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Abstract In this chapter we introduce cooperating techniques foirenment per-
ception and reconstruction based on dynamic point cloudesezes of ainglerotat-
ing multi-beam (RMB) Lidar sensor, which monitors the scettleer from a moving
vehicle top or from a static installed position. The joinhadf the addressed meth-
ods is to create 4D spatio-temporal models of large dynaniaruscenes contain-
ing various moving and static objects. Standalone RMB Lidlavrices have been
frequently applied in robot navigation tasks and proveddcefficient in moving
object detection and recognition. However, they have nehbedely exploited yet
in video surveillance or dynamic virtual city modeling. Wedaess here three dif-
ferent application areas of RMB Lidar measurements, staftom people activity
analysis, through real time object perception for autonesrdriving, until dynam-
ic scene interpretation and visualization. First we introel a multiple pedestrian
tracking system with short term and long term person asségmisteps. Second we
present a model based real-time vehicle recognition aphroghird we propose
techniques for geometric approximation of ground surfeaes building facades
using the observed point cloud streams. This approachatstsemultaneously the
reconstructed surfaces, motion information and objecmfthe registered dense
point cloud completed with point time stamp information.

1 Introduction

Vision based perception of the surrounding environment dnasajor impact in
robotics research with many prominent application areab a8 autonomous driv-
ing, visual surveillance and virtual city modeling. Outddaser scanners, such as
Lidar mapping systems have particularly become importawistfor gathering da-
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ta flow for these tasks since they are able to rapidly acqangelscale 3-D point
cloud data for real-time vision, with jointly providing ao@ate 3-D geometrical in-
formation of the scene, and additional features about thect®n properties and
compactness of the surfaces. Moreover, Lidar sensors hauenaer of benefits
contrast to conventional camera systess they are highly robust against illumi-
nation changes or weather conditions, and they may providegar field of view
(FoV).

Rotating multi-beam Lidar systems (RMB Lidar) provide a 36®V of the
scene, with a vertical resolution equal to the number of #ressrs, while the hor-
izontal angle resolution depends on the speed of rotatianh Easer point of the
output point cloud is associated with 3D spatial coordisated an intensity val-
ue of the laser reflection which is related to the material sundace properties of
the target point. The Velodyne HDL-64E RMB Lidar sensor apes with 64 ver-
tically aligned laser transmitters and receivers, anddtbie to capture point cloud
sequences with a spatial radius of 150m and temporal fratesip to 20Hz. Due to
its scanning frequency, this equipment is highly apprderfar analyzing moving
objects in large outdoor scenes. However, a single scanitis sjparse, consisting
of around 65K points with a radius of 120 meters, moreover areaiso observe a
significant drop in the sampling density at larger distarfoe® the sensor and we
also can see a ring pattern with points in the same ring muadecko each other
than points of different rings (see Fig. 1 and 2).

In this chapter, we present various algorithms for autothatevironment per-
ception from three different application fields:

e 3D people surveillance
e Vision of autonomous vehicles
e Large scale urban scene analysis and reconstruction

As the common point, we rely on measurement sequences djle W B Lidar
sensor in each case. However, the circumstances and thendesd are significantly
different in the three scenarios.

A possiblesurveillance configurationf the RMB Lidar sensor is shown in Fig.
1: the sensor is installed infixed positionand monitors a scene with several mov-

Courtyard scenario

Frontal range image part:
3D point cloud

Velodyne sensor-

-

Fig. 1 Surveillance scenario configuration with the Velodyne HDIEGRMB-Lidar sensor: point
cloud and range image representation of a time frame from the nesasuot sequence
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(b) Tilted measurement configuration and a sample frame from a building facade

Fig. 2 Car mounting configurations of a RMB Lidar sensor and the recbnoegasurements

ing people in a compact outdoor environment, such as a ardrtyr a small square.
Since instant system response is needed in cases of unaathentries or suspi-
cious person behavior, the algorithms must wouiasi real timei.e. at most a few
seconds delay is admitted between the occurred event andatiméng sent to the
operator.

In the vision modules odutonomous vehiclestrict real timeresponse (within
fraction of a second) is necessary based on data streamso¥iag Lidar sensor
which is usually mounted onto the top of the vehicle (see HFig)). From the point
of view of processing, the main tasks are self localizatind abstacle avoidance
on the streets (Levinson et al, 2007; McNaughton et al, 20//hjle the focus is on
perception speed and reliability, the semantic depth afesesploration and object
classification can be rather limited, users do not expect faa autonomous car to
gather complex environmental information such as traffientimg or road quality
assessment.

The third topic is related ttarge scale dynamic urban scene analysibere the
Lidar is put again to anoving car’s top but offline data processing and information
mining is admitted. Here the main goal is to simultaneousiy e observed envi-
ronment into 3D models, and extract various kinds of infdrarafrom the dynamic
scene, which can be exploited in different application eklich us 4D virtual city
reconstruction, monitoring various public premises, syswf road marks and traf-
fic signs, urban green area estimation. Depending on out akas, we can collect
street measurements with two different sensor mountingigumations. By fixing
the Lidar horizontally on the top of the vehicle (see Fig.)R(the recorded data



4 Attila Borcs, Bahzs Nagy and Csaba Benedek

Lidar
oint Foreground- Podesri
Elou d background ‘ edestrian
separation detection
frame
Multi target tracking
Mumﬁle Short term assignm.: Long term assignm. :
person Object-trajectory 0 person re-identification
trajectories J ers0 d
assignment via biometric features

Fig. 3 3D people surveillance: workflow of the multi-pedestrian tingkkramework

sequence is appropriate for monitoring the ground and vaistreet objects such us
cars, lamp posts traffic signs etc. On the other hand, tleel tlbnfiguration enables
the scanning and subsequent reconstruction of buildirepes (Fig. 2(b)).

