondary necrosis/pyroptosis. Cells that express DFNA5 progress to secondary

necrosis, when stimulated with apoptotic triggers such as etoposide or vesicular stomatitis

virus infection, but disassemble into small apoptotic bodies when DFNA5 is deleted. Our

findings identify DFNA5 as a central molecule that regulates apoptotic cell disassembly and

progression to secondary necrosis, and provide a molecular mechanism for secondary

necrosis. Because DFNA5-induced secondary necrosis and GSDMD-induced pyroptosis are

dependent on caspase activation, we propose that they are forms of programmed necrosis.
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P
rogrammed cell death (PCD) pathways have important
physiological roles in growth, survival, homeostasis
and innate immunity of all multicellular organisms. Two

important, yet phenotypically distinct, forms of PCD include
apoptosis and programmed necrosis1. Although apoptosis
is immunologically ‘silent’, programmed necrosis is an
inflammatory form of PCD characterized by cellular swelling,
lysis and release of pro-inflammatory molecules1. Programmed
necrosis is mediated by two distinct signalling pathways; the
necroptotic pathway induces necroptosis and the pyroptotic
pathway induces pyroptosis1. Necroptosis is triggered by
activation of receptor-interacting protein kinase-3 (RIPK3),
which phosphorylates the pseudokinase MLKL, causing it to
translocate to the plasma membrane to induce cell permeabiliza-
tion2. Pyroptosis is triggered primarily by activation of the
inflammatory caspases, which include caspase-1 and caspase-11
(caspase-4/-5 in humans)3,4. Caspase-1 is activated by
multiprotein complexes assembled by several proteins such as
NLRP3, NLRC4, AIM2, pyrin and NLRP1, collectively referred to
as canonical inflammasomes (reviewed in5). By contrast, human
caspase-4 and -5, and their mouse ortholog caspase-11, are
activated within non-canonical inflammasome complexes by
directly binding to lipopolysaccharide from Gram-negative
bacteria4. Studies have demonstrated that on activation of
inflammatory caspases by the canonical and non-canonical
pathways these caspases cleave a cellular substrate called
gasdermin D (GSDMD) after Asp276 (refs 6–8), generating a
necrotic N-terminal fragment capable of inducing pyroptosis by
forming pores in the plasma membrane9–12.

In contrast to programmed necrosis, apoptosis is a
non-inflammatory form of PCD mediated by activation of the
apoptotic caspases and can occur either via an extrinsic or an
intrinsic pathway13,14. Although the extrinsic pathway is activated
by signalling through cell surface death receptors, the intrinsic
pathway is activated by mitochondrial damage. However, both
pathways converge on the activation of the executioner caspases
(caspase-3, 6 and 7), which target 4600 substrates to orchestrate
morphological changes associated with apoptosis14. At the
terminal stage of apoptosis, cells are phagocytosed in vivo by
scavenger cells, such as macrophages or neutrophils. However, if
these cells are not removed in a timely fashion, as is the case
in vitro, they progress to a final phase called secondary necrosis
characterized by cytoplasmic swelling and plasma membrane
damage, similar to the phenotype of cells undergoing pyroptosis
or necroptosis15,16. The mechanism of secondary necrosis
and whether it is mediated by substrates of apoptotic caspases
is not clear.

DFNA5 belongs to the same gasdermin superfamily, as
GSDMD and has been implicated in the induction of cell death
and as a putative tumour suppressor17–19. Mutations in intron 7
of the DFNA5 gene have been shown to cause sensorineural
hearing loss because of skipping of exon 8 at the pre-mRNA level
and the translation of a C-terminally truncated protein20,21.
Although the full-length product does not have cytotoxic
activity, the truncated form does18,19. In addition, promoter
hypermethylation leading to DFNA5 inactivation has been
detected in 52% of primary gastric cancers making it a putative
tumour suppressor and further suggesting a role in promoting
cell death22. Finally, expression of DFNA5 is induced by the
transcription factor p53 in response to etoposide, a potent
inducer of apoptosis23.

Because DFNA5 is related to GSDMD, and its C-terminal
truncation has been shown to cause cell death18,19, we
investigated whether it is cleaved by apoptotic caspases to
induce secondary necrosis. Here we show that DFNA5 is a
physiological substrate for caspase-3. Mechanistically, caspase-3

cleaves DFNA5 after Asp270 to generate a necrotic DFNA5-N
fragment that translocates to the plasma membrane to
permeabilize it and induce secondary necrosis/pyroptosis. In
293T cells that stably express DFNA5, activation of caspase-3 by
stimulation of the mitochondrial apoptotic pathway with Bax
overexpression, or infection by the apoptosis-inducing vesicular
stomatitis virus (VSV) or encephalomyocarditis virus (ECMV)
results in cleavage of DFNA5 and induction of secondary
necrosis. Similarly, in WT and caspase-1/caspase-11 (casp-1/
11)-deficient macrophages, infection with VSV or treatment with
etoposide results in cleavage of endogenous DFNA5 into the
necrotic N-terminal fragment and induction of secondary
necrosis. Deletion of DFNA5 in macrophages mostly inhibits
VSV-induced and etoposide-induced secondary necrosis.
Interestingly, unlike WT cells, DFNA5-deficient cells do not
swell, but extensively disassemble into small apoptotic bodies.
Combined, our results indicate that DFNA5 regulates disassembly
and progression of apoptotic cells to secondary necrosis on
cleavage by caspase-3.

Results
DFNA5 is specifically cleaved by caspase-3. Our studies in
VSV-infected immortalized bone marrow-derived macrophages
(BMDMs) from casp-1/11-deficient mice revealed that these
macrophages undergo a caspase-dependent necrotic form of cell
death resembling pyroptosis. VSV-infected casp-1/11-deficient
macrophages released high amount of LDH in the culture
supernatants and showed microscopic features of plasma mem-
brane swelling characteristic of necrosis/pyroptosis (Supplemen-
tary Fig. 1). Pharmacological inhibition of the necroptotic path-
way with the RIPK3 inhibitor GSK’872 alone did not block this
cell death. However, combined treatment with GSK’872 and the
pancaspase-inhibitor zVAD-fmk completely blocked cell death,
indicating that this VSV-induced necrotic-like cell death is not
mediated by necroptosis but is mediated by caspases other than
caspase-1 and caspases-11. The observed high LDH release in the
presence of zVAD-fmk is caused by zVAD-fmk-induced
necroptosis, because inhibition of caspases leads to activation of
the RIPK3-MLKL necroptotic cell death pathway in macro-
phages24. Since casp-1/11 dKO macrophages lack inflammatory
caspases, which induce pyroptosis by cleaving GSDMD (refs 6–8),
these results suggest that the observed VSV-induced necrosis in
these cells is likely the result of non-inflammatory caspase activity
on substrates other than GSDMD. To test this hypothesis we
investigated whether non-inflammatory caspases can cleave
other GSDMD-related family members to induce necrosis-like
phenotype.

