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Abstract In this chapter we introduce cooperating techniques for environment per-
ception and reconstruction based on dynamic point cloud sequences of asinglerotat-
ing multi-beam (RMB) Lidar sensor, which monitors the sceneeither from a moving
vehicle top or from a static installed position. The joint aim of the addressed meth-
ods is to create 4D spatio-temporal models of large dynamic urban scenes contain-
ing various moving and static objects. Standalone RMB Lidardevices have been
frequently applied in robot navigation tasks and proved to be efficient in moving
object detection and recognition. However, they have not been widely exploited yet
in video surveillance or dynamic virtual city modeling. We address here three dif-
ferent application areas of RMB Lidar measurements, starting from people activity
analysis, through real time object perception for autonomous driving, until dynam-
ic scene interpretation and visualization. First we introduce a multiple pedestrian
tracking system with short term and long term person assignment steps. Second we
present a model based real-time vehicle recognition approach. Third we propose
techniques for geometric approximation of ground surfacesand building facades
using the observed point cloud streams. This approach extracts simultaneously the
reconstructed surfaces, motion information and objects from the registered dense
point cloud completed with point time stamp information.

1 Introduction

Vision based perception of the surrounding environment hasa major impact in
robotics research with many prominent application areas such as autonomous driv-
ing, visual surveillance and virtual city modeling. Outdoor laser scanners, such as
Lidar mapping systems have particularly become important tools for gathering da-
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ta flow for these tasks since they are able to rapidly acquire large-scale 3-D point
cloud data for real-time vision, with jointly providing accurate 3-D geometrical in-
formation of the scene, and additional features about the reflection properties and
compactness of the surfaces. Moreover, Lidar sensors have anumber of benefits
contrast to conventional camera systemse.g.they are highly robust against illumi-
nation changes or weather conditions, and they may provide alarger field of view
(FoV).

Rotating multi-beam Lidar systems (RMB Lidar) provide a 360◦ FoV of the
scene, with a vertical resolution equal to the number of the sensors, while the hor-
izontal angle resolution depends on the speed of rotation. Each laser point of the
output point cloud is associated with 3D spatial coordinates and an intensity val-
ue of the laser reflection which is related to the material andsurface properties of
the target point. The Velodyne HDL-64E RMB Lidar sensor operates with 64 ver-
tically aligned laser transmitters and receivers, and it isable to capture point cloud
sequences with a spatial radius of 150m and temporal frame-rate up to 20Hz. Due to
its scanning frequency, this equipment is highly appropriate for analyzing moving
objects in large outdoor scenes. However, a single scan is quite sparse, consisting
of around 65K points with a radius of 120 meters, moreover we can also observe a
significant drop in the sampling density at larger distancesfrom the sensor and we
also can see a ring pattern with points in the same ring much closer to each other
than points of different rings (see Fig. 1 and 2).

In this chapter, we present various algorithms for automated environment per-
ception from three different application fields:

• 3D people surveillance
• Vision of autonomous vehicles
• Large scale urban scene analysis and reconstruction

As the common point, we rely on measurement sequences of a single RMB Lidar
sensor in each case. However, the circumstances and the challenges are significantly
different in the three scenarios.

A possiblesurveillance configurationof the RMB Lidar sensor is shown in Fig.
1: the sensor is installed in afixed position, and monitors a scene with several mov-

Fig. 1 Surveillance scenario configuration with the Velodyne HDL-64E RMB-Lidar sensor: point
cloud and range image representation of a time frame from the measurement sequence
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Fig. 2 Car mounting configurations of a RMB Lidar sensor and the recorded measurements

ing people in a compact outdoor environment, such as a courtyard or a small square.
Since instant system response is needed in cases of unauthorized entries or suspi-
cious person behavior, the algorithms must workquasi real time, i.e. at most a few
seconds delay is admitted between the occurred event and thewarning sent to the
operator.

In the vision modules ofautonomous vehicles, strict real timeresponse (within
fraction of a second) is necessary based on data streams of amoving Lidar sensor
which is usually mounted onto the top of the vehicle (see Fig.2(a)). From the point
of view of processing, the main tasks are self localization and obstacle avoidance
on the streets (Levinson et al, 2007; McNaughton et al, 2011). While the focus is on
perception speed and reliability, the semantic depth of scene exploration and object
classification can be rather limited, users do not expect from an autonomous car to
gather complex environmental information such as traffic counting or road quality
assessment.

The third topic is related tolarge scale dynamic urban scene analysis, where the
Lidar is put again to amoving car’s top, butofflinedata processing and information
mining is admitted. Here the main goal is to simultaneously map the observed envi-
ronment into 3D models, and extract various kinds of information from the dynamic
scene, which can be exploited in different application fields, such us 4D virtual city
reconstruction, monitoring various public premises, surveys of road marks and traf-
fic signs, urban green area estimation. Depending on our exact aims, we can collect
street measurements with two different sensor mounting configurations. By fixing
the Lidar horizontally on the top of the vehicle (see Fig. 2(a)), the recorded data
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Fig. 3 3D people surveillance: workflow of the multi-pedestrian tracking framework

sequence is appropriate for monitoring the ground and various street objects such us
cars, lamp posts traffic signs etc. On the other hand, the tilted configuration enables
the scanning and subsequent reconstruction of building facades (Fig. 2(b)).

In this chapter we give an overview on recent results from theabove three topics,
by using in each scenario the same Velodyne HDL-64E RMB Lidarsensor available
at MTA SZTAKI in Budapest, Hungary. The measurement of the RMB Lidar within
a given time frame can be represented as apoint cloud pof R·c points, whereR is
equal to the number of the vertically aligned laser transmitters providing concurrent
distance measurements (hereR= 64) andc is the number ofpoint columns, i.e. the
number of time samples collected during a whole 360◦ turn of the rotating sensor
(c≈ 1024 was observed by 20 Hz rotation). Apart from the geometric parameters,
each pointp receives an intensity value, which is related to the echo strength from
a given direction. In Fig. 1 and 2 sample raw Lidar frames are displayed, where the
green-to-red point coloring is based on the intensity. In Sections 2-4, we introduce
the three applications one after another. The measurement of the RMB Lidar within
a given time frame can be represented as apoint cloud pof R·c points, whereR is
equal to the number of the vertically aligned laser transmitters providing concurrent
distance measurements (hereR= 64) andc is the number ofpoint columns, i.e. the
number of time samples collected during a whole 360◦ turn of the rotating sensor
(c≈ 1024 was observed by 20 Hz rotation). Apart from the geometric parameters,
each pointp receives an intensity value, which is related to the echo strength from
a given direction. In Fig. 1 and 2 sample raw Lidar frames are displayed, where the
green-to-red point coloring is based on the intensity. In Sections 2-4, we introduce
the three applications one after another.
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2 3D people surveillance