In this chapter we give an overview on recent results fronatheve three topics,
by using in each scenario the same Velodyne HDL-64E RMB Lseéaisor available
at MTA SZTAKI in Budapest, Hungary. The measurement of theBRNHar within
a given time frame can be represented asiat cloud pof R-c points, whereR is
equal to the number of the vertically aligned laser tran@rstproviding concurrent
distance measurements (h&e- 64) andc is the number opoint columnsi.e. the
number of time samples collected during a whole3&0n of the rotating sensor
(c~ 1024 was observed by 20 Hz rotation). Apart from the geometrameters,
each pointp receives an intensity value, which is related to the echength from
a given direction. In Fig. 1 and 2 sample raw Lidar frames &pldyed, where the
green-to-red point coloring is based on the intensity. lati8as 2-4, we introduce
the three applications one after another. The measurerhthe BRMB Lidar within
a given time frame can be represented @siat cloud pof R-c points, whereR is
equal to the number of the vertically aligned laser tranrstproviding concurrent
distance measurements (h&e- 64) andc is the number opoint columnsi.e. the
number of time samples collected during a whole<3&0n of the rotating sensor
(c~ 1024 was observed by 20 Hz rotation). Apart from the geome@irameters,
each pointp receives an intensity value, which is related to the ectemgth from
a given direction. In Fig. 1 and 2 sample raw Lidar frames #spldyed, where the
green-to-red point coloring is based on the intensity. lati8as 2-4, we introduce
the three applications one after another.
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2 3D people surveillance

Moving people detection, localization and tracking are am@nt issues in intelli-
gent surveillance systems, as parts of person countingitgcecognition or abnor-
mal event detection modules. However, these tasks aretstillenging in crowded
outdoor scenes due to uncontrolled illumination condgjdrrelevant background
motion, and occlusions caused by various moving and ste¢inesobjects. Person
re-identification is a fundamental task both for connectimg erroneously broken
trajectories of the short term tracker module, and for iidgng people who tem-
porarily leave the Field of View (FoV) and re-appear lateanBe sensors have re-
cently started to be used in various surveillance appbaoati Time-of-Light (ToF)
cameras (Schiller and Koch, 2011) record depth image segseover a regular
2D pixel lattice, where established image processing amives, such as Markov
Random Fields (MRFs) can be adopted for smooth and obsenvatinsistent seg-
mentation and recognition. However, such cameras haveitdirfoV, which can
be a drawback for surveillance and monitoring applicatidmshis section, we fo-
cus on the sensor configuration of Fig. 1, where the RMB Lidarak records
360°-view-angle range data sequences of irregular point clouds

2.1 Foreground-background separation

To separate dynamic foreground from static background emge data sequence,
a probabilistic approach of Benedek (2014) is applied. Vet first the irregular
point cloud to a cylinder surface yielding a depth image oegular lattice, and
perform the segmentation in the 2D range image domain (gpd JiWe model the
statistics of the range values observed at each pixel posas a Mixture of Gaus-
sians and update the parameters similarly to the standgréagh of Stauffer and
Grimson (2000). The background is modeled by the Gaussiapaoents with the
highest weight values in the mixture, and outlier detecgoables the extraction
of the possible motion regions. However, by adapting thevalscheme, we must
expect several spurious effects, caused by the quantizatior of the discretized
view angle and background flickering, e.g., due to vegatatiotion. These effects
are significantly decreased by a dynamic MRF model introdiuc8enedek (2014),
which describes the background and foreground classestbpatial and temporal
features. Since the MRF model is defined in the range imageesfize 2D image
segmentation must be followed by a 3D point classificatiep sty resolving the
ambiguities of the 3D-2D mapping with local spatial filtegirdsing a spatial fore-
ground model, we remove a large part of the irrelevant bamkgat motion which is
mainly caused by moving tree crowns.
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Fig. 4 Pedestrian separation. Left: side view of the segmented scerterexntop view, right:
projected blobs in the image plane

2.2 Pedestrian detection and multi-target tracking

In this section, we introduce the pedestrian detection eacking module of the
system. The input of this component is the RMB Lidar poinudsequence, where
each point is marked with a segmentation label of foregrarmshckground, while
the output consists of clusters of foreground regions sitiiegooints corresponding
to the same person receive the same label over the sequeaedsa\generate a 2D
trajectory of each pedestrian.

First, the point cloud regions classified as foreground lrgtered to obtain sepa-
rate blobs for each moving person. A regular lattice is finloground plane and the
foreground regions are projected onto this lattice. Molpdjical filters are applied
in the image plane to obtain spatially connected blobs ffferdint persons. Then
the system extracts appropriately sized connected compmtiet satisfy area con-
straints determined by lower and higher thresholds. Theéecerf each extracted
blob is considered as a candidate for foot position in theugadoplane. Note that
connected pedestrian shapes may be merged into one bldb,bidtis of partially
occluded persons may be missed or broken into several pastead of propos-
ing various heuristic rules to eliminate these artifactthatlevel of the individual
time frames, a robust multi-tracking module has been deeelpwhich efficiently
handles the problems at the sequence level.

The pedestrian tracking module combines Short-Term Asségm (STA) and
Long-Term Assignment (LTA) steps. The STA part attempts &iain each actual-
ly detected object candidate with the current object ttajges maintained by the
tracker, by purely considering the projected 2D centroisitens of the target. The
STA process should also be able to continue a given trajeitttite detector misses
the concerning object in a few frames due to occlusion. Isdleases the temporal
discontinuities of the tracks must be filled with estimatedipon values. On the
other hand, the LTA module is responsible for extractingidlisinative features for
re-identification of objects lost by STA due to occlusion iamyg consecutive frames
or leaving the FoV. For this reason, lost objects are regidteo an archived object
list, which is periodically checked by the LTA process. LThosild also recognize if
anew person appears in the scene, who was not registered togd¢ker beforehand.
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2.2.1 Short Term Assignment (STA) module:

The STA module receives the measured ground plane posdiwh$or each frame
it iterates three basic operations, namely, data assignidalman filter correction
and Kalman filter prediction. The assignment operation hestche currently mea-
sured candidate positions to the registered object ti@jest with using the Hun-
garian algorithm (Kuhn, 1955). Then the estimated objesitjpms are corrected
and, finally, predictions for the subsequent positions aaeerand fed back to the
assignment procedure. The algorithm can handle falseiyasibroken trajectories
as well as tracks starting and terminating within a sequence

By a given time frame, an object is markedAdivetarget, if its trajectory can
be continued with one of the actually measured positiong ©uexpected occlu-
sion and noise effects, trajectories which cannot be mdtalit a new observation
are not terminated immediately. They are marked fir¢hastivetracks, which also
participate in the STA process in the upcoming measurentenattions for at most
a few seconds time window. The final step of the trajectoryatgds to make the
Kalman prediction for the next point of each track, which barused for measure-
ment assignment in the next time frame (details are predémi@enedek, 2014)).