DFNA5, a GSDMD-related family member, shares only B28%
identity with GSDMD within the region corresponding to the
pyroptotic GSDMD N-terminal domain (Supplementary Fig. 2).
Nevertheless, genetic mutations within intron 7 of human
DFNA5 that cause skipping of exon 8 and truncation of the
C-terminus of DFNA5 at residue 315 leads to hearing loss21,
suggesting that the N-terminal domain of DFNA5, like GSDMD
N-terminal domain, may possess cell-death inducing activity.
As a first step to investigate whether DFNA5 is an effector
of necrotic-like cell death downstream of caspase activation,
we tested whether DFNA5 is a target for caspases. Incubation of
N-terminal T7 tagged recombinant DFNA5 with caspase-3,
but not with caspase-1, resulted in the generation of B35 kDa
N-terminal fragment similar in size to the caspase-1 generated
GSDMD N-terminal domain (Fig. 1a). Among human caspases
only caspase-3 was able to efficiently cleave DFNA5
(Supplementary Fig. 3a). Notably, caspase-3 was also capable of
cleaving GSDMD but resulted in the generation of a 13 kDa
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GSDMD N-terminal fragment. This result is consistent with
a previous report25, which showed that GSDMD is cleaved at
Asp87 during apoptosis (http://wellslab.ucsf.edu/cgibin/retrieve_
1.0.cgi?degrabase_type=both&p1_type=all&substrate=gsdmd).
This residue is part of a consensus caspase-3 cleavage site (DxxD)
and is conserved in both human and mouse GSDMD. The
physiological consequence of this cleavage remains to be
investigated. Cleavage of DFNA5 by caspase-3 was very efficient
and complete, and appears to occur only at a single site because
only two fragments (DFNA5-N and DFNA5-C) were generated
when the cleaved products were visualized by Coomassie stain
(Fig. 1b, right panel).

To identify the caspase-3 recognition site in DFNA5 we
searched for a consensus caspase-3 recognition motif (DxxD) in
the linker region between the DFNA5-N and DFNA5-C domains.
We found that both human and mouse DFNA5 proteins contain
putative caspase-3 recognition motifs at residues 267–270
(267DMPD270) (Fig. 1c). To confirm that this site is indeed
cleaved by caspase-3, we substituted Asp270 with Glutamate in
human DFNA5 by site-directed mutagenesis. The resulting D/E
mutant DFNA5 was completely resistant to cleavage by caspase-3
(Fig. 1d). We further subjected the DFNA5-C fragment to Edman
degradation and obtained the N-terminal sequence AAHGI,
which exactly matches the N-terminal sequence of the predicted
DFNA5-C fragment generated by cleavage of human DFNA5
after Asp270.

To show that DFNA5 is a physiological target for caspase-3
after its activation by the Apaf-1 apoptosome, we stimulated S100
cell extracts from 293T cells stably expressing a C-terminal
EGFP-tagged WT or D270E DFNA5 proteins (293T-DFNA5-
EGFP cells or 293T-DFNA5-D270E-EGFP cells, respectively)
with cytochrome c. Notably, activation of endogenous caspase-3
within the Apaf-1 apoptosome by cytochrome c resulted in robust
processing of WT DFNA5 but not the D270E DFNA5 mutant

(Fig. 2a). Caspase-3 activation by cytochrome c in S100
extracts from 293T cells stably expressing GSDMD-EGFP
(293T-GSDMD-EGFP cells) also resulted in processing of
GSDMD at Asp87 (Fig. 2b). No DFNA5 or GSDMD processing
was observed in S100 lysates from the caspase-3-deficient MCF7
breast cancer cell line26, indicating that caspase-3 is the primary
protease responsible for processing of DFNA5 and GSDMD
downstream of the apoptosome (Supplementary Fig. 3b, left
panels, and Supplementary Fig. 3c). Consistent with this, DFNA5
processing was restored in MCF-7 cells stably expressing
caspase-3 (Supplementary Fig. 3b, right panels). Similarly,
activation of S100 extracts from HEPG2 cells which unlike
293T cells express detectable endogenous DFNA5 protein
(Fig. 2c), or from immortalized caspase-1/11-double knockout
macrophages, resulted in processing of endogenous DFNA5
and GSDMD (Fig. 2d,e). Combined, these results indicate that
caspase-3 specifically cleaves DFNA5 after Asp270 and that
DFNA5 is a physiological target of caspase-3 downstream of the
Apaf-1 apoptosome.

The processed DFNA5-N fragment has a necrotic activity. To
investigate whether the caspase-3-generated DFNA5-N fragment
has a necrotic activity like the GSDMD-N fragment that is
generated by inflammatory caspases, full-length DFNA5 and
GSDMD and their processed fragments DFNA5-N and
GSDMD-N, respectively, were ectopically expressed in 293T cells.
In contrast to full-length proteins, both DFNA5-N and
GSDMD-N fragments induced extensive cell death with char-
acteristic morphological and biochemical features of necrosis as
evidenced by ballooning of the cell membrane and LDH release,
respectively (Fig. 3a,b). Because of their potent killing activity the
expression levels of DFNA5-N and GSDMD-N fragments were
barely detectable compare to full-length proteins (Fig. 3c).
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Figure 1 | Caspase-3 cleaves DFNA5 after Asp270. (a) Immunoblot of purified N-terminal His6-T7-tagged DFNA5 and GSDMD proteins incubated
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Induction of necrosis by DFNA5-N and GSDMD-N fragments
was largely not inhibited by the pan-caspase inhibitor zVAD-fmk,
indicating that these proteins do not require caspase activity to
induce cell death (Supplementary Fig. 4a). However, there was a
slight reduction in LDH and HMGB1 release in the zVAD-fmk
treated cells (Supplementary Fig. 4b,c), suggesting that caspase
activation occurs during this form of necrosis and may contribute
to enhancement of cell death.