Moving people detection, localization and tracking are important issues in intelli-
gent surveillance systems, as parts of person counting, activity recognition or abnor-
mal event detection modules. However, these tasks are stillchallenging in crowded
outdoor scenes due to uncontrolled illumination conditions, irrelevant background
motion, and occlusions caused by various moving and static scene objects. Person
re-identification is a fundamental task both for connectingthe erroneously broken
trajectories of the short term tracker module, and for identifying people who tem-
porarily leave the Field of View (FoV) and re-appear later. Range sensors have re-
cently started to be used in various surveillance applications. Time-of-Light (ToF)
cameras (Schiller and Koch, 2011) record depth image sequences over a regular
2D pixel lattice, where established image processing approaches, such as Markov
Random Fields (MRFs) can be adopted for smooth and observation consistent seg-
mentation and recognition. However, such cameras have a limited FoV, which can
be a drawback for surveillance and monitoring applications. In this section, we fo-
cus on the sensor configuration of Fig. 1, where the RMB Lidar device records
360◦-view-angle range data sequences of irregular point clouds.

2.1 Foreground-background separation

To separate dynamic foreground from static background in a range data sequence,
a probabilistic approach of Benedek (2014) is applied. We project first the irregular
point cloud to a cylinder surface yielding a depth image on a regular lattice, and
perform the segmentation in the 2D range image domain (see Fig. 1). We model the
statistics of the range values observed at each pixel position as a Mixture of Gaus-
sians and update the parameters similarly to the standard approach of Stauffer and
Grimson (2000). The background is modeled by the Gaussian components with the
highest weight values in the mixture, and outlier detectionenables the extraction
of the possible motion regions. However, by adapting the above scheme, we must
expect several spurious effects, caused by the quantization error of the discretized
view angle and background flickering, e.g., due to vegetation motion. These effects
are significantly decreased by a dynamic MRF model introduced in Benedek (2014),
which describes the background and foreground classes by both spatial and temporal
features. Since the MRF model is defined in the range image space, the 2D image
segmentation must be followed by a 3D point classification step by resolving the
ambiguities of the 3D-2D mapping with local spatial filtering. Using a spatial fore-
ground model, we remove a large part of the irrelevant background motion which is
mainly caused by moving tree crowns.
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Fig. 4 Pedestrian separation. Left: side view of the segmented scene, centered: top view, right:
projected blobs in the image plane

2.2 Pedestrian detection and multi-target tracking

In this section, we introduce the pedestrian detection and tracking module of the
system. The input of this component is the RMB Lidar point cloud sequence, where
each point is marked with a segmentation label of foregroundor background, while
the output consists of clusters of foreground regions so that the points corresponding
to the same person receive the same label over the sequence. We also generate a 2D
trajectory of each pedestrian.

First, the point cloud regions classified as foreground are clustered to obtain sepa-
rate blobs for each moving person. A regular lattice is fit to the ground plane and the
foreground regions are projected onto this lattice. Morphological filters are applied
in the image plane to obtain spatially connected blobs for different persons. Then
the system extracts appropriately sized connected components that satisfy area con-
straints determined by lower and higher thresholds. The center of each extracted
blob is considered as a candidate for foot position in the ground plane. Note that
connected pedestrian shapes may be merged into one blob, while blobs of partially
occluded persons may be missed or broken into several parts.Instead of propos-
ing various heuristic rules to eliminate these artifacts atthe level of the individual
time frames, a robust multi-tracking module has been developed, which efficiently
handles the problems at the sequence level.

The pedestrian tracking module combines Short-Term Assignment (STA) and
Long-Term Assignment (LTA) steps. The STA part attempts to match each actual-
ly detected object candidate with the current object trajectories maintained by the
tracker, by purely considering the projected 2D centroid positions of the target. The
STA process should also be able to continue a given trajectory if the detector misses
the concerning object in a few frames due to occlusion. In these cases the temporal
discontinuities of the tracks must be filled with estimated position values. On the
other hand, the LTA module is responsible for extracting discriminative features for
re-identification of objects lost by STA due to occlusion in many consecutive frames
or leaving the FoV. For this reason, lost objects are registered to an archived object
list, which is periodically checked by the LTA process. LTA should also recognize if
a new person appears in the scene, who was not registered by the tracker beforehand.
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2.2.1 Short Term Assignment (STA) module:

The STA module receives the measured ground plane positionsand for each frame
it iterates three basic operations, namely, data assignment, Kalman filter correction
and Kalman filter prediction. The assignment operation matches the currently mea-
sured candidate positions to the registered object trajectories with using the Hun-
garian algorithm (Kuhn, 1955). Then the estimated object positions are corrected
and, finally, predictions for the subsequent positions are made and fed back to the
assignment procedure. The algorithm can handle false positives, broken trajectories
as well as tracks starting and terminating within a sequence.

By a given time frame, an object is marked asActivetarget, if its trajectory can
be continued with one of the actually measured positions. Due to expected occlu-
sion and noise effects, trajectories which cannot be matched with a new observation
are not terminated immediately. They are marked first asInactivetracks, which also
participate in the STA process in the upcoming measurement iterations for at most
a few seconds time window. The final step of the trajectory update is to make the
Kalman prediction for the next point of each track, which canbe used for measure-
ment assignment in the next time frame (details are presented in (Benedek, 2014)).

2.2.2 Long Term Assignment (LTA) features

In (Benedek, 2014) two static point cloud descriptors were adopted for person re-
identification.First, the authors have observed that since clothes of people consist
of various materials, the intensities obtained by the RMB Lidar sensor exhibit dif-
ferent statistical characteristic for different people. For each tracked target, an inten-
sity histograms has been collected over at least 100 frames,and used as feature for
comparison. Experimental evidences have shown that the Bhattacharyya distance
of thenormalizedintensity histograms for two object samples efficiently indicated
whether the candidates correspond to the same person or not.