2.2.2 Long Term Assignment (LTA) features

In (Benedek, 2014) two static point cloud descriptors welepéed for person re-
identification.First, the authors have observed that since clothes of peopléstons
of various materials, the intensities obtained by the RM&alisensor exhibit dif-
ferent statistical characteristic for different peopler Each tracked target, an inten-
sity histograms has been collected over at least 100 fraamelsyised as feature for
comparison. Experimental evidences have shown that thédgharyya distance
of the normalizedintensity histograms for two object samples efficientlyidated
whether the candidates correspond to the same person or not.

As asecondfeature, the height of the person were estimated, by takiagl-
evation difference of the highest and lowest object poibhtsagh time frame, and
creating a histogram from the measured height instancesh@&ight estimate of the
person has been taken as the peak value ddicheal height histogramver several
frames.

Since both features have been derived by temporal featatistits, a newly ap-
pearing object must enter first &mitial phase, where the long-term histograms are
accumulated. After a given number of frames, one can exdbeté TA process
which marks the object aslentified We accept a long term target match only if
both the intensity and the height difference features stebewvant similarity. Pedes-
trians unsuccessfully matched to any archived objects ByrETeive a new unique
identifier.
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Frame #1174 Frame #1850 Top-view trajectories for frames #1550-#1850

Fig. 5 Results of pedestrian separation and tracking invihet er 2 Lidar sequence. Video im-
ages (in the top) were only used for validation of tracking eexélentification.

2.2.3 Tracking process

Based on the previously introduced STA and LTA modules, theking process is
realized by a finite-state machine with the following stalei-Active, Init-Inactive,
Identified-Activeldentified-InactiveDeletedand Archieved The names of the first
four states encode, if a given actually tracked object isenily Active or Inac-
tive according to the STA module, and if it is alreattjentifiedor is yet in the
Initialization phase of LTA. Transitions between the corresjiogpActiveandinac-
tive states are controlled by the STA module, depending on theessof matching
the existing trajectories with actual measuremelasntifiedobjects which arén-
activefor more thanlg). seconds (usets). = 3 sec.) are moved to the archive list:
Archivedobjects do not participate in the STA process, but they caretaetivated
later by LTA. Objects spendin®s. seconds in thénit-Inactive state are marked as
Deleted and excluded from the further investigations during tlaeking process.
These deleted trajectories usually correspond either esorement noise, or they
are too short to provide us reliable descriptors for latek biatching.

The LTA identification process can be applied for objectsohtiave spentin the
Init-Active state at least 8 seconds, which proved to be an appropriatdrierval
frame for the consolidation of the LTA features. If a matchsigcessful with an
archived object, the trajectories of the new and matchedcatdjare merged with
interpolating the missing trajectory points. Then the LifvatchedArchivedobject
is moved to thddentified-Activestate, and the new objectBeletedto prevent us
from duplicates. On the other hand if the LTA match fails, tiesv object steps to
theldentified-Activestate with keeping its identifier.

2.3 Evaluation

We have evaluated our method in various outdoor Lidar semgsecontaining multi-
target scenarios recorded in the courtyard of our institsitgce the sequences were
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recorded in different seasonSunmer , W nt er andSpr i ng), we could also in-
vestigate the robustness of the used point cloud featur@asighe effects on dif-
ferent clothing styles (such as winter coats or t-shirts).

The sequences contain 4-8 people walking in an#28rea FoV in 1-1f dis-
tances from the Lidar. The rotation speed was set from 1528ktz. In the back-
ground, heavy motion of the vegetation make the accurassifigation challeng-
ing. We have also recorded the test scenarios with a stanithed cameranly for
verification of the tracking and re-identification proceBse advantage of using se-
quences from different seasons was that we could test thistrodss of the approach
versus seasonal clothing habits (winter coats or T-Shard)illumination changes.

We have verified the multiple people tracking and re-ideggtfon modules by
counting the correct and incorrect trajectory matchesndutfie whole observation
periods. For quantitative evaluation of the tracking pssade output trajectories of
the system were verified by manual observes watching thd plmnd sequences
and the recorded videos in parallel.

As evaluation metrics, we counted the following events (ssalts in Table 1):

e STAtrans. nummumber of alllnactive—Activestate transitions during the track-
ing process, i.e. the number of events, when the Short-TessigAment (STA)
module can continue a track after the object had been oatlicdea couple of
frames (counted automatically).

e STA trans. error number of erroneous track assignments by the STA module
(counted manually).

e LTA trans. numnumber of Archived—ldentified state transitions during the
tracking process, i.e. the number of events, when the LargiTAssignmen-

t (LTA) module can recognize a previously archived and rpeaping person
(counted automatically).

e LTA trans. error number of erroneous person assignments by the LTA module

(counted manually).

The — altogether seven — surveillance sequences listechie Téb) imply vary-
ing difficulty factors for the multi-target tracking proced=irst, we calculated the
Averagepeoplenumberper frame(4th column) among the frames of the Lidar se-
quence, which contain at least two pedestrians. Higher lpedgnsity results in
more occlusions, thus usually in increasi8§A trans. numwhich means chal-

Table 1 Person tracking evaluation on seven surveillance test sequesitésShort-Term As-
signment, LTA: Long-Term Assignment

Set Seq.|Frame|People Av peopl.| STA trans. | LTA trans. |Processing
name |(num.| num. | num. |per frame|num (error) |num (error) |speed (fps
Summer | 3 | 4922| 4 3.61 131 (0) 1(0) 13.03

Wnter| 2 | 6074| 46 | 3.49 200 (0) 19 (0) 12.81
Spring| 2 | 4999] 68 | 6.95 343 (1) 33 (5) 12.62
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lenges for the STA module. On the other hand, the total nurnbgeople (4-8)
and theLTA trans. numaffect the LTA re-identification process. Table 1 confirms
that tracking errors only occur by tipr i ng sequence, where the number (and
density) of people is the highest.

Fig. 5 displays two sample frames from tént er / 2 sequence. Between the
two selected frames, all pedestrians left the FoV, theesdiaromplete re-assignment
should have been performed by the LTA module. Note that evigm applying
Kalman filtering, the resulted raw object tracks are quitesy)adherefore, we ap-
plied a 80% compression of the curves in the Fourier desergggace (Zhang and
Lu, 2002), which yields the smoothed tracks displayed insigght.