To determine the minimal sequence of DFNA5-N fragment
capable of inducing necrosis, we made progressive N-terminal
and C-terminal deletion mutants of human DFNA5-N and
mouse GSDMD-N. Expression of these deletion mutants in 293T
cells revealed that the first 4N-terminal residues of DFNA5-N are
critical for its killing activity (Supplementary Fig. 5a). Deletion of
the homologous residues in GSDMD (residues 5–7) also
inactivated GSDMD-N killing activity (Supplementary Fig. 5b).
This region contains a phenylalanine residue (F2 in DFNA5; F4
in GSDMD), mutation of which to alanine dramatically increased
the expression of this mutant but significantly reduced its killing
activity (Supplementary Fig. 5a,c). Progressive deletions at the
C-termini of DFNA5-N and GSDMD-N fragments revealed that
residues 235–270 of DFNA5-N fragment or residues 232–276 of
GSDMD-N fragment are not important for their killing activity.
Interestingly, deletion of the last phenylalanine (F234) in the
DFNA5–1–234 fragment or deletion of the last leucine (L231) in
the GSDMD-1–231 fragment completely inactivated these
proteins. Collectively these results indicate that the caspase-3
generated DFNA5-N fragment has an intrinsic necrotic activity,
and that the N-terminal F2 and C-terminal F234 residues are
critical for this activity.

DFNA5-N targets the plasma membrane. The intrinsic ability of
DFNA5-N and GSDMD-N to induce plasma membrane swelling
and necrosis suggests that these proteins target the plasma
membrane. To provide evidence that DFNA5-N targets the
plasma membrane we generated a construct encoding a
C-terminal-EGFP tagged DFNA5-N fragment. Ectopic expression
of this protein in 293T cells induced rapid and extensive necrosis,
which hampered clear assessment of its subcellular localization.
However, ectopic expression of an EGFP-tagged DFNA5 F2A
mutant which has reduced killing activity and increased
expression (Supplementary Fig. 5a) allowed clear visualization of
DFNA5-N on the plasma membrane (Fig. 3d). This DFNA5
mutant showed membrane localization with some cytoplasmic
distribution in healthy cells (upper panels) but mainly membrane
localization in necrotic cells (Fig. 3d middle panels and
Supplementary Videos 1–3). The full-length DFNA5 protein
showed exclusive cytoplasmic localization (Fig. 3d, lower
panels).

To provide additional evidence that the DFNA5-N fragment
targets the plasma membrane, we activated DFNA5 by incubation
of cell lysates from WT macrophages or 293T-DFNA5-EGFP
cells with cytochrome c and then fractionated the cell lysates into
membrane and cytosolic fractions by centrifugation. Consistent
with the confocal microscopy results, the activated endogenous
DFNA5-N fragment from WT macrophages and the exogenous
DFNA5-N fragment from 293T-DFNA5-EGFP were found in the
heavy membrane and S100 fractions, whereas the unactivated
full-length DFNA5 was found almost exclusively in the S100
fraction (Fig. 3e,f). These results are similar to those reported for
GSDMD recently11. Altogether, these results strongly suggest that

a

70 -
55 -

35 -
27 -

35 -

27 -

15 -

DFNA5-N

DFNA5 FL

p19

Pro-casp-3

p17

c

Time (min) 0 60 9030

HepG2

70 -
55 -

35 -

27 -

DFNA5-N

DFNA5-EGFP

35 -

27 -

15 -
p19

Pro-casp-3

p17

Time (min) 0 60 90 0 30 60 9030

β-actin

293T DFNA5-
EGFP

293T DFNA5
D270E-EGFP

β-actin

e

NS*

d

DFNA5

Hep
G2

29
3T

β-actin

Time (min)

Casp-1/11-dKO

DFNA5 FL
NS

DFNA5-N 

0 60 9030

*

Pro-casp-3 

β-actin

p19
p17

35 -
27 -

15 -

55 -

35 -

GSDMD-N
GSDMD FL

293T GSDMD-
EGFP

GSDMD-EGFP
GSDMD-Δ1-87-EGFP

p19

Pro-casp-3

p17

β-actin

35 -

27 -

15 -

Time (min) 0 60 9030

70 -
55 -

35 -

27 -

b

55 -

Figure 2 | DFNA5 is cleaved by caspase-3 downstream of the Apaf-1 apoptosome. (a,b) Immunoblots of S100 lysates from stable 293T-DFNA5-EGFP

and 293T-DFNA5-D270E-EGFP cells (a), or stable 293T-GSDMD-EGFP cells (b) stimulated with cytochrome c for the indicated times at 37 �C. The blots

were probed with anti-DFNA5 (a, upper), anti-GSDMD (b, upper), anti-caspase-3 (a,b, middle) or anti-b-actin (a,b, lower) antibodies. (c) Immunoblot of

endogenous DFNA5 in 293T and HEPG2 total cell lysates. (c,d) Immunoblots of S100 lysates from human HEPG2 (d) or mouse casp-1/casp-11-double

knockout (casp-1/11-dKO) (e) macrophages stimulated with cytochrome c for the indicated times at 37 �C. The blots were probed with anti-DFNA5 (upper

in d,e), anti-GSDMD (second from top in d), anti-caspase-3 (third from top in d, middle in e) or anti-b-actin (fourth from top in d, lower in e) antibodies.

Asterisk indicate non-specific band (NS). Results are representative of at least three independent experiments.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14128

4 NATURE COMMUNICATIONS | 8:14128 | DOI: 10.1038/ncomms14128 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


DFNA5-N fragment, like the GSDMD-N fragment, targets the
plasma membrane to induce necrosis.

DFNA5 N-terminus harbours a membrane targeting domain.
While this work was under review several recent reports showed
that N-terminal fragments of members of the gasdermin family
indeed target the plasma and mitochondrial membranes through
interactions with membrane lipids leading to formation of large
pores9–12. Ding et al. also reported the crystal structure of
GSDMA3 (ref. 10). We generated a homology model of DFNA5
(Supplementary Fig. 6a) using SWISS-MODEL27 based on the
crystal structure of GSDMA3 (Supplementary Fig. 6b)10, which is
19.7% sequence identical to DFNA5. Both proteins are built by
two arches closed like a clamp to bury an N-terminal moiety
enriched in hydrophobic and basic residues (coloured in red in
Supplementary Fig. 6a,b). Caspase-3 cleavage releases DFNA5
N-terminal arch (res. 1–270) (Supplementary Fig. 6c) that, like
GSDMA3 (ref. 10), has no apparent structural similarity to

known proteins in the RCSB database. However, removing the
N-terminal residues 1–57 that pack loosely against DFNA5
concave surface, reveals a seahorse-shaped fold (Supplementary
Fig. 6d) characterized by a four stranded, highly twisted
b-sheet decorated with small clusters of a-helices, characteristic
of the Membrane Attack Complex/Perforin-like Family (MACPF)
(Supplementary Fig. 6e,f)28,29. Accordingly, a DALI search30