As a secondfeature, the height of the person were estimated, by taking the el-
evation difference of the highest and lowest object points at each time frame, and
creating a histogram from the measured height instances. The height estimate of the
person has been taken as the peak value of theactual height histogramover several
frames.

Since both features have been derived by temporal feature statistics, a newly ap-
pearing object must enter first anInitial phase, where the long-term histograms are
accumulated. After a given number of frames, one can executethe LTA process
which marks the object asIdentified. We accept a long term target match only if
both the intensity and the height difference features show relevant similarity. Pedes-
trians unsuccessfully matched to any archived objects by LTA receive a new unique
identifier.
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Fig. 5 Results of pedestrian separation and tracking in theWinter2 Lidar sequence. Video im-
ages (in the top) were only used for validation of tracking andre-identification.

2.2.3 Tracking process

Based on the previously introduced STA and LTA modules, the tracking process is
realized by a finite-state machine with the following states: Init-Active, Init-Inactive,
Identified-Active, Identified-Inactive, DeletedandArchieved. The names of the first
four states encode, if a given actually tracked object is currently Active or Inac-
tive according to the STA module, and if it is alreadyIdentifiedor is yet in the
Init ialization phase of LTA. Transitions between the correspondingActiveandInac-
tivestates are controlled by the STA module, depending on the success of matching
the existing trajectories with actual measurements.Identifiedobjects which areIn-
activefor more thanTSIL seconds (usedTSIL = 3 sec.) are moved to the archive list:
Archivedobjects do not participate in the STA process, but they can bere-activated
later by LTA. Objects spendingTSIL seconds in theInit-Inactivestate are marked as
Deleted, and excluded from the further investigations during the tracking process.
These deleted trajectories usually correspond either to measurement noise, or they
are too short to provide us reliable descriptors for later LTA matching.

The LTA identification process can be applied for objects which have spent in the
Init-Activestate at least 8 seconds, which proved to be an appropriate time interval
frame for the consolidation of the LTA features. If a match issuccessful with an
archived object, the trajectories of the new and matched objects are merged with
interpolating the missing trajectory points. Then the LTA-matchedArchivedobject
is moved to theIdentified-Activestate, and the new object isDeletedto prevent us
from duplicates. On the other hand if the LTA match fails, thenew object steps to
theIdentified-Activestate with keeping its identifier.

2.3 Evaluation

We have evaluated our method in various outdoor Lidar sequences containing multi-
target scenarios recorded in the courtyard of our institute. Since the sequences were
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recorded in different seasons (Summer, Winter andSpring), we could also in-
vestigate the robustness of the used point cloud features against the effects on dif-
ferent clothing styles (such as winter coats or t-shirts).

The sequences contain 4-8 people walking in a 220m2 area FoV in 1-15m dis-
tances from the Lidar. The rotation speed was set from 15Hz to20Hz. In the back-
ground, heavy motion of the vegetation make the accurate classification challeng-
ing. We have also recorded the test scenarios with a standardvideo cameraonly for
verification of the tracking and re-identification process.The advantage of using se-
quences from different seasons was that we could test the robustness of the approach
versus seasonal clothing habits (winter coats or T-Shirts)and illumination changes.

We have verified the multiple people tracking and re-identification modules by
counting the correct and incorrect trajectory matches during the whole observation
periods. For quantitative evaluation of the tracking process the output trajectories of
the system were verified by manual observes watching the point cloud sequences
and the recorded videos in parallel.

As evaluation metrics, we counted the following events (seeresults in Table 1):

• STA trans. num: number of allInactive→Activestate transitions during the track-
ing process, i.e. the number of events, when the Short-Term Assignment (STA)
module can continue a track after the object had been occluded for a couple of
frames (counted automatically).

• STA trans. error: number of erroneous track assignments by the STA module
(counted manually).

• LTA trans. num: number ofArchived→Identified state transitions during the
tracking process, i.e. the number of events, when the Long-Term Assignmen-
t (LTA) module can recognize a previously archived and re-appearing person
(counted automatically).

• LTA trans. error: number of erroneous person assignments by the LTA module
(counted manually).

The – altogether seven – surveillance sequences listed in Table 1(b) imply vary-
ing difficulty factors for the multi-target tracking process. First, we calculated the
Averagepeoplenumberper frame(4th column) among the frames of the Lidar se-
quence, which contain at least two pedestrians. Higher people density results in
more occlusions, thus usually in increasingSTA trans. num, which means chal-

Table 1 Person tracking evaluation on seven surveillance test sequences.STA: Short-Term As-
signment, LTA: Long-Term Assignment

Set Seq. Frame People Av peopl. STA trans. LTA trans. Processing
name num. num. num. per frame num (error) num (error) speed (fps)
Summer 3 4922 4 3.61 131 (0) 1 (0) 13.03
Winter 2 6074 4-6 3.49 200 (0) 19 (0) 12.81
Spring 2 4999 6-8 6.95 343 (1) 33 (5) 12.62
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lenges for the STA module. On the other hand, the total numberof people (4-8)
and theLTA trans. numaffect the LTA re-identification process. Table 1 confirms
that tracking errors only occur by theSpring sequence, where the number (and
density) of people is the highest.

Fig. 5 displays two sample frames from theWinter/2 sequence. Between the
two selected frames, all pedestrians left the FoV, therefore a complete re-assignment
should have been performed by the LTA module. Note that even with applying
Kalman filtering, the resulted raw object tracks are quite noisy, therefore, we ap-
plied a 80% compression of the curves in the Fourier descriptor space (Zhang and
Lu, 2002), which yields the smoothed tracks displayed in Fig5, right.

An important feature of the proposed system is the nearly real time performance
with processing 15 Hz Lidar sequences. The last column of Table 1 lists the mea-
sured processing speed on the different test sets. Comparedwith fps values of Table
1(a), we can conclude that the most expensive part of the process is foreground-
background segmentation (in itself 15-16 fps), since the complete workflow includ-
ing foreground detection, pedestrian separation and tracking operates with 12-13
fps.