An important feature of the proposed system is the nearltiraa performance
with processing 15 Hz Lidar sequences. The last column ofeTalists the mea-
sured processing speed on the different test sets. Comyétefps values of Table
1(a), we can conclude that the most expensive part of theepsois foreground-
background segmentation (in itself 15-16 fps), since thepdete workflow includ-
ing foreground detection, pedestrian separation and itrgakperates with 12-13
fps.

3 Real time vehicle detection for autonomous cars

In the vision modules of self-driving cars or driving asaiste systemseal timere-
sponse is necessary based on data streamsio¥ag Lidar sensowhich is usually
mounted onto the top of the vehicle. These mobile visionesystpromise a num-
ber of benefits for the society, including prevention of raadidents by constantly
monitoring the surrounding vehicles or ensuring more cat#od convenience for
the drivers.

A number of automatic point cloud analysis methods have pegposed in the
literature for RMB Lidar streams. These approaches maimty$ on research to-
wards real time point cloud classification for robot navigiatand quick interven-
tion. Douillard et al (2011) presents a set of clusteringhods for various types of
3D point clouds, including dense 3D data (e.g. Riegl scand)sparse point sets
(e.g. Velodyne scans), where the main goal is to approade dto real-time per-
formance. The object recognition problem from a segmentéat gloud sequence
is often addressed with machine learning techniques glgimtraining samples. A
boosting framework has been introduced in (Teichman etCdl1pfor the classi-
fication of arbitrary object tracks obtained from the Lidaeams. This step needs
accurately separated obstacles or obstacle groups as iypuit deals neither with
the context of the objects nor with large surface elementh sis wall segments.
In (Xiong et al, 2011) the authors model the contextual r@heships among the 3D
points, and train this procedure to use point cloud stasistind learn relational in-
formation, e.g. tree-trunks are below vegetation, over éiné coarse scales. This
point cloud segmentation method shows its advantage onldlsas that can pro-
vide enough training samples, however domain adaption irenaadifficult chal-
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Fig. 6 Workflow of the proposed real time vehicle detection method

lenge. (Quadros et al, 2012) presented a feature ctiledine imageto support
object classification that outperforms the widely used NARBcriptor but requires
a computationally expensive principal component anafai3A) calculation.

In this section we present a model-based real-time appifoagihicle detection
and extraction from continuously streamed Lidar point dguvhich are captured
in challenging urban scenarios@®s et al, 2014a,b). The workflow of the proposed
method is demonstrated in Fig. 6. The first step is the quiciokal of the ground
and clutter regions. Thereafter the field objects are ete¢daby a novel two-level
gird based connected component analysis method. Thisithlgois able to effi-
ciently separate the objects even if they are close to edan,athile it can maintain
the real-time performance of the system by processing tbeganized point cloud
streams. Our next objective is to recognize the vehicles tie set of object candi-
dates. For this reason, we estimate the top-view 2D bourulimgs of the objects,
and obtain different point cloud based 3D features, whid¢arafseful information
for vehicle identification. The classification is performtbeén by aSupport Vector
Machine(SVM). In post-processing the side profile contours of thieisles are al-
so estimated, while for other objects we provide top viewrabog boxes as the
outputs.

3.1 Object extraction by point cloud segmentation

Two mainstreams for point cloud segmentation in the literatre 3D point cluster-
ing, and 2D lattice based point classification approacheisit Blustering methods
work directly in the Euclidean space of measurements, theyg tan directly ex-
ploit the 3D structure information stored in the Lidar dakaese approaches use
usually a 3D space partitioning structure for quick dataeasciIn case of dealing
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with RMB Lidar scans, adaptive partitioning techniqueswudtide adopted, such us
octrees or kd-trees, due to the highly inhomogeneous gettsitracteristics of the
point clouds. Moreover, since the sensor is moving, thesedgtructures should be
independently built for each time frame, causing a notabfeputational overload.

For the above reason, we decided to follow the 2D latticedapproach. Here
the points are projected to a horizontal plane where a re@agrid is defined,
so we simplify the 3D point neighborhood search problem westigating regular
pixel neighborhoods. However, in this case we may loose rfignt amount of
information by point projection and the grid discretizatido overcome these limi-
tations, we keep the height information of each projectet_point assigned to the
lattice and develop a two-level (coarse and fine) 2D gridcstine to achieve very
quick but accurate object separation.

3.1.1 Ground and clutter removal

Ground detection and initial noise filtering is achieved bgtandard grid based
approach, using a regular 2D grid fitted to the ground, witltenegle width between
50cm and 80cm. First, local point cloud density is calcudte each cell to extract
points of theclutter class, which marks the sparse cells. The exact densityhiblices
14 depends on the sensor’s revolving speed, we used 4-8 poirdsgiiven cell.

The next step is terrain modeling. Plarggound models are frequently adopt-
ed in the literature relying on robust plane estimation méthsuch as RANSAC.
However, in the considered urban scenes we experienceificagn elevation dif-
ferences (often up to a few meters) between the opposits aiu# central parts of
the observed roads and squares. In these cases, planad gstimation yields sig-
nificant errors in the extracted object shapes, e.g. bottamts pan be cut off, or the
objects may drift over the groun@n the contrarywe apply a locally adaptive ter-
rain modeling approach. As a first evidence, we can noticeiththe ground cells
the differences of the observed elevation values are small.

Therefore we can perform an initial classification, wherehezells is classified
either as ground candidatéd(s) = 1) or as undefined regiorig(s) = 0) by a
straightforward thresholding:

1(;(8) = 1iff (Ymax(s) _ymin(s) < Tgr)’

where we usedg =25cm. Given a cell with 60 centimeters of width, this allows
22.6° of elevation within a cell; higher elevations are rarely exied in an urban
scene. This preliminary map can only be considered as aeeatsnation of the
ground, since cells of flat car roof or engine hood regions begrroneously clas-
sified as ground, for example. However, these outlier celfstme efficiently elim-
inated by spatial filtering. With denoting By the v x v neighborhood o8, and
¥6(S) = Yreny 1a(S), we can obtain a terrain model of scene:
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whereyg(s) is the estimated ground-elevation value at selThe yg(s) feature
can be efficiently calculated by deriving the integral immgé they(.) and 1(.)
maps. We used here a large neighborhaoe- (17 for cell maps with a size around
400x 300). Finally a cell is classified as ground celllif(s) = 1 andy(s) — ygr(s) <
20 cm.