identified several members of the membrane attack complex/
perforin-like family super-family such as astrotactin (Z-score¼ 3.1),
the complement component C8a protein (‘Poly-C8’) (Z-score¼ 2.4)
and Pleurotolysin B (Z-score¼ 2.0) as bona fide structural
homologues of DFNA5-core. Interestingly, the structure of the
oligomeric pore-forming Poly-C9 component of the complement
membrane attack complex (MAC) was recently determined using
cryo-electron microscopy single particle analysis, revealing a
22-fold symmetric ring of C9 molecules31 (Supplementary
Fig. 7a–c). Poly-C9 heterodimerizes with the closely related
Poly-C8 subunit and other subunits to form the MAC, a multi-
protein complex that forms pores in the membrane of target
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pathogens32. The ability of these proteins to penetrate and insert
into biomembranes is based on two helices (known as TMH1 and
TMH2 and shown in red in Supplementary Fig. 7a–c),
which change conformation to form anti-parallel b-hairpin,
generating an 88-strand pore-forming b-barrel (shown in red
in Supplementary Fig. 7c for only one protomer). Using
the structural similarity between DFNA5 and Poly-C8/C9, we
generated a model of the putative pore-conformation of DFNA5
(Supplementary Fig. 7d,e), which is B125 Å in diameter.
In analogy to other pore-forming toxins33, we propose DFNA-
5N-terminal moiety undergoes a complex conformational change
upon oligomerization that results in formation of a membrane
penetrating-tip (Supplementary Fig. 7f).

Residues 1–56 of DFNA-5 (Fig. 4) contain an amphipathic
a-helix and a b-hairpin exposing a basic patch (39-KKKR-42);
overall this domain contains 19 hydrophobic residues that we
propose are involved in membrane targeting and penetration (we
refer to this region of DFNA5 as Membrane Targeting Domain or
MTD) (Fig. 4a,b). In analogy to the Poly-C9 component of the
MAC complex31, we speculate that DNFA5 MTD also undergoes
conformational changes upon insertion into the plasma-
membrane (Supplementary Fig. 7f). Supporting this model,
point mutations of K39, K40 and K41 to alanines almost

completely prevented targeting of DFNA5-N to the plasma
membrane and significantly reduced its necrotic activity
(Fig. 4c,h). Combined mutation of K39 and K41 to alanines
also largely prevented targeting of this mutant to the plasma
membrane and significantly reduced its necrotic activity
(Fig. 4g,h). However, mutation of K40 to alanine did not
significantly reduce its necrotic activity but showed both
membrane and cytoplasmic localization similar to the F2A
mutant (Fig. 4f,h). Interestingly, a combined mutation of F2
and K40 to alanines resulted in total cytoplasmic localization
and no necrotic activity (Fig. 4d,h). The significantly reduced
necrotic activity and increased expression of the F2A
mutant compared with WT or K40A mutant suggest that this
residue might also be critical for DFNA5-N oligomerization.
These results indicate that residues 1–56 of DFNA5 contain the
MTD of DFNA5 and may also facilitate its oligomerization.
Unlike known pore-forming toxins that assemble pores from the
outside of the plasma-membrane, DFNA5 is a cytoplasmic
protein that must assemble oligomers and penetrate the plasma-
membrane from the inside. This is likely dictated by the lipid
composition of the inner membrane. The molecular details of
DFNA5 cell-penetration remain to be investigated in future
studies.
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DFNA5 is activated by the mitochondrial apoptotic pathway.
Intriguingly, a process called secondary necrosis has been
observed following activation of the apoptotic programme in
many cell types16,34. Secondary necrosis refers to a terminal phase
at the end of the apoptotic programme characterized by plasma
membrane permeabilization, swelling and lysis, three features that
are also common to pyroptosis and necroptosis16,34–36. This
process occurs if the full apoptotic programme is completed and
there is no intervention of scavengers such as seen under in vitro
conditions, or when there is too much apoptosis in vivo that
overwhelms the available scavenging capacity. To demonstrate a
role for cleaved DFNA5 in secondary necrosis downstream of the
mitochondrial apoptotic pathway we stably reconstituted 293T
cells, which do not express detectable endogenous DFNA5
protein (Fig. 2c), with DFNA5-EGFP or DFNA5-D270E-EGFP.
We then transfected these cells with an expression construct for
Bax, a proapoptotic Bcl-2 family member that activates the
mitochondrial apoptotic pathway by inducing cytochrome c
release from the mitochondria. As shown in Fig. 5a, expression of
Bax in the WT DFNA5-EGFP-reconstituted 293T cells led to
processing of the DFNA5-EGFP protein to generate the active
DFNA5-N fragment. However, expression of Bax in the DFNA5-
D270E-EGFP-reconstituted 293T cells did not induce processing
of this protein (Fig. 5a). Consistent with a role for DFNA5-N
fragment in inducing necrosis, Bax expression also caused
significant LDH release from the 293T-DFNA5-EGFP cells but
not from the cells expressing the D270E mutant DFNA5-EGFP or

GSDMD-EGFP proteins (293T-GSDMD-EGFP cells) (Fig. 5b).
The 293T-DFNA5-EGFP cells also showed microscopic features
of necrosis (ballooning of the cell membrane), which were largely
absent in the cells expressing the D270E mutant DFNA5-EGFP,
GSDMD-EGFP or EGFP proteins (Fig. 5c).

Consistent with the above results transfection of
293T-DFNA5-EGFP cells with a constitutively active37, but not
inactive mutant caspase-3 also led to processing of DFNA5 and
significant induction of LDH release (Fig. 5a,b). No processing
of DFNA5 or significant LDH release was observed in
293T-DFNA5-D270E-EGFP cells. In addition, no significant
LDH release was observed in the GSDMD-EGFP-expressing
293T-GSDMD-EGFP cells after transfection with active caspase-3
(Fig. 5b). Combined these results show that DFNA5, but not
GSDMD, mediates secondary necrosis downstream of the
mitochondrial apoptotic pathway and caspase-3 activation.

DFNA5 is activated by viral infection and etoposide. Infection
with ssRNA viruses such as VSV or ECMV can lead to caspase-3
activation and cell death38,39. To investigate whether activation of
caspase-3 by viral infection can lead to DFNA5-dependent
secondary necrosis, WT and casp-1/casp-11-double knockout
(casp-1/11 dKO) macrophages were infected with VSV and then
subjected to western blot and LDH release assays to detect
cleavage of DFNA5 and measure necrosis, respectively. As shown
in Fig. 6a, VSV infection caused a dose-dependent processing of
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DFNA5 into the active DFNA5-N fragment in both WT and
casp-1/11-dKO macrophages. Altogether with DFNA5 processing
there was LDH release from both WT and casp-1/11-dKO
macrophages (Fig. 6b). LDH release was slightly higher in the
casp-1/11-dKO cells probably because of increased caspase-3
activation in these cells (Fig. 6a, lower panels). This is consistent
with recent results showing that caspase-1 deficiency increases the
activity of caspase-3 (ref. 8). These results show that VSV
infection is associated with caspase-3 activation, DFNA5 cleavage
and secondary necrosis.