3 Real time vehicle detection for autonomous cars

In the vision modules of self-driving cars or driving assistance systems,real timere-
sponse is necessary based on data streams of amoving Lidar sensorwhich is usually
mounted onto the top of the vehicle. These mobile vision systems promise a num-
ber of benefits for the society, including prevention of roadaccidents by constantly
monitoring the surrounding vehicles or ensuring more comfort and convenience for
the drivers.

A number of automatic point cloud analysis methods have beenproposed in the
literature for RMB Lidar streams. These approaches mainly focus on research to-
wards real time point cloud classification for robot navigation and quick interven-
tion. Douillard et al (2011) presents a set of clustering methods for various types of
3D point clouds, including dense 3D data (e.g. Riegl scans) and sparse point sets
(e.g. Velodyne scans), where the main goal is to approach close to real-time per-
formance. The object recognition problem from a segmented point cloud sequence
is often addressed with machine learning techniques relying on training samples. A
boosting framework has been introduced in (Teichman et al, 2011) for the classi-
fication of arbitrary object tracks obtained from the Lidar streams. This step needs
accurately separated obstacles or obstacle groups as input, but it deals neither with
the context of the objects nor with large surface elements such as wall segments.
In (Xiong et al, 2011) the authors model the contextual relationships among the 3D
points, and train this procedure to use point cloud statistics and learn relational in-
formation, e.g. tree-trunks are below vegetation, over fineand coarse scales. This
point cloud segmentation method shows its advantage on the classes that can pro-
vide enough training samples, however domain adaption remains a difficult chal-
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Fig. 6 Workflow of the proposed real time vehicle detection method

lenge. (Quadros et al, 2012) presented a feature calledthe line imageto support
object classification that outperforms the widely used NARFdescriptor but requires
a computationally expensive principal component analysis(PCA) calculation.

In this section we present a model-based real-time approachfor vehicle detection
and extraction from continuously streamed Lidar point clouds, which are captured
in challenging urban scenarios (Börcs et al, 2014a,b). The workflow of the proposed
method is demonstrated in Fig. 6. The first step is the quick removal of the ground
and clutter regions. Thereafter the field objects are extracted by a novel two-level
gird based connected component analysis method. This algorithm is able to effi-
ciently separate the objects even if they are close to each other, while it can maintain
the real-time performance of the system by processing the unorganized point cloud
streams. Our next objective is to recognize the vehicles from the set of object candi-
dates. For this reason, we estimate the top-view 2D boundingboxes of the objects,
and obtain different point cloud based 3D features, which offer useful information
for vehicle identification. The classification is performedthen by aSupport Vector
Machine(SVM). In post-processing the side profile contours of the vehicles are al-
so estimated, while for other objects we provide top view bounding boxes as the
outputs.

3.1 Object extraction by point cloud segmentation

Two mainstreams for point cloud segmentation in the literature are 3D point cluster-
ing, and 2D lattice based point classification approaches. Point clustering methods
work directly in the Euclidean space of measurements, thus they can directly ex-
ploit the 3D structure information stored in the Lidar data.These approaches use
usually a 3D space partitioning structure for quick data access. In case of dealing
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with RMB Lidar scans, adaptive partitioning techniques should be adopted, such us
octrees or kd-trees, due to the highly inhomogeneous density characteristics of the
point clouds. Moreover, since the sensor is moving, these tree structures should be
independently built for each time frame, causing a notable computational overload.

For the above reason, we decided to follow the 2D lattice based approach. Here
the points are projected to a horizontal plane where a regular 2D grid is defined,
so we simplify the 3D point neighborhood search problem to investigating regular
pixel neighborhoods. However, in this case we may loose a significant amount of
information by point projection and the grid discretization. To overcome these limi-
tations, we keep the height information of each projected Lidar point assigned to the
lattice and develop a two-level (coarse and fine) 2D grid structure to achieve very
quick but accurate object separation.

3.1.1 Ground and clutter removal

Ground detection and initial noise filtering is achieved by astandard grid based
approach, using a regular 2D grid fitted to the ground, with rectangle width between
50cm and 80cm. First, local point cloud density is calculated for each cell to extract
points of theclutter class, which marks the sparse cells. The exact density threshold
τd depends on the sensor’s revolving speed, we used 4-8 points for a given cell.

The next step is terrain modeling. Planarground models are frequently adopt-
ed in the literature relying on robust plane estimation methods such as RANSAC.
However, in the considered urban scenes we experienced significant elevation dif-
ferences (often up to a few meters) between the opposite sides and central parts of
the observed roads and squares. In these cases, planar ground estimation yields sig-
nificant errors in the extracted object shapes, e.g. bottom parts can be cut off, or the
objects may drift over the ground.On the contrary, we apply a locally adaptive ter-
rain modeling approach. As a first evidence, we can notice that in the ground cells
the differences of the observed elevation values are small.

Therefore we can perform an initial classification, where each cells is classified
either as ground candidate (1G(s) = 1) or as undefined region (1G(s) = 0) by a
straightforward thresholding:

1G(s) = 1 iff
(

ymax(s)−ymin(s)< τgr
)

,

where we usedτgr =25cm. Given a cell with 60 centimeters of width, this allows
22.6◦ of elevation within a cell; higher elevations are rarely expected in an urban
scene. This preliminary map can only be considered as a coarse estimation of the
ground, since cells of flat car roof or engine hood regions maybe erroneously clas-
sified as ground, for example. However, these outlier cells can be efficiently elim-
inated by spatial filtering. With denoting byNν

s the ν × ν neighborhood ofs, and
γG(s) = ∑r∈Nν

s
1G(s), we can obtain a terrain model of scene:
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Fig. 7 Visualization of our
hierarchical grid modeldata
structure -(bottom)the coarse
grid level: the 3-D space
coarsely quantized into 2-D
grid cells,(top) the dense grid
level: each grid cell on the
coarse level subdivided into
smaller cells.

ygr(s) =

{ 1
γG(s)

·∑r∈Nν
s

ŷ(s) ·1G(s) if γG(s)> 0
undefined otherwise.

whereygr(s) is the estimated ground-elevation value at cells. The ygr(s) feature
can be efficiently calculated by deriving the integral images of theŷ(.) and1G(.)
maps. We used here a large neighborhood (ν = 17 for cell maps with a size around
400×300). Finally a cell is classified as ground cell iff1G(s) = 1 andŷ(s)−ygr(s)<
20 cm.

