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Abstract: Big Data is a technology developed for 3-V management of data by which large 

volumes and different varieties of data would be processed in optimal velocity. The data to 

be dealt with may be structured or unstructured. Relational databases (spreadsheets) are 

typical examples of structured data and the methods, as well as the techniques for 

researches of relational database management are well-known. In this paper, we describe 

a formalism, by which, structured data, can be considered as a directly generalized model 

of relational databases. A higher leveled structured data, in our generalization, are defined 

recursively as a set or a queue of lower leveled structured data. Consequently, our study 

proves that many concepts and results of relational database management can be 

transferred to structured data, accordingly to this generalization. The sub data, the 

components of structured data, the functional dependencies between structured data, as 

well as the keys data in structured data are defined and studied. Alternately, some concepts 

that are defined here for structured data can be applied for relational databases, as a 

special case. In this paper, some operations on structured data and the homomorphism 

between structured data are defined and studied that appear to be quite suitable for 

relational databases. In fact, the formalization introduced here, offers effective methods for 

further structural, algebraic researches of structured data. 

Keywords: Data management; Big Data; Structured data; Relational database; Lattice; 

Partially ordered set 

1 Introduction 

Big Data storage and Big Data processing model design are essential problems of 

Big Data management (see, for example, [9]). Structured data in a common sense, 

are complex data, constructed by atomic data residing in fixed fields within a 

definite structure. In contrast to semi-structured data and unstructured data, 
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structured data is taking new and special roles in the world of Big Data. 

Spreadsheets and relational databases are evident examples of structured data. A 

data table in relational databases as defined by Codd [4] in fact can be considered 

as a set of its columns (or its rows) that in their turn are the queues of atomic data. 

By using the characteristics of the data structure, lots of properties of relational 

databases were discovered and vigorously studied in 1990s ([1], [10]). The studies 

were focused on keys, functional dependencies between attributes and 

normalization of databases (see [2], [7]). The lattice-type properties of functional 

dependencies in relational databases were studied thoroughly in [8]. We can note 

that many properties of the functional dependencies between attributes are 

induced by the lattice structure of the data. 

This remark inspires an idea: not only for relational databases but in general, it is 

the structure of data that determines the dependencies between their components 

and other structural properties of them. Thus the first question to be considered is 

the definition of the concept of structure. Structure is an indefinite concept and 

one can hardly give a sufficient definition that concerns all possible structures. 

This paper deals only with those structured data that are built up recursively as 

sets, or queues of other less complex data. Thus, the data can be defined in 

different orders of complexity: atomic data are structured data of lowest order, a 

set or a queue of atomic data is structured data of first order, while the relations in 

relational databases being sets of data columns (or data rows) are structured data 

of second order, etc. This definition does not cover all structured data, but it deals 

with rather wide range of data. The relational databases as sets of interconnected 

relations are in fact 4-order data. 

The formulation of structured data proposes an efficient approach for structural 

studies. On one hand, the approach reveals the lattice characteristics of the well-

known properties of relational databases. On the other hand, the approach enables 

the generalization of the concepts and properties, well-known for relational 

databases, into those of structured data. 

In Section 2 we generalize the concept of relations in structured data as defined 

later. It is pointed out in this section, that there is a natural order between the 

relations and all relations can be represented in a linear form or by tree graphs. In 

Section 3, structured data are defined. In fact, structured data are generalized 

relations with all their participant relations. Structured data may be considered as 

algebraic objects in which the various operations and homomorphism should be 

studied. The concept of sub data and components of data, as well as the queries on 

data, are also defined here. In this generalized model we study the dependency 

between components of data. The key components of structured data are defined 

as those components, that all other components, depend. We show in this section 

that relational databases are really special cases of structured data, where the 

dependencies between attributes, are in fact, dependencies of partial order types. 

Some aspects for further research, as well as open problems are discussed in the 

Conclusions. 
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2 Relations 

In this section we propose a generalization of the concept of a relation. Relations 

are defined recursively accordingly to their order. The first-order relation on a set 

is a collection of subsets or queues of elements of the given set, while the higher 

order relations are collection of subsets or queues of lower order relations. Thus 

relations are defined based on subsets or queues of elements. 

2.1 Sets and Queues of Atomic Data 

By traditional algebraic definition the relation of elements is a set of n-tuples of 

elements. In a more generalized sense, a relation of elements can be understood as 

a set of finite tuples of elements. 