To provide evidence that virus-induced necrosis is dependent
on caspase-3-induced processing of DFNA5 and independent of
inflammatory caspase activation, we knocked down DFNA5 with
siRNA in casp-1/11-dKO macrophages and then infected them

with VSV. VSV-induced LDH release and necrosis was
significantly reduced when DFNA5 was knocked down in these
macrophages (Fig. 6c–e). Interestingly, VSV infection induced
extensive blebbing and apoptotic bodies and very little plasma
membrane swelling (ballooning) in the DFNA5-knocked down
cells compared with control cells which showed both ballooning
and blebbing (Fig. 6e).

Similar to the results obtained with mouse macrophages,
VSV infection lead to significantly more LDH release from 293T-
DFNA5-EGFP cells compared with 293T or 293T-GSDMD-
EGFP cells (Fig. 7a). DFNA5 was also cleaved in the VSV-infected
293T-DFNA5-EGFP and the cells exhibited the typical ballooning
morphology associated with necrosis (Fig. 7b,c). Similar results
were obtained when cells were infected with ECMV (Fig. 7d,e).
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DFNA5 is required for induction of secondary necrosis. To
provide further evidence for the role of DFNA5 in induction of
secondary necrosis in response to apoptotic triggers, we generated
BMDM from DFNA5þ /þ and DFNA5� /� mice
(Supplementary Fig. 8). Stimulation of S100 cell extracts from
DFNA5þ /þ macrophages with cytochrome c showed robust
processing of DFNA5 into the DFNA5-N fragment which was
completely absent in the DFNA5� /� macrophages stimulated
with cytopchrome c under the same conditions (Fig. 8a), con-
firming that DFNA5� /� macrophages lack DFNA5.
Consistent with the involvement of DFNA5 in VSV-induced
necrosis, DFNA5� /� macrophages showed significantly reduced
LDH release and secondary necrosis compared with DFNA5þ /þ

or casp-1/11-DKO macrophages in response to VSV infection
(Fig. 8b,d, Supplementary Fig. 9a). Similar reduction in LDH
release and secondary necrosis was observed in DFNA5� /�

macrophages stimulated with the apoptotic agent etoposide
(Fig. 8c,d). Processing of DFNA5 was also seen in DFNA5þ /þ

but not in DFNA5� /� macrophages after VSV or etoposide
treatments (Supplementary Fig. 9b,c). Similar to the results seen
in casp-1/casp11-dKO macrophages (Fig. 6e), VSV infection or
treatment with etoposide resulted in extensive blebbing and

apoptotic bodies and very little plasma membrane swelling
(ballooning) in the DFNA5� /� macrophages compared with
DFNA5þ /þ control cells which showed both blebbing and
ballooning (Fig. 8d; Supplementary Fig. 10a). This was clearly
evidenced by time-lapse confocal microscopy, which showed that
both etoposide treated DFNA5þ /þ and DFNA5� /� macro-
phages initiate the apoptotic programme with plasma membrane
blebbing that progresses to plasma membrane swelling and
ballooning (secondary necrosis) in DFNA5þ /þ but not in
DFNA5� /� macrophages (Supplementary Videos 4 and 5). Since
necrotic cells are permeable to the propidium iodide (PI) stain,
flow cytometric analyses showed significantly more
PI-positive and PI/Annexin V-double positive cells in etoposide-
treated DFNA5þ /þ macrophages than in etoposide-treated
DFNA5� /� macrophages (Supplementary Fig. 11), providing
additional support for the role of DFNA5 in induction of sec-
ondary necrosis in response to apoptotic triggers. An additional
feature of secondary necrosis is the release of active caspase-3 p17
fragment in the culture supernatant40,41. Consistent with this,
apoptotic DFNA5þ /þ macrophages but not DFNA5� /�

macrophages released caspase-3 p17 in the culture supernatant
(supplementary Fig. 10b). Altogether these results indicate that

DFNA5-EGFP

DFNA5-N

293T-DFNA5-
EGFP

293T DFNA5-EGFP 293T EGFP 293T GSDMD-EGFP

Un

VSV

c

0
10
20
30
40
50
60
70
80

0 1 5
%

 C
yt

ot
ox

ic
ity

VSV (MOI)

293T-EGFP

293T-GSDMD-
EGFP

293T-DFNA5-
EGFP

a d

0
10
20
30
40
50
60
70

0

%
 C

yt
ot

ox
ic

ity

ECMV (MOI)

293T-EGFP

293T-GSDMD-
EGFP

293T-DFNA5-
EGFP
293T-DFNA5-
D270E-EGFP

5 × 10–2

VSV 
b e_

DFNA5-N

DFNA5-EGFP

293T DFNA5-
EGFP

293T DFNA5-
D270E-EGFP

ECMV _ _

5×10–3 1×10–2

* 

* 
* 

** 

100 -

35 -

100-

35-

Figure 7 | DFNA5 induces secondary necrosis downstream of viral infection in 293T cells. (a,d) Cytotoxicity of VSV (a) (n¼ 3) (*Po0.001;
**Po0.0001, Student’s t-test) or ECMV (d) (n¼ 3) (*Po0.0001, Student’s t-test) as measured by LDH release in the culture supernatants of the indicated

293T cell lines after 18 h infection with these viruses. (b,e) Immunoblots of DFNA5 in cell lysates from the indicated uninfected (� ), VSV-infected (MOI: 1,

5 for 18 h) (b) or ECMV-infected (MOI: 0.005, 0.01, 0.05 for 18 h) (e) 293T cell lines. (c) Microscopic images of the indicated uninfected (Un) or VSV-

infected (VSV) 293T cell lines. Scale bar, 20mm. Results are representative of at least three independent experiments. Error bars represent standard error of

the mean (s.e.m).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14128 ARTICLE

NATURE COMMUNICATIONS | 8:14128 | DOI: 10.1038/ncomms14128 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


DFNA5 mediates secondary necrosis downstream of caspase-3
activation in response to viral and apoptotic agents.