3.1.2 Object separation by a two-level grid based model

After removing the ground and clutter regions, an estimation for the scene objects
can be obtained by connected component extraction from the remaining point cloud
parts. For maintaining the quick computational speed of theprocess, similarly to
Sect. 3.1.1 we use again a 2D grid based approach. The basic idea is that we seg-
ment the 2D cell map into connected regions, thereafter we backproject the obtained
cell-labels to the original point cloud, and assume that thepoints with same label-
s correspond to the same object. In the grid we consider a cellas foreground(i.e.
object) cell, if it contains the projection of leastτd object points. We also create
an elevation map by assigning to eachforegroundcell the maximum of the corre-
sponding point height. The cell map segmentation is implemented by a constrained
connected component labeling process, where two neighboring foregroundcells can
only be merged, if the difference between their elevation map values are also lower
than a threshold (used 40cm). In addition, by the scanning ofthe grid we ensure that
only convex object regions can be extracted, i.e. a negativeelevation slope cannot
be followed by a positive one within an object neither in thex nor they direction.

As the main limitation of the standard grid based segmentation, the optimal cell
size is always obtained by a trade-of. Using larger cells, close objects may be merged
into the same extracted blob, while smaller cells may yield that many objects break
into several pieces. As a solution, a hierarchical two-level grid structure has been
proposed in (B̈orcs et al, 2014b), where each cell of thecoarse(upper) level is
divided intosmallersub-cells at the fine level, as shown in Fig. 7. The rough object
estimation is performed at the coarse grid level, but the extracted super object blobs
may be cut into many smaller objects, considering the fine level cells. The technical
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Fig. 8 Object separation for a case of nearby objects. Comparison of theSimple Grid ModelFig.
a), c) and theHierarchical Grid ModelFig. b), d).

details of the approach and parametrization can be found in (Börcs et al, 2014b).
Sample results for objects merged at coarse level, but correctly separated by the
hierarchical model are demonstrated in Fig. 8.

3.2 Object level feature extraction and vehicle recognition

The input of the vehicle detection step are the object point clouds extracted in Sec.
3.1, and the task can be formulated as binary blob classification with vehicleand
non-vehicleclasses. he proposed vehicle model is based on three different features
(Börcs et al, 2014a).

First a new 2D bounding box fitting method has been proposed for the top-view
projection of the objects. From an accurate bounding box, relevant volume and side
ratio parameters can be derived, which are used by the proposed object classifier.
However, the bounding box extraction task proved to be highly challenging using the
RMB Lidar point clouds. As shown in Fig. 9(a), conventional Principal Component
Analysis (PCA) based solutions usually fail here, since only the object side facing
the sensor is clearly visible. For this reason, if we calculate by PCA covariance
analysis the principal directions of a point cloud segment identified as a vehicle
candidate, the eigenvectors usually do not point towards the main axes of the object,
yielding inaccurately oriented bounding boxes. For this reason, we developed a new
box estimation method, which is based on the convex hull of the projected object
shape, and it attempts to detect a corner with connecting orthogonal lines within the

Fig. 9 Demonstrating the
limitations of PCA based
bounding box approximation,
and the advantages of the
proposed convex hull based
bounding box fitting tech-
nique on the top-view projec-
tion of a selected vehicle in
the point cloud
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contour, which is used to fit a highly accurate box to the pointset (Fig. 9(b)). The
steps of the algorithm are as follows (see also Fig. 10):

• Visit the consecutive point pairs of the hullpi and pi+1, one after another (i =
1,2, . . . , imax):

1. Consider the linel i between pointpi and pi+1, as a side candidate of the
bounding box rectangle.

2. Find thep⋆ point of the hull, whose distance is maximal froml i , and draw a
l⋆ parallel line withl i which intersectsp⋆. We considerl⋆ as the second side
candidate of the bounding box.

3. Project all the points of the convex hull to the linel i , and find the two extreme
onesp′ andp′′. The remaining two sides of the bounding box candidate will
be constructed by taking perpendicular lines tol i , which intersectp′ and p′′

respectively.

• Chose the optimal bounding box from the above generated rectangle set by min-
imizing the average distance between the points of the convex hull and the fitted
rectangle.

Fig. 10 Demonstration of the fast 2-D bounding box fitting algorithm forthe convex hull of the
top-view object projection (the bounding box is shown marked by gray color

For defining thesecondfeature, we place four spheres near to the four top corners
of the vehicle’s roof, in order to examine the typical curvatures around this regions,
especially close to the windshields. First we vertically shift the 2-D bounding box
obtained by the previous feature extraction step to the maximal elevation within the
vehicle’s point set. This configuration is demonstrated in Fig. 11 both from top-view
and from side-view. Then we set the center points of the spheres to the corner points
of the shifted 2-D bounding rectangle. We start to increase the radius of the spheres
as long as they hit a 3-D point from the vehicle. Our assumption is that due to the
typical slope around the windshields, we should experiencesignificant differences
between the radiuses of the four spheres. We can also observein Fig. 11 that the
radiuses of the frontal spheres (R1 andR2) are significantly larger than the radiuses
of the spheres at the back side (R3 andR4). We use in the following the four radius
values in the object’s feature vector.
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Fig. 11 Demonstration of the principal curvature feature with 3-D spheres

Thethird feature is based on shape approximation of side-view profileusing con-
vex and concave hulls. At this step, we project the point clouds of the object candi-
dates to a vertical plane which is parallel to the main axis ofthe top-view bounding
box. Thereafter, we fit to the 2-D side-view object silhouettes a convex hull, and
a concave hull with 20cm resolution. Here the shape featuresare the contour vec-
tors of the convex and concave hulls themselves, so that we store the contours of
sample vehicles with various prototypes in a library, and wecompare the contours
of the detected objects to the library objects via the turning function based polygon
representation (Kov́acs et al, 2012).

Finally our joint feature vector for vehicle detection is composed by fusing the
following feature components: 1) The length and the width ofthe approximated 2-
D bounding box derived from the convex hull. 2) The four radius values of the 3-D
spheres, as well as the radius difference between the frontal and the back sphere
pairs, which are proposed for principal curvature estimation. 3) The difference be-
tween the concave side profile hull of the vehicle candidate and the prototype shape,
which is a real number normalized between zero and one.