Definition 1: For a set 𝑉, let 𝑉∞ = ⋃ 𝑉𝑖∞
𝑖=1 . 𝑉∞ denotes the set of all finite 

queues of elements in 𝑉. 

Remark:  

1. Below, we should distinguish the sets and the queues of elements: the sets 

and the queues of elements are parenthesized by {} and by < >, 

respectively.  

2. By Definition 1, in general,  {𝑢, 𝑣} =  {𝑣, 𝑢} and {𝑣, 𝑣} = {𝑣}, while 

〈𝑢, 𝑣〉 ≠  〈𝑣, 𝑢〉 and 〈𝑣, 𝑣〉 ≠  〈𝑣〉 

3. We accept {𝑣} = 〈𝑣〉 

Definition 2: 

Let U, 𝑉 be two sets of atomic data, U ⊆ 𝑉. For  𝑠 ⊆ 𝑉∞ the projection of 𝑠 
denoted by 𝑃𝑟𝑈(𝑠) is defined as follows: 

i. If 𝑠 = 〈𝑣1, 𝑣2, … , 𝑣𝑘〉 ∈ 𝑉
∞, then 𝑃𝑟𝑈(𝑠) = 〈𝑣𝑖|𝑣𝑖 ∈ U 〉. 

ii. If 𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑞} ⊆ 𝑉
∞ then 𝑃𝑟𝑈(𝑠) = {𝑃𝑟𝑈(𝑠1), 𝑃𝑟𝑈(𝑠2), … , 𝑃𝑟𝑈(𝑠𝑞)}. 

iii. If 𝑠 = 〈𝑣1, 𝑣2, … , 𝑣𝑘〉 ∈ 𝑉
∞ or 𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑞} ⊆ 𝑉

∞ then 𝐴(𝑠) denotes 

the set of all atomic data in 𝑉 that appears in 𝑠. 

Remark: 

1. If 𝑟 = 𝑃𝑟𝑈(𝑠) then  𝑟 is a sub-queue of 𝑠 in the case 𝑠 is a queue, and  𝑟 is a 

set of sub-queues of 𝑠 in the case 𝑠 is a set of sub-queues. 

2. If 𝑟 = 𝑃𝑟𝑈(𝑠) and 𝑠 = 𝑃𝑟𝑊(𝑡) then 𝑟 = 𝑃𝑟𝑈∩𝑊(𝑡). 

3. If 𝑟, 𝑠 are finite subsets of 𝑉∞ and  𝑟 = 𝑃𝑟𝑈(𝑠), 𝑠 = 𝑃𝑟𝑊(𝑟) then 𝑠 = 𝑟 and 

𝐴(𝑠) =  𝐴(𝑟) ⊆ 𝑈 ∩𝑊. 

This is evident if 𝑠, 𝑟 are queues in 𝑉∞. 
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If  𝑟, 𝑠 ⊆ 𝑉∞, 𝑟 = {𝑟1, 𝑟2, … , 𝑟𝑝}, 𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑞}, then by definitions for 

all 𝑘 there is 𝑖 such that  𝑟𝑘 = 𝑃𝑟𝑈(𝑠𝑖) and vice versa, for all 𝑖 there is 𝑘 

such that  𝑠𝑖 = 𝑃𝑟𝑊(𝑟𝑘). Thus, for all 𝑘 there are  𝑟𝑘1 = 𝑟𝑘 , 𝑟𝑘2 , … and 

𝑠𝑘1 , 𝑠𝑘2 , … such that 𝑟𝑘𝑗 = 𝑃𝑟𝑈 (𝑠𝑘𝑗) and 𝑠𝑘𝑗 = 𝑃𝑟𝑊 (𝑟𝑘𝑗+1), 𝑗 = 1,2, …. By 

previous remarks one can see that 𝑟𝑘𝑗 = 𝑃𝑟𝑈∩𝑊 (𝑟𝑘𝑗+1). Since 𝑟𝑘𝑗+1 =

𝑃𝑟𝑈∩𝑊 (𝑟𝑘𝑗+2), we have  𝑟𝑘𝑗 = 𝑟𝑘𝑗+1 = 𝑃𝑟𝑈∩𝑊 (𝑟𝑘𝑗+2). Now it is easy to see 

that 𝑟𝑘 = 𝑟𝑘1 = 𝑟𝑘2 = ⋯ = 𝑠𝑘1 = 𝑠𝑘2 = ⋯, i.e. 𝑟𝑘 is a queue in 𝑠. The 

similar explain proves that arbitrary queue 𝑠i in 𝑠 is queue in 𝑟. We 

have 𝑟 =  𝑠. By the proof we see also that 𝐴(𝑠) =  𝐴(𝑟) ⊆ 𝑈 ∩𝑊. 