Discussion
Secondary necrosis has long been recognized as a terminal event
following the completion of the apoptotic programme34. This
occurs in vitro under tissue culture conditions or in vivo when
apoptotic cells are not removed by scavenging cells such as in
lysosomal disorders that impair removal of apoptotic cells by
scavenging cells42 leading to secondary necrosis and
inflammation. The main features of secondary necrosis are
osmotic cell swelling and lysis, features that are also common to
pyroptosis and necroptosis16,34–36. Like pyroptosis and necroptosis,
secondary necrosis leads to leakage of the cell contents thereby it
may cause tissue injury and induction of inflammation and other
immune responses if the dying cells are not quickly removed by
phagocytes. Secondary necrosis has been discounted as a non-
specific and non-programmed osmotic swelling, and thus the
molecular mechanism that leads to its onset remained poorly
understood. Here we present compelling evidence that secondary
necrosis is a form of programmed necrosis similar to pyroptosis,
mediated by the GSDMD-related protein DFNA5. Our results
clearly demonstrate that secondary necrosis is orchestrated by the
activity of apoptotic caspase-3 which directly cleaves DFNA5 to
produce a necrotic DFNA5-N fragment that targets and
permeabilizes the plasma membrane. This new caspase-3- and
DFNA5-dependent necrotic pathway is activated downstream of the
mitochondrial apoptotic pathway and can potentially be activated

downstream of the apoptotic death receptor pathway (Fig. 9).
Considering the structural homology between DFNA5 and GSDMD
and their mechanism of activation by caspases, our results suggest
that the necrotic DFNA5-N fragment has an intrinsic pore-forming
activity, similar to that of GSDMD-N fragment9–12, that damages
and permeabilizes the plasma membrane.

Physiologically, formation of necrotic plasma membrane pores
during secondary necrosis and pyroptosis may serve as a way to
release a host of potent intracellular DAMPs (for example,
HMGB1, ATP, inflammatory cytokines) that can act as alarm
signals to activate and recruit immune cells to the site of
apoptosis or infection. A recent study demonstrated that
formation of the necrotic GSDMD pores also facilitate the
trapping of intracellular pathogens within the largely intact
plasma membrane, in a structure termed pore-induced intra-
cellular trap (PIT)43. The PIT promotes efferocytosis of the cell
corpse and entrapped pathogens by phagocytes43. These
observations suggest that the GSDMD and likely the DFNA5
pores play important roles in the host innate immunity not only
by releasing of alarmins but also by trapping pathogens within the
cellular debris to be subsequently cleared by phagocytes. Our
results show that VSV infection leads to activation of DFNA5 and
induction of secondary necrosis, raising the possibility that the
DFNA5 pores might also be involved in trapping of apoptotic
pathogens like VSV, to allow for efficient efferocytosis of
VSV-infected cells. Since both activated GSDMD and DFNA5
proteins have similar pore-forming activities, this suggests that
they may have similar functions downstream of inflammatory
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and apoptotic caspases, respectively. This redundancy might
be important for multicellular organisms considering that
inflammatory caspases, GSDMD and DFNA5 might be
differentially expressed in different cell types and tissues. It is
also likely that DFNA5-N and GSDMD-N may function to target
and kill different invading microorganisms as demonstrated
recently for GSDMD-N (ref. 11). It is interesting that GSDMD-N
fragment has a basic isoelectric point (pI¼ 8.9) whereas
DFNA5-N fragment has an acidic pI of 5.6 raising the
possibility that they might have different specificities for
different lipids and thus might kill different microorganisms.
Future studies should clarify these points.

Although casp-1/11 dKO macrophages cannot cleave and
activate GSDMD, they can still progress to a caspase-dependent
secondary necrosis phenotype when infected with VSV. This
progression is also dependent on DFNA5 as knockdown of
DFNA5 in these macrophages attenuates their necrotic response
to VSV-infection. This indicates that activation of the apoptotic
caspase-3 in the absence of inflammatory caspases could serve
to induce secondary necrosis through cleavage of DFNA5.
Therefore, in addition to it being involved in secondary necrosis,
the DFNA5 pathway might also serve as a backup pathway in the
events of inflammasome inhibition by pathogen-mediated
inflammasome-suppression strategies44,45. For example, cowpox
virus and orthopoxviruses encode serpins such as CrmA that
inhibit the activity of caspase-1, whereas myxoma virus and
Shope fibroma virus encode pyrin-only proteins that
inhibit inflammasome assembly46–49. Similarly, pathogenic
bacteria produce virulence factors such as Yop proteins of
Yersinia species to suppress the activity and activation of the
inflammasome50.

Unlike secondary necrosis, apoptosis is a non-inflammatory
and an immunologically silent form of cell death. This is likely
because under in vivo conditions apoptotic cells are removed by
scavenging cells before they fully activate DFNA5 and progress to
secondary necrosis. Indeed, our results clearly demonstrate that
there is a major difference in the outcome of the apoptotic
programme between DFNA5þ /þ and DFNA5� /� macro-
phages. DFNA5þ /þ macrophages initiate the apoptotic
programm with membrane blebbing and terminate it with
secondary necrosis, whereas DFNA5� /� macrophages show

only membrane blebbing and disassemble into small apoptotic
bodies without plasma membrane swelling or LDH release and do
not progress further (Supplementary Videos 4 and 5), even after
8 h treatment (Fig. 8d). Similarly, induction of apoptosis by VSV
infection or activation of the mitochondrial apoptotic pathway by
Bax in the largely DFNA5-deficient 293T cells only results in
classic signs of apoptosis such as membrane blebbing, but when
DFNA5 is stably expressed in these cells they progress to
secondary necrosis. These findings indicate that DFNA5 regulates
progression of apoptotic cells to secondary necrosis and may also
function to prevent cellular disassembly into small apoptotic
bodies during apoptosis. Since progression to secondary necrosis
is linked to inflammatory diseases associated with defective
clearance of apoptotic cells in vivo, this also raises the possibility
that activation of DFNA5 might be a major contributing factor in
these diseases.

DFNA5 has been implicated in hearing loss but the underling
molecular mechanism involved in this process has not been
elucidated. All DFNA5 mutations leading to hearing loss in
humans have been attributed to exon 8 skipping at the pre-
mRNA level leading to the translation of a C-terminally truncated
DFNA5 protein21,51. Because ectopic expression of this mutant
protein cause cell death, it has been proposed that the DFNA5
mutations represent gain of function mutations that increase the
apoptotic activity of DFNA5 (ref. 51). Indeed, this conclusion is
supported by our results which show that truncation of the
C-terminus of DFNA5 by caspase-3 activates the necrotic activity
of DFNA5. Thus, truncation and inactivation of the inhibitory
DFNA5-C domain by hearing loss mutations unleash the necrotic
activity of DFNA5 by mimicking processing of DFNA5 by
caspase-3. This indicates that DFNA5 mutant-induced hearing
loss is an outcome of disregulated secondary necrosis of hearing
cells, raising the possibility that other forms of non-syndromic
hearing loss might also be an outcome of disregulated secondary
necrosis.