In the next step, we considered the above defined eight dimensional feature vec-
tor, and a SVM classifier has been trained for a set of positiveand negative vehicle
samples. For this purpose, we have developed a 3-D annotation tool, which enables
labeling the urban objects in the point clouds as vehicles orbackground. We have
manually collected more than 1600 positive samples (i.e. vehicles), and also gen-
erated 4000 negative samples from different scenarios recorded in the streets of
Budapest, Hungary. The negative samples were created by a semi-automatic pro-
cess, cutting random regions from the point clouds, which were manually verified.
In addition, several positive vehicle samples, and negative samples (different street
furniture and other urban objects) have been selected from the KITTI Vision Bench-
mark Suite (Geiger et al, 2012) and used for the training of the classifier.
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3.3 Evaluation of real-time vehicle detection

We evaluated our method various Lidar point cloud sequences, concerning differ-
ent types of urban scenarios, such as main roads, narrow streets and intersections.
Three scenarios have been recorded in the streets of Budapest, Hungary, and the
fourth scenario has been selected from the KITTI Vision Benchmark Suite (Geiger
et al, 2012). We have compared ourModel-based approachto a reference solution,
which uses a simple occupancy grid representation for foreground separation, and
applies Principal Component Analysis (PCA) based featuresfor object classification
(Himmelsbach et al, 2008).

Qualitative results of our proposed model on four sample frames are shown in
Fig. 12. During the quantitative evaluation, we verified theproposed method and
the reference PCA based technique on 2076 (Budapest) + 614 (KITTI) vehicles, by
measuring the object level F-rate of the detection (harmonic mean of precision and
recall). We have also compared the processing speed of the two methods in frames
per seconds (fps). The numerical performance analysis is given in Table 2. The
results confirm that the proposed model surpasses the PCA based method in F-rate
for all the scenes. Moreover, the proposedModel-based approachis significantly
faster on the streaming data, and in particularly, it gives more reliable results in the
challenging crowded urban scenarios (Budapest data), where several vehicles are
occluded by each other, and the scene contains various typesof other objects and
street furnitures such as walls, traffic signs, billboards,pedestrians etc. .

Table 2 Numerical comparison of the detection results obtained by the Principal Component Anal-
ysis based technique (Himmelsbach et al, 2008) and the proposedModel-based framework. The
number of objects (NO) are listed for each data set, and also in aggregate.

Point Cloud DatasetNO
PCA based ap. Prop. Model-based ap.

F-rate(%)Avg. processing
speed (fps)

F-rate(%)Avg. processing
speed (fps)

Budapest Datasets2076 69 13 88 22
KITTI Dataset 614 62 14 78 25

4 Large scale urban scene analysis and reconstruction

Understanding of large dynamic scenes and 3D virtual city reconstruction have been
two research fields obtaining great interest in the recent years. Although these tasks
have usually been separately handled, connecting the two modalities may lead us
to realistic 4D video flows about large-scale real world scenarios, which can be
viewed and analyzed from an arbitrary viewpoint, can be virtually modified by user
interaction, resulting in a significantly improved visual experience for the observer.
However, the proposed integration process faces several technical and algorithmic
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Fig. 12 Qualitative results of vehicle detection with displaying thetop-view bounding boxes (by
red) and the side view concave hulls (blue) extracted by the algorithm

challenges. On one hand, comprehensive scene interpretation, object clustering &
long-term tracking and event recognition from optical videos or 2.5D range image
sequences are still challenging problems, in particular ifthe measurements are pro-
vided by moving sensors. On the other hand, virtual 3D city visualization needs
dense registered information extracted from the scene, enabling the realistic recon-
struction of fine details of building facades, street objects etc.

RMB Lidar systems may offer efficient solutions for the task due to their high
temporal refreshing rate, but only a limited information can be extracted from the
individual time frames which are sparse and their density isnotably inhomogeneous.
For the above reason, by using RMB sensors in complex situation interpretation and
scene visualization tasks, merging multiple measurement frames into a joint high
resolution point cloud is an inevitable step.

4.1 Multiframe point cloud processing framework

In this section we simultaneously deal with the recognitionand mapping issues with-
out relying on any additional sensor information apart fromthe RMB Lidar stream
(Józsa et al, 2013). The proposed method consists of six main steps, as shown in
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Fig. 13 The workflow of the proposed algorithm

Fig. 13.First, the individual Lidar point cloud scans are segmented into different
semantic regions.Second, the Lidar frames are automatically registered, i.e. trans-
formed to a common coordinate system, with preserving the original time stamp for
each point.Third, vegetation is detected and the initial segmentation is refined by
exploiting features from the merged point cloud.Fourth, large planar regions (e.g.
facades) and other street objects are separated with a flood fill based step.Fifth,
large planar regions are triangulated, whilesixth, street objects are classified either
as static or moving entities, and trajectories of moving objects are extracted.

Fig. 14 Segmented frame of the Velodyne point cloud stream. Note: figuresof this paper are best
viewed in color print.
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4.1.1 Point cloud segmentation

The segmentation process assigns to each measured point a class label from the
following set: (i)clutter (ii) ground, (iii) tall structure objects(walls, roofs, lamps
posts, traffic lights etc.), (iv)short street objects(vehicles, pedestrians etc.) and (v)
vegetation. In this section we address the discrimination of the first four classes,
while vegetation will be only removed after the point cloud registration step.

Fig. 15 Image sequence showing the registration process. Right side image contains 20 registered
scans

The segmentation process follows a single grid based approach, where the ground
and clutter detection step is achieved in the same way, as presented in Sec. 3.1.

A cell corresponds totall structure objects, if either the difference of the maximal
and minimal elevations of the included points is larger thana threshold (used 310
centimeters), or the maximal observed elevation is larger than a predefined value
from the sensor (used 140 centimeters). The second criterion is needed for dealing
with objects standing on a lower point of the ground.

The rest of the cells are assigned to classshort street objectslike vehicles, pedes-
trians, short road signs, line posts etc. These entities canbe either dynamic or static,
which attribute can only be determined later after further,more complex investiga-
tion of the point cloud sequence.