4. By 2. and 3. if we define a relation on finite subsets of 𝑉∞ as follows: 

𝑟 ⊲  𝑠 ⇔ ∃𝑈: 𝑟 = 𝑃𝑟𝑈(𝑠) 

then ⊲ is a partial order on the finite subsets of 𝑉∞. 

2.2 m-Order Relations 

The relations that we define below are a generalization of the relations 

(spreadsheets) in relational modeling. 

Definition 3: 

1. A 0-order relation over 𝑉 is 𝑉. The set of all 0-order relations over 𝑉 is 

denoted by ℛ0(𝑉). Thus ℛ0(𝑉) = 𝑉. 

2. For 𝑚 ≥ 0 an (m+1)-order relation over 𝑉 is a finite subset of ℛm(𝑉) or a 

finite queue of elements of ℛm(𝑉). The set of all (m+1)-order relations 

over 𝑉 is denoted by ℛm+1(𝑉). 

3. ℛ∞(𝑉) = ⋃ ℛm(𝑉)∞
m=0 . 

In words, a relation of higher order over 𝑉 is a finite subset or a finite queue of 

lower order relations. ℛ∞(𝑉) denotes the set of all relations over 𝑉. 

Remark: 

1. By Definition 1 we have 𝑣 = {𝑣} = 〈𝑣〉, therefore  𝑉 ⊆ ℛ1(𝑉) and so on, 

ℛ𝑚(𝑉) ⊆ ℛ𝑚+1(𝑉) for all 𝑚 ≥ 0. 

2. Two relations of different order are different and are named differently, 

exceptionally, since 𝑟 = {𝑟} = 〈𝑟〉 for all 𝑟 ∈ ℛ𝑚(𝑉), we have also 

𝑟 ∈ ℛ𝑚+1(𝑉). 

Definition 4: 

Let U ⊆ 𝑉. For  𝑠 ∈ ℛ∞(𝑉) the projection of 𝑠 denoted by 𝑃𝑟𝑈(𝑠) is defined as 

follows: 

i. If 𝑠 ∈ ℛ1(𝑉) then 𝑃𝑟𝑈(𝑠) is defined as in Definition 2. 
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ii. If 𝑠 = 〈𝑣1, 𝑣2, … , 𝑣𝑘〉 ∈ ℛm+1(𝑉), 𝑣𝑖 ∈ ℛ
m(𝑉), then 𝑃𝑟𝑈(𝑠) =

〈𝑃𝑟𝑈(𝑣𝑖)|i = 1,2, … , k 〉. 

iii. If 𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑞} ∈ ℛ
m+1(𝑉) where 𝑠1, 𝑠2, … , 𝑠𝑞  are queues on ℛm(𝑉), 

then 𝑃𝑟𝑈(𝑠) = {𝑃𝑟𝑈(𝑠1), 𝑃𝑟𝑈(𝑠2), … , 𝑃𝑟𝑈(𝑠𝑞)}. 

The projection of a relation on U ⊆ 𝑉 can be obtained from the given relation by 

deleting all atomic data that are not in U. 

2.3 Partial Order on Relations 

We show that on ℛ∞(𝑉) there exists a partial order between the relations. 

Definition 5: For 𝑟, 𝑠 ∈ ℛ∞(𝑉) we write 𝑟 ≤ 𝑠 if 

i. 𝑟 = 𝑠, or 

ii. There exist 𝑠0, 𝑠2, … , 𝑠𝑘 ∈ ℛ
∞(𝑉), 𝑠0 = 𝑟, 𝑠k = 𝑠, such that 𝑠i is a finite 

subset or a finite queue of 𝑠i−1 and other elements of ℛ∞(𝑉), for all 

𝑖 = 1,2, … , 𝑘. 