In addition to its involvement in hearing loss, DFNA5 has also
been implicated in cancer as a tumour suppressor protein. Several
studies showed that DFNA5 is silenced in many types of cancers
by epigenetic mechanisms such as promoter methylation22,52,53.
Reduced DFNA5 expression was shown to increase resistance
of melanoma cells to etoposide-induced cell death, whereas
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increased DFNA5 expression by stable expression of DFNA5 in
resistant cells resulted in increased etoposide-induced cell
death23,54. DFNA5 is also a transcriptional target for p53 and
its increased expression by p53 activation sensitizes tumour cells
to cell death23,55. Our results indicate that DFNA5 functions
directly downstream of caspase-3 activation to induce necrotic
cell death. Therefore, the ability of caspase-3 to unleash the
necrotic activity of DFNA5 by cleaving-off its inhibitory
C-terminal DFNA5-C domain provides a mechanistic
understanding of the tumour suppressive activity of DFNA5.
This also places DFNA5 among the effector molecules that
mediate the cell death activity of caspase-3. Since GSDMD is only
present in birds and mammals, whereas DFNA5 is found in
diverse species from teleost fishes to human17, the DFNA5
necrotic pathway might provide the same function in fish, reptile
and amphibian species as the GSDMD pyroptotic pathway in
birds and mammals. It is likely that the GSDMD pyroptotic
pathway evolved recently perhaps to provide protection against
new avian and mammalian pathogens.

In conclusion, we have identified DFNA5 as a key mediator of
secondary necrosis and cellular disassembly downstream of
apoptotic caspase-3. Future studies should elucidate whether
activation of this pathway might serve as an innate immune
pathway to induce secondary necrosis in response to infection
with apoptotic pathogens and other apoptotic triggers, and
whether it is responsible for inflammation associated with
defective apoptotic cell clearance.

Methods
Antibodies and reagents. Rabbit polyclonal antibodies against caspase-1, NLRP3
and ASC were made in house and were described previously56–58. T7?Tag
monoclonal antibody HRP conjugate (Catalogue No. 69048) was from Novagen.
Monoclonal anti-b-actin (Catalogue No. A-5316) was from Sigma Aldrich.
Anti-DFNA5 (Catalogue No. sc-79233), anti-caspase-3 (Catalogue No. sc-7148),
anti-GSDMD (Catalogue No. sc-393656) and anti-Bax (Catalogue No. sc-930) were
from Santa Cruz. Anti- Na,K-ATPase polyclonal antibody (Catalogue No. 3010)
was from Cell Signaling Technology. zVAD-fmk (Catalogue No. A1902) was
obtained from ApexBio. GSK’872 (Cat No. AOB4887) was obtained from Aobious.
CytoTox96 LDH-release kit (Cat No. G1780) was from Promega. TALON metal
affinity resin (Catalogue No. 635502) and In-Fusion HD Cloning Plus (Catalogue
No. 638910) were obtained from Takara Clontech. All antibodies were used at
1/1,000–1/2,000 dilutions for western blot analyses.

Cell culture and treatments. Bone marrow-derived cells were harvested from the
femurs of WT (C57BL/6) and knockout mice and differentiated into BMDMs by
culturing in DMEM (GIBCO) medium supplemented with 10% FBS, 10 mM
HEPES pH 7.0 (Invitrogen), 100 U ml� 1 penicillin and streptomycin (complete
DMEM) and 20% L929 supernatants in 10 cm dishes at 37 �C with 5% CO2 for 5–6
days. Immortalized BMDMs were generated by transformation of primary BMDMs
with J2-CRE retrovirus (ref 24). HepG2 cells were cultured in RMPI1640 medium
(GIBCO) supplemented with 10% FBS, 10 mM HEPES pH 7.0 (Invitrogen),
100 U ml� 1 penicillin and streptomycin, 1 mM sodium pyruvate (Cellgro), 2%
sodium bicarbonate (Cellgro) and 0.1% beta-mercaptoethanol (GIBCO). MCF7
cells were cultured in complete DMEM, and 293T cells were cultured in DMEM
F12 (GIBCO) medium supplemented with 10% FBS, 10 mM HEPES pH 7.0
(Invitrogen), 100 U ml� 1 penicillin and streptomycin.

For viral infections, 293T cells or BMDMs were seeded in six-well plates
overnight at a density of 4� 105 cells or 1� 106 cells per well, respectively. The
cells were treated with VSV-GFP (Indiana strain) or ECMV in OPTI-MEMI
medium. The culture supernatants and cells were collected at indicated times for
analysis. In some experiments BMDMs were treated with zVAD-fmk (30 mM) or
GSK’872 (10 mM) 3 h after infection.

For transfection experiments, 293T cells were seeded overnight in six-well plates
at a density of 1� 104 cells per well. The next day, the culture medium was
removed and replaced with 1 ml of OPTI-MEMI medium per well. Cells were
transfected with 750 ng of plasmid DNA using Lipofectamine 2,000 (7 ml ml� 1) as
per the manufacturer’s protocol (Invitrogen). The culture supernatants and cells
were collected 24 h later for analysis.

Generation of constructs and stable cell lines. All DFNA5 and GSDMD
constructs were made in pcDNA3, pEGFPN1, pET28 vectors using In-Fusion PCR
cloning kits (Takara Clontech) with appropriate PCR primers and full-length
human DFNA5 or mouse GSDMD cDNAs. The human DFNA5 cDNA was

obtained from TransOMIC (MGC premier cDNA clone for DFNA5—BC125065.
Catalogue No. TCH1003). The mouse GSDMD cDNA was obtained from
Dharmacon (MGC Mouse Gsdmd cDNA-Clone ID 4194837. Catalogue No.
MMM1013–202765078). BL21 bacteria expressing His6-T7-DFNA5 or
His6-T7-GSDMD under an IPTG inducible promoter were made by transforming
BL21 bacteria with pET28b-DFNA5 or pET28b-GSDMD plasmids, respectively.
Stable 293T-EGFP, GSDMD-EGFP, DFNA5-EGFP and DFNA5-D270E-EGFP
cell lines were generated by transfecting 293T cells with pEGFPN1 alone or
pEGFPN1-GSDMD, pEGFPN1-DFNA5 or pEGFPN1-DFNA5-D270E plasmids
followed by multiple cell sorting over a period of one month by flow cytometry.

LDH release assay. Pyroptosis and necrosis were quantitated by assaying the
activity of LDH released into cell culture supernatants after various treatments
using the CytoTox96 LDH release kit (Promega) according to the manufacturer’s
protocol. The LDH activity in the culture supernatant was expressed as a
percentage of total LDH in the cell lysate.

siRNA knockdown. Knockdown of DFNA5 was performed by transfection of
siRNA oligonucleotides targeting mouse DFNA5 (Dharmacon, Catalogue No.
L-041196-01). Scrambled siRNA (control) or DFNA5-specific siRNA was
transfected into immortalized Casp-1/11� /� BMDMs using Lipofectamine 2,000
(Invitrogen) according to the manufacturer’s protocol. Forty-eight hours after
transfection cells were infected with VSV-GFP (Indiana strain) in OPTI-MEMI
medium. The culture supernatants and cells were collected at indicated times
for analysis.