After classifying the cells of the 2D cell map, we have to assign a class to each
point of the 3D point cloud as well. Usually, each pointp obtains the label of it-
s parent cells. However, for cells contain both ground and tall (or short) object
regions, the classification yields that ground segments areattached to the object
blobs, showing a typical ‘carpet’ pattern. Therefore, we also clusterp as ground, if
although its cells has any kind of object label,s is neighbored with a ground cellr
and|y(p)− ŷ(r)|< 15 cm.
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4.1.2 Point cloud registration

Although a single RMB Lidar scan has a large amount of points,it covers a large
area, and the resolution is sufficiently good only within fewmeters of distance.
Though the device has a sensing distance of more than 100 meters, the measure-
ments at more than 15 meters of distance are too sparse for many detection or sur-
face reconstruction algorithms.

In this section, we propose a method for automatic registration of the consec-
utive Lidar scans, yielding dense and detailed point cloudsof large street scenes.
Although various established techniques do exist for pointcloud registration, such
as Iterative Closest Point (ICP) (Zhang, 1994) and Normal Distribution Transform
(NDT) (Magnusson, 2009), these methods fail, if we try to apply them for the raw
Velodyne Lidar point clouds for two reasons:

• All points reflected from moving objects appear as outliers for the matching pro-
cess, and since in a crowded street scene we expect a large number of moving
objects, many frames are erroneously aligned.

• Due to the usual concentric circle patterns on the ground (see Fig. 14), even
the static points may mislead the registration process. However, we have also
observed that the point density is quite uniform in local wall regions which are
perpendicular to the ground.

Our key idea is to utilize the point classification result from the previous section
to support the registration process. As input of the registration algorithm, we only
use the points segmented astall structure objects. We expect that in majority, these
points correspond to stationary objects (such as buildings), thus they provide sta-
ble features for registration. The NDT algorithm was applied to match the selected
regions of the consecutive frames of the point cloud, since it proved to be efficient
with the considered data and it is significantly quicker thanthe ICP.

The NDT approach divides the space into cubes and for each cube, it calculates a
local probability density function (pdf) to describe that cube, so that eachpdf can be
seen as an approximation of the local surface, describing the position of the surface
as well as its orientation and smoothness (Magnusson, 2009). For the registration
step, it uses Newtons optimization method to find the rotation and translation be-
tween the two point clouds, searching for the best match between thepdfs of the
two scans. This method is robust to outliers.

After calculating the optimal transformation, the whole point cloud of each frame
is registered to a joint world coordinate system. This step yields a large and dense
point cloud about the scene. However, to enable us exploiting the temporal informa-
tion stored in the Lidar sequence in the further processing steps, we also maintain
for each point its original time stamp in the merged cloud. Wenote that the pro-
posed registration method is able to deal both with the standard forward facing and
with tilted configurations of the Lidar sensor when mounted atop of a vehicle. The
forward facing configuration is more suitable for road mapping, traffic monitoring,
object detection and tracking, while tilted mounting may result in complete models
of tall building facades based on the RMB Lidar data, as shownin Fig. 16.
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Fig. 16 Sample results on facade approximation based on RMB Lidar data with the proposed
approach

4.1.3 Tree crown detection and segmentation refinement

Tree crown detection is a significant step for two reasons. Onone hand, vegetation
mapping is important for calculating the green area in a cityand marking the trees
in the reconstructed city models. On the other hand, the removal of the detected
vegetation data from the point cloud can help detection algorithms, for example in
the case of trees hanging over parking cars. We have developed a tree crown removal
algorithm for the merged point cloud, which calculates a statistical outlier detector
feature (Rusu and Cousins, 2011) for each point based on the mean distance to the
25 nearest neighbors, and also exploits the intensity channel which is an additional
indicator of vegetation, which reflects the laser beam with alower intensity (see Fig.
17). Thereafter, we also refine the separation ofground, tall andshort street objects
in the registered cloud, using the classification steps introduced in Sec. 4.1.1.

Fig. 17 Tree crown detection (marked with purple).
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4.1.4 Object separation with spatio-temporal flood fill

After removing ground and clutter points from the merged andsegmented point
cloud, the different objects and surface components are separated with flood fill
propagation starting from random seed points, which step isrepeated until every
point receives a unique object label. The proposed algorithm has two key properties.
First, we separately apply the recursive flood fill steps for point cloud regions oftall
structure objectsandshort street objects. In this way, pedestrians walking close to
walls or lamp posts are efficiently separated from the structure elements.Second,
since moving objects yield large connected regions in the merged point cloud (Fig.
18), different object blobs may erroneously be connected due to motion. For this
reason, when we create the connected components with the flood fill algorithm, we
also consider the time stamps of the points: for a given seed point we only assign a
neighbor to the same segment, if the distances of both the locations and time stamps
are below given thresholds. Point cloud segments with largeextent are considered
as facade segments and - together with terrain regions - theyare transferred to the
upcoming surface approximation step. Small connected components of the short
object class are excluded from the further investigations.

4.1.5 Surface approximation with triangle meshes

Raw RMB Lidar point cloud frames are not suitable for geometric surface recon-
struction due to the low and strongly inhomogeneous densityof the individual scans.
However, after registering several point clouds against each other with our technique
proposed in Sec. 4.1.2, the resolution can be sufficiently high and uniform to create
realistic building facade reconstruction. As the car passes by a building, it collects
data from several point of view so most of the holes on the walls due to occlusion
can be filled in. Also, after concatenating a few dozen scans,the resolution of the
data will be significantly higher which results in a precise 3D reconstruction of wal-
l surfaces and more efficient noise reduction also. Fig. 16 displays a triangulated
mesh obtained with the Poisson surface reconstruction algorithm (Kazhdan et al,
2006).

4.1.6 Object level analysis

As mentioned in Sec. 4.1.4, the regions of moving objects in the merged point cloud
cause blurred object blobs, which should be indicated. Although dynamic regions
have generally a lower point density, in our experiments thesimple local density-
feature proved to be inefficient for motion separation. Instead, we utilized the fol-
lowing blob-based feature: after we extracted the connected blobs of theshort street
objectsregions in the merged cloud with flood fill propagation (Sec. 4.1.4), within
each blob we separate the points corresponding to the different time stamps and de-
termine their centroids. Assuming that the centroids of thesame object follow lines
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or curves if the object is moving and stay within a certain region if the object is
static (Fig. 18(a)), we can cluster the moving and static object regions as shown in
Fig. 18(b).