3.1.2 Object separation by a two-level grid based model

After removing the ground and clutter regions, an estinmat@y the scene objects
can be obtained by connected component extraction fromethaining point cloud
parts. For maintaining the quick computational speed ofpifeeess, similarly to
Sect. 3.1.1 we use again a 2D grid based approach. The baasigsidhat we seg-
ment the 2D cell map into connected regions, thereafter wiedraject the obtained
cell-labels to the original point cloud, and assume thatpthiats with same label-
s correspond to the same object. In the grid we consider as&keground(i.e.
object) cell, if it contains the projection of leag{ object points. We also create
an elevation map by assigning to edoregroundcell the maximum of the corre-
sponding point height. The cell map segmentation is impteatby a constrained
connected component labeling process, where two neighdpfmtiegroundcells can
only be merged, if the difference between their elevatiop nadues are also lower
than a threshold (used 40cm). In addition, by the scanninigeodrid we ensure that
only convex object regions can be extracted, i.e. a negatexation slope cannot
be followed by a positive one within an object neither in xheor they direction.

As the main limitation of the standard grid based segmeamntathe optimal cell
size is always obtained by a trade-of. Using larger celtssebbjects may be merged
into the same extracted blob, while smaller cells may yie#&t thany objects break
into several pieces. As a solution, a hierarchical twollgviel structure has been
proposed in (Brcs et al, 2014b), where each cell of tbearse(upper) level is
divided intosmallersub-cells at the fine level, as shown in Fig. 7. The rough abjec
estimation is performed at the coarse grid level, but theaete¢d super object blobs
may be cut into many smaller objects, considering the finel leslls. The technical
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b) Hierarchical grid ¢) Simple grid  d) Hierarchical grid

Fig. 8 Object separation for a case of nearby objects. Comparison &ithgle Grid ModeFig.
a), ¢) and thédierarchical Grid ModelFig. b), d).

details of the approach and parametrization can be founBanc§ et al, 2014b).
Sample results for objects merged at coarse level, but cbrreeparated by the
hierarchical model are demonstrated in Fig. 8.

3.2 Object level feature extraction and vehicle recognition

The input of the vehicle detection step are the object pdmids extracted in Sec.
3.1, and the task can be formulated as binary blob classificatith vehicleand
non-vehicleclasses. he proposed vehicle model is based on three diffexsures
(Borcs et al, 2014a).

First a new 2D bounding box fitting method has been proposed foofheiew
projection of the objects. From an accurate bounding bdeyaat volume and side
ratio parameters can be derived, which are used by the prdpaigect classifier.
However, the bounding box extraction task proved to be kighéllenging using the
RMB Lidar point clouds. As shown in Fig. 9(a), conventionahipal Component
Analysis (PCA) based solutions usually fail here, sincey diné object side facing
the sensor is clearly visible. For this reason, if we caleulay PCA covariance
analysis the principal directions of a point cloud segmeentified as a vehicle
candidate, the eigenvectors usually do not point towarglsthin axes of the object,
yielding inaccurately oriented bounding boxes. For thisom, we developed a new
box estimation method, which is based on the convex hull efpitojected object
shape, and it attempts to detect a corner with connectilgganal lines within the

Fig. 9 Demonstrating the
limitations of PCA based
bounding box approximation,
and the advantages of the
proposed convex hull based
bounding box fitting tech-
nigue on the top-view projec-
tion of a selected vehicle in
the point cloud

a) PCA based bounding b) Convex hull based
box fitting bounding box fitting
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contour, which is used to fit a highly accurate box to the pseit(Fig. 9(b)). The
steps of the algorithm are as follows (see also Fig. 10):

e Visit the consecutive point pairs of the hydl and p;.1, one after anothei &
1,2,... imax):

1. Consider the lind; between pointp; and pi.1, as a side candidate of the
bounding box rectangle.

2. Find thep, point of the hull, whose distance is maximal fréjpand draw a
I, parallel line withl; which intersect,. We considet, as the second side
candidate of the bounding box.

3. Project all the points of the convex hull to the lineand find the two extreme
onesp’ and p”. The remaining two sides of the bounding box candidate will
be constructed by taking perpendicular lined;jtavhich intersecty and p”
respectively.

e Chose the optimal bounding box from the above generatednglet set by min-
imizing the average distance between the points of the sdmuit and the fitted
rectangle.

Fig. 10 Demonstration of the fast 2-D bounding box fitting algorithm tlee convex hull of the
top-view object projection (the bounding box is shown markgdtay color

For defining thesecondeature, we place four spheres near to the four top corners
of the vehicle’s roof, in order to examine the typical cunras around this regions,
especially close to the windshields. First we verticalliftshe 2-D bounding box
obtained by the previous feature extraction step to the mabeélevation within the
vehicle’s point set. This configuration is demonstratedign E1 both from top-view
and from side-view. Then we set the center points of the ggterthe corner points
of the shifted 2-D bounding rectangle. We start to increbseadius of the spheres
as long as they hit a 3-D point from the vehicle. Our assumpsdhat due to the
typical slope around the windshields, we should experieigaificant differences
between the radiuses of the four spheres. We can also oliselFig. 11 that the
radiuses of the frontal spherd®;(andR,) are significantly larger than the radiuses
of the spheres at the back sid& @ndR4). We use in the following the four radius
values in the object’s feature vector.
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Top-view bounding box projected
to the plane of the vehicle top (seen

R}
from a side-view-point
D Top-view bounding box foma side-view-poin)

Fig. 11 Demonstration of the principal curvature feature with 3-D sphe

Thethird feature is based on shape approximation of side-view praileg con-
vex and concave hulls. At this step, we project the pointaoof the object candi-
dates to a vertical plane which is parallel to the main axiheftop-view bounding
box. Thereafter, we fit to the 2-D side-view object silhoesta convex hull, and
a concave hull with 20cm resolution. Here the shape feamn@she contour vec-
tors of the convex and concave hulls themselves, so thatave 8te contours of
sample vehicles with various prototypes in a library, andcampare the contours
of the detected objects to the library objects via the tugriimction based polygon
representation (Kacs et al, 2012).

Finally our joint feature vector for vehicle detection isngposed by fusing the
following feature components: 1) The length and the widtthefapproximated 2-
D bounding box derived from the convex hull. 2) The four radialues of the 3-D
spheres, as well as the radius difference between the franththe back sphere
pairs, which are proposed for principal curvature estioratB8) The difference be-
tween the concave side profile hull of the vehicle candidatkthe prototype shape,
which is a real number normalized between zero and one.