In words, 𝑟 ≤ 𝑠 if  𝑟 appears in the presentation of 𝑠. We have a trivial theorem: 

Theorem 1:  ≤ is a partial order on ℛ∞(𝑉). 

2.4 Representation of Relations 

The relations can be represented by linear expressions and by tree graphs. 

Definition 6 (linear representations of relations): 

i. For 𝑟 ∈ ℛ0(𝑉), 𝑟 = 𝑣 ∈ 𝑉 the linear representation of 𝑟 is the 

expression 𝑙(𝑟) = 𝑣. 

ii. For 𝑟 ∈ ℛ𝑚+1(𝑉) the linear representation of 𝑟 is the expression 𝑙(𝑟): 

𝑙(𝑟) = {
〈𝑙(𝑟1), 𝑙(𝑟2), … , 𝑙(𝑟𝑘)〉 if 𝑟 = 〈𝑟1, 𝑟2, … , 𝑟k〉, 𝑟i ∈ ℛ

𝑚(𝑉)

{𝑙(𝑟1), 𝑙(𝑟2), … , 𝑙(𝑟k)} if 𝑟 = {𝑟1, 𝑟2, … , 𝑟k}, 𝑟i ∈ ℛ
𝑚(𝑉) 

 

The set of all representations of on 𝑟 is denoted by 𝒫(𝑟). 

In fact, the representations on 𝑉 are the expressions that can be defined, formally, 

as follows: 

Definition 7: 

i. If 𝑣 ∈ 𝑉 then the expression 𝑣  is a formal representation. The set of all 

expressions of this form is denoted by 𝒫0(𝑉). 

ii. If 𝑟1, 𝑟2, … , 𝑟𝑘 ∈ 𝒫
𝑖(𝑉), 𝑖 ≤ 𝑚, then the expressions of the form 

{𝑟1, 𝑟2, … , 𝑟𝑘} and 〈𝑟1, 𝑟2, … , 𝑟𝑘〉 are formal representations on 𝑉. The set of 

all expressions of this form is denoted by 𝒫𝑚+1(𝑉). 
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iii. All formal representations on 𝑉 are defined as in i. and ii. 

The set of all formal representations on 𝑉 is denoted by 𝒫(𝑉), i.e. 

𝒫(𝑉) = ⋃ 𝒫𝑚(𝑉)∞
𝑚=1 . 

Remark: 

1. The representation of relations is not unique: each relation has many 

representations. 

2. The linear representations of relations over 𝑉 are formal representations on 

𝑉 and vice versa, each formal representation on 𝑉 represents some relation 

over 𝑉. 

For 𝑝, 𝑞 ∈ 𝒫 we write 𝑝 ~ 𝑞 if: 

i. 𝑝 = {𝑞} or 𝑝 = 〈𝑞〉, or 𝑞 = {𝑝} or 𝑞 = 〈𝑝〉, 

ii. 𝑝 = {𝑢1, 𝑢2, … , 𝑢𝑘}, 𝑞 = {𝑣1, 𝑣2, … , 𝑣𝑘}, 𝑢i, 𝑣i  ∈ 𝑉 and 𝑣1, 𝑣2, … , 𝑣𝑘 is a 

permutation of 𝑢1, 𝑢2, … , 𝑢𝑘, or 

iii. 𝑝 = 〈𝑢1, 𝑢2, … , 𝑢𝑘〉, 𝑢i ∈ 𝑉 and 𝑞 = 𝑝, or 

iv. 𝑝 = {𝑟1, 𝑟2, … , 𝑟𝑚}, 𝑞 = {𝑠1, 𝑠2, … , 𝑠𝑚}, 𝑟i, 𝑠i are formal representations on 𝑉 

and there exists a permutation 𝑢1, 𝑢2, … , 𝑢𝑚 of 𝑟1, 𝑟2, … , 𝑟𝑚 such that 𝑢𝑖~ 𝑠𝑖 
for all 𝑖 = 1,2, . . , 𝑚. 

v. 𝑝 = 〈𝑟1, 𝑟2, … , 𝑟𝑚〉, 𝑞 = 〈𝑠1, 𝑠2, … , 𝑠𝑚〉 and  𝑟𝑖~ 𝑠𝑖 for all 𝑖 = 1,2, . . , 𝑚. 

Theorem 2: 

1. ~ is an equivalence on 𝒫. 