Immunoblot analysis. Cells were lysed in buffer containing 50 mM Tris, pH 7.5,
150 mM NaCl, 1 mM EDTA, 0.1% NP-40 and protease inhibitors. Cell lysates were
fractionated by SDS–polyacrylamide gel electrophoresis (SDS–PAGE) and then
transferred to PVDF membranes (Bio-Rad). In some experiments, cell culture
supernatants were precipitated by methanol/chloroform as described pre-
viously24,59. Briefly, the culture supernatants were precipitated by the addition of
an equal volume of methanol and 0.25 volumes of chloroform to each sample,
and centrifuged at 14,000 r.p.m. in an Eppendorf tabletop 5417R refrigerated
microcentrifuge. The upper phase was discarded and 500ml methanol was added to
the interphase of each sample. The samples were centrifuged for 10 min at
14,000 r.p.m. and the resulting protein pellets were dried at room temperature,
resuspended in Laemmli buffer and boiled for 5 min at 99 �C. The resuspended
proteins were fractionated on 12.5% SDS-polyacrylamide gels followed by
electroblotting onto PVDF membranes. Blots were probed with appropriate
antibodies. Full-size scans of immunoblots are shown in Supplementary
Figs 12–24.

In vitro caspase cleavage assay. Bacterially expressed caspases with C-terminal
His6 tags were purified on Talon affinity resins and then eluted with 250 mM
imidazole in CHAPS buffer (20 mM HEPES, pH 7.0, 10 mM KCl, 0.1% CHAPS).
Bacterially expressed WT DFNA5, DFNA5-D270E and GSDMD with N-terminal
His6-T7 tags were purified on Talon affinity resins and incubated at 37 �C for
40 min with purified caspases in CHAPS buffer in a total 20-ml reaction. The
cleavage products were analysed by SDS–PAGE and visualized by western blotting
or Coomassie staining.

In vitro assay of DFNA5 cleavage by the apoptosome. 293T-DFNA5,
293T-DFNA5-D270E, HEPG2 and casp-1/11-dKO cells were collected by
centrifugation at 600g for 10 min. The cell pellets were washed twice with ice-cold
phosphate-buffered saline (pH 7.4) and resuspended with 3 volumes of buffer A
(250 mM sucrose, 20 mM HEPES, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM
EGTA, 1 mM dithiothreitol, 0.1 mM phenylmethylsulfonyl fluoride, pH 7.5) and
left on ice for 15 min. The cells were lysed by syringing (30� ) with a 26 G needle.
The lysates were centrifuged at 14,000 r.p.m. for 10 min at 4 �C in a refrigerated
eppendorf 5417R centrifuge. The supernatants were collected and further cen-
trifuged at 100,000g for 30 min at 4 �C, and the resulting supernatants (designated
S100 lysates) were used for in vitro assay of DFNA5 cleavage. To activate the
Apaf-1 apoptosome, the S100 lysates were incubated with purified bovine cyto-
chrome c (15 mg ml� 1) for different periods of time at 37 �C in 20 ml reactions.
After the incubation periods the reactions were stopped by adding equal volumes of
SDS-sample buffer and analysed by SDS–PAGE and visualized by western blotting
with appropriate antibodies.

Cell fractionation for membrane localization. These experiments were
performed as described recently11 with some modifications. Cell pellets were
suspended in 3 volumes of buffer A and left on ice for 15 min before lysing by
syringing through a 26 G needle (30� ). The cell lysates were centrifuged at 800g
for 10 min at 4 �C in a refrigerated eppendorf 5417R centrifuge and the resulting
supernatants were divided into two aliquots. To one aliquot cytochrome c was
added (15 mg ml� 1) and incubated for 45 min at 37� C to activate caspase-3 and
DFNA5, whereas the second aliquot was kept on ice. After the incubation period
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the two aliquots were centrifuged at 7,000g for 10 min and the resulting pellets
containing heavy membranes (P7) were washed and then resuspended in the same
volumes of buffer A. The supernatants (S7) were further centrifuged at 20,000g for
10 min and the resulting pellets containing light membranes (P20) were washed
and then resuspended in the same volumes of buffer A. The supernatants (S20)
were further centrifuged at 100,000g for 10 min. The resulting supernatants (S100)
and pellets (P100) were collected and the pellets were then washed and
resuspended in the same volumes of buffer A. All fractions were then analysed
by SDS–PAGE followed by immunoblotting with DFNA5 antibody.

Generation of DFNA5� /� mice. Heterozygous mice carrying lacZ-disrupted
DFNA5 gene (C57BL/6N-Dfna5tm1b(KOMP)Wtsi/Wtsi) were obtained from EMMA
mouse repository (EMMA ID, EM:09924). These mice were generated from
the KOMP/EUCOMM targeted ES cell resource using standard techniques as
described previously60,61 and established on a C57BL/6 genetic background.
DFNA5 exon 5 was flanked by loxP sites, and subsequent Cre expression excised
this exon resulting in a knockout reporter allele using a cell permeable HTN-Cre as
described in62 (Supplementary Fig. 8). Mouse strains were maintained in specific
pathogen-free conditions and the animal protocols were carried out in accordance
with the guidelines set forth by Institutional Animal Care and Use Committee
(Thomas Jefferson University).

Structural modelling. A homology model of DFNA5 was generated using the
SWISS-MODEL server27. Structural homologues were identified in the RCSB
database using the DALI server30. Structural superimpositions were carried out in
Coot63 and Chimera64. All ribbon diagrams presented in the paper were prepared
using the program Pymol (DeLano, W.L. The PyMOL Molecular Graphics System,
Version 1.8 Schrödinger, LLC. (2002)). The schematic helical representation of
DNFA5 N-terminal helix was generated using the Helical Wheel Projections script
(http://rzlab.ucr.edu/).

Confocal microscopy. The 293T cells were seeded on 35 mm cover glass-bottom
culture dishes and allowed to attach for 24 h. Cells were transfected with constructs
for different DFNA5 mutants for 18–24 h using Lipofectamine 2,000 and then
stained with Hoechst 33,342 for 30 min. Cells were observed using a Nikon A1R
resonant scanning confocal microscope (Bioimaging Shared Resource of the
Kimmel Cancer Center (NCI 5 P30 CA-56036)).

Statistics. Statistical analyses were made with Student’s t-test.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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