In the next step, we considered the above defined eight dioreideature vec-
tor, and a SVM classifier has been trained for a set of positintenegative vehicle
samples. For this purpose, we have developed a 3-D annotatly which enables
labeling the urban objects in the point clouds as vehicldsagkground. We have
manually collected more than 1600 positive sampigs \ehicles), and also gen-
erated 4000 negative samples from different scenariogdedoin the streets of
Budapest, Hungary. The negative samples were created hyisaséomatic pro-
cess, cutting random regions from the point clouds, whictevmeanually verified.
In addition, several positive vehicle samples, and negaamples (different street
furniture and other urban objects) have been selected fierKiTTI Vision Bench-
mark Suite (Geiger et al, 2012) and used for the training efcthssifier.
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3.3 Evaluation of real-time vehicle detection

We evaluated our method various Lidar point cloud sequera®®erning differ-

ent types of urban scenarios, such as main roads, narrogissared intersections.
Three scenarios have been recorded in the streets of Budépesyary, and the
fourth scenario has been selected from the KITTI Vision Bemark Suite (Geiger
et al, 2012). We have compared dvdodel-based approacto a reference solution,
which uses a simple occupancy grid representation for foregl separation, and
applies Principal Component Analysis (PCA) based feaffiaresbject classification
(Himmelsbach et al, 2008).

Qualitative results of our proposed model on four samplmém are shown in
Fig. 12. During the quantitative evaluation, we verified greposed method and
the reference PCA based technique on 2076 (Budapest) + 8IZIji/ehicles, by
measuring the object level F-rate of the detection (harmoréan of precision and
recall). We have also compared the processing speed of themathods in frames
per seconds (fps). The numerical performance analysisvengn Table 2. The
results confirm that the proposed model surpasses the P@A basthod in F-rate
for all the scenes. Moreover, the proposdddel-based approacts significantly
faster on the streaming data, and in particularly, it giveseweliable results in the
challenging crowded urban scenarios (Budapest data),end@reral vehicles are
occluded by each other, and the scene contains various tfpeker objects and
street furnitures such as walls, traffic signs, billboapgsiestrians etc. .

Table 2 Numerical comparison of the detection results obtained by tineipal Component Anal-
ysis based technique (Himmelsbach et al, 2008) and the propdsdel-based frameworki he
number of objects (NO) are listed for each data set, and also egajig.

PCA based ap. Prop. Model-based ap.
Point Cloud DatasetNO F-rate(% Avg. processin q:—rate(% Avg. processing
speed (fps) speed (fps)
Budapest Dataset076§ 69 13 88 22
KITTI Dataset |614| 62 14 78 25

4 Large scale urban scene analysis and reconstruction

Understanding of large dynamic scenes and 3D virtual citgmstruction have been
two research fields obtaining great interest in the receatsyé\lthough these tasks
have usually been separately handled, connecting the tvdalities may lead us
to realistic 4D video flows about large-scale real world secirs, which can be
viewed and analyzed from an arbitrary viewpoint, can besgity modified by user
interaction, resulting in a significantly improved visuaperience for the observer.
However, the proposed integration process faces sevetatital and algorithmic
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Narrow street

Fig. 12 Qualitative results of vehicle detection with displaying thp-view bounding boxes (by
red) and the side view concave hulls (blue) extracted by tperidhm

challenges. On one hand, comprehensive scene interpretabject clustering &
long-term tracking and event recognition from optical vider 2.5D range image
sequences are still challenging problems, in particuldivdfmeasurements are pro-
vided by moving sensors. On the other hand, virtual 3D cigualization needs
dense registered information extracted from the scendliegahe realistic recon-
struction of fine details of building facades, street olgest.

RMB Lidar systems may offer efficient solutions for the taskedo their high
temporal refreshing rate, but only a limited informatiom dzse extracted from the
individual time frames which are sparse and their densitptably inhomogeneous.
For the above reason, by using RMB sensors in complex sstuatterpretation and
scene visualization tasks, merging multiple measuremrantds into a joint high
resolution point cloud is an inevitable step.

4.1 Multiframe point cloud processing framework

In this section we simultaneously deal with the recognitiod mapping issues with-
out relying on any additional sensor information apart fritve RMB Lidar stream
(Jozsa et al, 2013). The proposed method consists of six meps,sas shown in
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| |
1
Input point Grid based | Point cloud
cloud frames segmentation ‘ registration
1,2,....N) I» of each point
cloud (1,...N)
Large planar Merged cloud ‘
Surface ions -
e regions Grid based re-
reconstruction A
_ segmentation and Tree crown
connected . removal
Moving object _ component analysis
detection and (merged cloud)
classification Other objects

Fig. 13 The workflow of the proposed algorithm

Fig. 13.First, the individual Lidar point cloud scans are segmented iiiffereént
semantic regionsSecondthe Lidar frames are automatically registered, i.e. trans
formed to a common coordinate system, with preserving tiggnal time stamp for
each pointThird, vegetation is detected and the initial segmentation isedfby
exploiting features from the merged point clok@urth, large planar regions (e.g.
facades) and other street objects are separated with a flobdged stepFifth,
large planar regions are triangulated, wisleth, street objects are classified either
as static or moving entities, and trajectories of movingoty are extracted.

I ground

I short field object

I tall struct. object

I <lutter
1P g

s

Fig. 14 Segmented frame of the Velodyne point cloud stream. Note: fighfrésgs paper are best
viewed in color print.
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4.1.1 Point cloud segmentation

The segmentation process assigns to each measured posdsalabel from the
following set: (i) clutter (ii) ground (iii) tall structure objectgwalls, roofs, lamps
posts, traffic lights etc.), (iv3hort street objectésehicles, pedestrians etc.) and (v)
vegetation In this section we address the discrimination of the firsir foasses,
while vegetation will be only removed after the point cloegdistration step.

Fig. 15 Image sequence showing the registration process. Right side imagenso20 registered
scans

The segmentation process follows a single grid based apipradere the ground
and clutter detection step is achieved in the same way, asmied in Sec. 3.1.

A cell corresponds ttall structure objectsif either the difference of the maximal
and minimal elevations of the included points is larger thahreshold (used 310
centimeters), or the maximal observed elevation is largen ta predefined value
from the sensor (used 140 centimeters). The second critexioeeded for dealing
with objects standing on a lower point of the ground.