An important impact of this clustering step is that the static objects can be ana-
lyzed henceforward in the merged point cloud, which may provide significant higher
level information about the entities, e.g. for recognizingvarious car types (Fig. 15).

4.2 Experiments

In this section, we present quantitative evaluation of the proposed methods on real
urban point cloud streams. First, we show the effectivenessof using our point cloud
segmentation algorithm (i.e.presegmentation) to support the automatic registration
process of the consecutive Lidar frames. Second, we presentan object level analysis
of the proposed detector using the registered ‘spatio-temporal’ point clouds.

As a quantitative evaluation metrics for the proposed registration algorithm (Sec.
4.1.2), we used the crispness feature of (Douillard et al, 2012). The crispness is
calculated on a regularly voxelised point cloud by countingthe number of occupied
voxels. As the authors assume there, the lower this number, the more crisp the point
cloud and in turn the more accurate the alignment.

We compared the results obtained by the proposed method withthe presegmen-
tation step (Pre+NDT) to the output of the NDT algorithm applied on the raw Velo-
dyne frames (Raw NDT). Table 3. shows the evaluation resultsof two scene sets
comparing the two methods using a 10cm voxel grid. The sceneswere selected in a
way that they represent different city-scenarios, including both slow and high speed
sensor movement recorded in streets and squares. Speed columns show the overall
registration time that was needed to register 10 point clouds. The crispness feature
was calculated on thetall structure objectsclass so the false positives (moving ob-
jects) did not interfere with this feature.

The proposed Pre+NDT registration approach outperformed the Raw NDT reg-
istration in all cases, both in processing speed and crispness. Regarding thefast
movementdataset the improvement in crispness was remarkable: in some of the
corresponding scenes the Raw NDT matching failed completely, matching either
the concentric circles on the ground or yielding errors of several meters. In terms
of processing time, the proposed method outperformed the Raw NDT registration
by an order of magnitude. Also, the proposed workflow is robust enough to perform

Dataset
Number of
points (NP)

Crispness by prop.
Pre+NDT method

Crisp. by NDT
on raw data

Prop. comp
speed (sec)

Raw comp
speed (sec)

Fast move 434K 36139 64189 13.3 199
Slow move 267K 28635 33160 4.65 48.5

Table 3 Speed and crispness comparison (lower values mean better registration.
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(a) Cendroid point track of a moving (top)
and parking (bottom) car

(b) Blobs of walking (orange) and standing
(blue) pedestrians in the merged cloud.

Fig. 18 Separating moving a static objects in the point cloud

Table 4 Object level evaluation (NP: Number of Points, further notations are given in Sec. 4.2)

DataSet NO
Obj. Errors

NP
F-rate %

FO MO Static Moving
Scene#1 13 3 0 580K 92 89
Scene#2 16 0 0 775K 90 91

well in challenging, noisy real life environments. Our algorithm has been tested on
more than 3000 scans, including several different types of scenes (such as avenues,
narrow streets, hillside streets, squares, bridges, etc.).

For the proposed object level analysis method (Sec. 4.1.4) we have done quan-
titative evaluation in two complex scenes. These locationswere selected from the
aforementioned scenes in a way, that they contain in aggregate 29 objects from four
object classes: (i) parking cars, (ii) moving cars, (iii) standing people and (iv) walk-
ing pedestrians (see Table 4).

For accurate Ground Truth (GT) generation, we projected thedetection result
onto the ground, and manually draw GT rectangles around eachobject in the imaged
ground plane. We performed quantitative evaluation both atobject and pixel level.
At object level, we counted the Number of real Objects (NO), False Objects (FO)
and Missing Objects (MO), where we also counted as error if a moving vehicle was
classified as a static car etc. At pixel level, we compared theobjects silhouette mask
to the GT mask, and calculated the F-rate (harmonic mean of precision and recall)
of the match. Results in Table 4 report notably accuracy regarding the test sets.

5 Conclusion

In this chapter, we have introduced three different applications of a high speed ro-
tating multi-beam (RMB) Lidar camera. We have demonstratedthat the selected
sensor provides a flexible tool for various outdoor robot vision problems due to its
high temporal refreshing rate and the large field of view. However, the strongly in-
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homogeneous density characteristic of the measurements causes different types of
challenges in detection and reconstruction tasks. We have proposed novel technical
solutions in each application field to overcome the difficulties and we validated the
introduced model elements using real world test data sequences.

In thefirst part, we have introduced a novel 3D surveillance framework for de-
tecting and tracking multiple moving pedestrians in point clouds, with focusing on
specific challenges raised by the selected RMB Lidar sensor.We have proposed an
efficient foreground segmentation model followed by a multi-target tracking mod-
ule with on-line person re-identification functions, wherebiometric features were
derived from the range and intensity channels of the Lidar data flow. The tracker
module was also tested in real outdoor scenarios, with multiple occlusions an sev-
eral re-appearing people during the observation period. The experiments confirmed,
that an efficient 3D video surveillance system can be based ona single RMB-Lidar
sensor, whose installation is significantly easier than setting up a calibrated multi-
camera system.

In the secondapplication area, we have proposed a real time vehicle detection
method for autonomous cars equipped with the RMB Lidar sensor. Based on our
novel presented features we have observed a reliable performance in challenging
dense urban scenarios with multiple occlusions and the presence of various types of
scene objects. The model has been quantitatively validatedbased on Ground Truth
data, and the advantages of the proposed solution versus a state-of-the-art technique
have been demonstrated.

The third domain of interest has been offline dynamic urban scene analysis. We
have proposed a simple, yet useful pre-segmentation step for the RMB Lidar mea-
surement frames, which had a great positive effect on the point cloud registration
step. For this type of registered data, both high level object detection and scene in-
terpretation methods have been implemented, and the suitability of the approach for
virtual city reconstruction has also been demonstrated.
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Börcs A, Nagy B, Baticz M, Benedek C (2014a) A model-based approach for fast vehicle detection
in continuously streamed urban LIDAR point clouds. In: Workshop on Scene Understanding
for Autonomous Systems at ACCV, Lecture Notes in Computer Science, Singapore
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