The rest of the cells are assigned to clsissrt street objectkke vehicles, pedes-
trians, short road signs, line posts etc. These entitiebeaither dynamic or static,
which attribute can only be determined later after furth@sye complex investiga-
tion of the point cloud sequence.

After classifying the cells of the 2D cell map, we have to @ss class to each
point of the 3D point cloud as well. Usually, each pombbtains the label of it-
s parent cells. However, for cells contain both ground and tall (or shoti)ect
regions, the classification yields that ground segmentsatiaehed to the object
blobs, showing a typical ‘carpet’ pattern. Therefore, waoallustermp as ground, if
although its celk has any kind of object labes,is neighbored with a ground cell
and|y(p) —y(r)| <15 cm.
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4.1.2 Point cloud registration

Although a single RMB Lidar scan has a large amount of poihtsyvers a large
area, and the resolution is sufficiently good only within feveters of distance.
Though the device has a sensing distance of more than 100sntte measure-
ments at more than 15 meters of distance are too sparse fgraetection or sur-
face reconstruction algorithms.

In this section, we propose a method for automatic registraif the consec-
utive Lidar scans, yielding dense and detailed point clafdsrge street scenes.
Although various established techniques do exist for pdimid registration, such
as Iterative Closest Point (ICP) (Zhang, 1994) and Normatribution Transform
(NDT) (Magnusson, 2009), these methods fail, if we try tolgppem for the raw
Velodyne Lidar point clouds for two reasons:

e All points reflected from moving objects appear as outlierstie matching pro-
cess, and since in a crowded street scene we expect a largenofmimoving
objects, many frames are erroneously aligned.

e Due to the usual concentric circle patterns on the ground ksg. 14), even
the static points may mislead the registration process.ddew we have also
observed that the point density is quite uniform in locallwegions which are
perpendicular to the ground.

Our key idea is to utilize the point classification resultnfrthe previous section
to support the registration process. As input of the regfisin algorithm, we only
use the points segmentedta#l structure objectsWe expect that in majority, these
points correspond to stationary objects (such as buildlinbas they provide sta-
ble features for registration. The NDT algorithm was appti@ match the selected
regions of the consecutive frames of the point cloud, sihpeoved to be efficient
with the considered data and it is significantly quicker ttranICP.

The NDT approach divides the space into cubes and for ea@ itwalculates a
local probability density functionpdf) to describe that cube, so that et can be
seen as an approximation of the local surface, describmgakition of the surface
as well as its orientation and smoothness (Magnusson, 2609)he registration
step, it uses Newtons optimization method to find the raotagéind translation be-
tween the two point clouds, searching for the best match dmtvthepdfs of the
two scans. This method is robust to outliers.

After calculating the optimal transformation, the wholémieloud of each frame
is registered to a joint world coordinate system. This stiefdg a large and dense
point cloud about the scene. However, to enable us expiditie temporal informa-
tion stored in the Lidar sequence in the further procesdi@gss we also maintain
for each point its original time stamp in the merged cloud. Mi& that the pro-
posed registration method is able to deal both with the stahbrward facing and
with tilted configurations of the Lidar sensor when mounttapaf a vehicle. The
forward facing configuration is more suitable for road magpiraffic monitoring,
object detection and tracking, while tilted mounting masuléin complete models
of tall building facades based on the RMB Lidar data, as shiowig. 16.
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Fig. 16 Sample results on facade approximation based on RMB Lidar dakathe proposed
approach

4.1.3 Tree crown detection and segmentation refinement

Tree crown detection is a significant step for two reasonso@nhand, vegetation
mapping is important for calculating the green area in aa&itgt marking the trees
in the reconstructed city models. On the other hand, the vahaf the detected
vegetation data from the point cloud can help detectionrélguos, for example in

the case of trees hanging over parking cars. We have devttopee crown removal
algorithm for the merged point cloud, which calculates &istiaal outlier detector

feature (Rusu and Cousins, 2011) for each point based oneha distance to the
25 nearest neighbors, and also exploits the intensity eiamimch is an additional

indicator of vegetation, which reflects the laser beam wltwer intensity (see Fig.
17). Thereafter, we also refine the separatiogrofingd tall andshort street objects
in the registered cloud, using the classification stepsdhiced in Sec. 4.1.1.

Fig. 17 Tree crown detection (marked with purple).
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4.1.4 Object separation with spatio-temporal flood fill

After removing ground and clutter points from the merged aagmented point
cloud, the different objects and surface components araratgal with flood fill
propagation starting from random seed points, which steppsated until every
point receives a unique object label. The proposed alguriiths two key properties.
First, we separately apply the recursive flood fill steps for pdimtid regions ofall
structure object@ndshort street objectdn this way, pedestrians walking close to
walls or lamp posts are efficiently separated from the strecelementsSecond
since moving objects yield large connected regions in thegatepoint cloud (Fig.
18), different object blobs may erroneously be connectexltdumotion. For this
reason, when we create the connected components with tteefillcagorithm, we
also consider the time stamps of the points: for a given seed we only assign a
neighbor to the same segment, if the distances of both tla¢idos and time stamps
are below given thresholds. Point cloud segments with laxgent are considered
as facade segments and - together with terrain regions -atteetransferred to the
upcoming surface approximation step. Small connected ooents of the short
object class are excluded from the further investigations.

4.1.5 Surface approximation with triangle meshes

Raw RMB Lidar point cloud frames are not suitable for geometurface recon-
struction due to the low and strongly inhomogeneous depéttye individual scans.
However, after registering several point clouds againsth egher with our technique
proposed in Sec. 4.1.2, the resolution can be sufficiengllg Bhd uniform to create
realistic building facade reconstruction. As the car paggea building, it collects
data from several point of view so most of the holes on thesaglle to occlusion
can be filled in. Also, after concatenating a few dozen scduwesresolution of the
data will be significantly higher which results in a preci§er&construction of wal-
| surfaces and more efficient noise reduction also. Fig. $pldys a triangulated
mesh obtained with the Poisson surface reconstructionritiigo (Kazhdan et al,
2006).

4.1.6 Object level analysis

As mentioned in Sec. 4.1.4, the regions of moving objectsémterged point cloud
cause blurred object blobs, which should be indicated.dtih dynamic regions
have generally a lower point density, in our experimentssihgle local density-
feature proved to be inefficient for motion separation.dadt we utilized the fol-
lowing blob-based feature: after we extracted the condduitebs of theshort street
objectsregions in the merged cloud with flood fill propagation (Set.4), within
each blob we separate the points corresponding to theetifféime stamps and de-
termine their centroids. Assuming that the centroids ofstn@e object follow lines
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or curves if the object is moving and stay within a certainioagf the object is
static (Fig. 18(a)), we can cluster the moving and statiectjegions as shown in
Fig. 18(b).

An important impact of this clustering step is that the statjects can be ana-
lyzed henceforward in the merged point cloud, which may i®significant higher
level information about the entities, e.g. for recogniziagious car types (Fig. 15).

4.2 Experiments

In this section, we present quantitative evaluation of tteppsed methods on real
urban point cloud streams. First, we show the effectivenéssing our point cloud
segmentation algorithm (i.eresegmentatigrto support the automatic registration
process of the consecutive Lidar frames. Second, we prasafiject level analysis
of the proposed detector using the registered ‘spatio-teafipoint clouds.

As a quantitative evaluation metrics for the proposed teggion algorithm (Sec.
4.1.2), we used the crispness feature of (Douillard et al220The crispness is
calculated on a regularly voxelised point cloud by countimgnumber of occupied
voxels. As the authors assume there, the lower this nuntteemore crisp the point
cloud and in turn the more accurate the alignment.

We compared the results obtained by the proposed methodhveéthresegmen-
tation step (Pre+NDT) to the output of the NDT algorithm aggblon the raw Velo-
dyne frames (Raw NDT). Table 3. shows the evaluation regiilte/o scene sets
comparing the two methods using a 10cm voxel grid. The soeees selected in a
way that they represent different city-scenarios, inalgdioth slow and high speed
sensor movement recorded in streets and squares. Speethsatow the overall
registration time that was needed to register 10 point dolile crispness feature
was calculated on thiall structure objectslass so the false positives (moving ob-
jects) did not interfere with this feature.

The proposed Pre+NDT registration approach outperforinedkaw NDT reg-
istration in all cases, both in processing speed and crispriRegarding théast
movementataset the improvement in crispness was remarkable: i sdnthe
corresponding scenes the Raw NDT matching failed completehtching either
the concentric circles on the ground or yielding errors oksal meters. In terms
of processing time, the proposed method outperformed the NRAT registration
by an order of magnitude. Also, the proposed workflow is robasugh to perform

Dataset Number of Crispness by proLCrisp. by NDTProp. compRaw comg
points (NP)Pre+NDT method on raw data |[speed (se¢¥peed (sec)

Fast move| 434K 36139 64189 13.3 199

Slow move 267K 28635 33160 4.65 48.5

Table 3 Speed and crispness comparison (lower values mean better rgistra
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cpm

(a) Cendroid point track of a moving (top) (b) Blobs of walking (orange) and standing
and parking (bottom) car (blue) pedestrians in the merged cloud.

Fig. 18 Separating moving a static objects in the point cloud

Table 4 Object level evaluation (NP: Number of Points, further natasiare given in Sec. 4.2)

Obj. Errors F-rate %
DataSet|NO \=5=""55—1NP  Istatic [Moving
Scene#1(13 |3 0 580K |92 89
Scene#2|16 |0 0 775K |90 91

well in challenging, noisy real life environments. Our aigfum has been tested on
more than 3000 scans, including several different types@fas (such as avenues,
narrow streets, hillside streets, squares, bridges, etc.)

For the proposed object level analysis method (Sec. 4.ledhave done quan-
titative evaluation in two complex scenes. These locatiwese selected from the
aforementioned scenes in a way, that they contain in aggr@§eobjects from four
object classes: (i) parking cars, (i) moving cars, (iigrefing people and (iv) walk-
ing pedestrians (see Table 4).

For accurate Ground Truth (GT) generation, we projectedd#étection result
onto the ground, and manually draw GT rectangles aroundageht in the imaged
ground plane. We performed quantitative evaluation botbbgct and pixel level.
At object level, we counted the Number of real Objects (NQJs€& Objects (FO)
and Missing Objects (MO), where we also counted as error ibaing vehicle was
classified as a static car etc. At pixel level, we comparedbjects silhouette mask
to the GT mask, and calculated the F-rate (harmonic meaneaigion and recall)
of the match. Results in Table 4 report notably accuracyrdigg the test sets.

5 Conclusion

In this chapter, we have introduced three different appboa of a high speed ro-
tating multi-beam (RMB) Lidar camera. We have demonstralted the selected
sensor provides a flexible tool for various outdoor robotoviproblems due to its
high temporal refreshing rate and the large field of view. Eesv, the strongly in-
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homogeneous density characteristic of the measurememse<different types of
challenges in detection and reconstruction tasks. We hapoped novel technical
solutions in each application field to overcome the diffiesitand we validated the
introduced model elements using real world test data segsen

In thefirst part, we have introduced a novel 3D surveillance frameworlde-
tecting and tracking multiple moving pedestrians in poiouds, with focusing on
specific challenges raised by the selected RMB Lidar sedgmhave proposed an
efficient foreground segmentation model followed by a mtatget tracking mod-
ule with on-line person re-identification functions, whéiemetric features were
derived from the range and intensity channels of the Lidaa dlaw. The tracker
module was also tested in real outdoor scenarios, with plaltcclusions an sev-
eral re-appearing people during the observation period.ekperiments confirmed,
that an efficient 3D video surveillance system can be basedsimgle RMB-Lidar
sensor, whose installation is significantly easier thatirgetip a calibrated multi-
camera system.

In the secondapplication area, we have proposed a real time vehicle ti@tec
method for autonomous cars equipped with the RMB Lidar seigased on our
novel presented features we have observed a reliable penfme in challenging
dense urban scenarios with multiple occlusions and thepoesof various types of
scene objects. The model has been quantitatively validsiedd on Ground Truth
data, and the advantages of the proposed solution versateeo$tthe-art technique
have been demonstrated.

Thethird domain of interest has been offline dynamic urban scene sinali/e
have proposed a simple, yet useful pre-segmentation stepedRMB Lidar mea-
surement frames, which had a great positive effect on thet ptdud registration
step. For this type of registered data, both high level dlgjetection and scene in-
terpretation methods have been implemented, and the #itytabthe approach for
virtual city reconstruction has also been demonstrated.
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