2. 𝑝~𝑞 ⇔ ∃𝑟 ∈ ℛ∞(𝑉): 𝑝, 𝑞 ∈ 𝒫(𝑟). 

3. There exists an algorithm that constructs  𝑟 ∈ ℛ∞(𝑉) such that 𝑙(𝑟) = 𝑝 for 

𝑝 ∈ 𝒫. 

4. There exists an algorithm that decides if 𝑝 ~ 𝑞 for 𝑝, 𝑞 ∈ 𝒫. 

We define a partial order on 𝒫: For 𝑝, 𝑞 ∈ 𝒫 we write 𝑝 ≤  𝑞 if 

i. 𝑝 =  𝑞, or 

ii. There exist 𝑝1, 𝑝2, … , 𝑝𝑘 ∈ 𝒫(𝑉), 𝑝1 = 𝑝, 𝑝k = 𝑞, such that 𝑝i ∈ 𝒫
𝑚+𝑖(𝑉) 

and 𝑝i+1 = 𝑝i or 𝑝i+1 is the expression of the form  {… , 𝑝i, … } or 〈… , 𝑝i , … 〉 
for all 𝑖 = 1,… , 𝑘 − 1. 

≤ is a partial order on 𝒫. We have: 

Theorem 3: For all 𝑟, 𝑠 ∈ ℛ∞(𝑉) we have: 

𝑟 ≤ 𝑠 ⇔ 𝑙(𝑟) ≤ l(𝑠) 
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The relations can also be represented by tree graphs as follows: 

Definition 8 (graphical representation of relations): To each relation 𝑟 we 

associate a tree graph 𝑡(𝑟) as follows: 

i. For 𝑟 = 𝑣 ∈ ℛ0(𝑉) the graph 𝑡(𝑣) is the tree graph that contains single 

node labeled by 𝑣. 

ii. For 𝑟 ∈ ℛ𝑚+1(𝑉), 𝑟 = 〈𝑟1, 𝑟2, … , 𝑟k〉, 𝑟i ∈ ℛ
𝑚(𝑉) the graph 𝑡(𝑟) is the tree 

graph with the root 𝑟 that is connected directly to the nodes to that we 

attach the trees 𝑡(𝑟1), 𝑡(𝑟2), … , 𝑡(𝑟𝑘) from left to right. 

iii. For 𝑟 ∈ ℛ𝑚+1(𝑉), 𝑟 = {𝑟1, 𝑟2, … , 𝑟k}, 𝑟i ∈ ℛ
𝑚(𝑉), the graph 𝑡(𝑟) is the tree 

graph with the root 𝑟 that is connected directly to the nodes to that we 

attach the trees 𝑡(𝑟1), 𝑡(𝑟2), … , 𝑡(𝑟𝑘) for 𝑖 = 1,2… 𝑘. 

The set of all graphs representing 𝑟 is denoted by 𝒯(𝑟). We have: 

Theorem 4: 

1. If 𝒯 = 𝒯(𝑟) is a tree that represents 𝑟, then 

i. The leaves are labeled by elements of 𝑉. 

ii. Only the labels of the leaves may be repeated. 

2. If 𝒯  is a tree graph with labeled nodes that satisfies i, ii conditions, then 

there exists a relation 𝑟  on 𝑉 such that 𝒯 = 𝒯(𝑟). 

3. For two relations 𝑟, 𝑠 ∈ ℛ∞(𝑉) 𝑟 ≤ 𝑠 if and only if 𝒯(𝑟) is a sub-tree 

of 𝒯(𝑠). 

Example 1: 

A data table, i.e. a relation in relational database, may be considered as a relation 

defined in Definition 3: If 𝑟 = {𝐴1, 𝐴2, … , 𝐴𝑚} is a relation with 𝐴1, 𝐴2, … , 𝐴𝑚 

columns, where 𝐴𝑖 = (𝑎1𝑖 , 𝑎2𝑖 , … , 𝑎𝑛𝑖) then 𝑟 is 2-order relation 

𝑟 = {〈𝑎11, 𝑎21, … , 𝑎𝑛1〉, 〈𝑎12, 𝑎22, … , 𝑎𝑛2〉, … , 〈𝑎1𝑚 , 𝑎2𝑚, … , 𝑎𝑛𝑚〉} 

The tree graph of 𝑟 is 

 

Figure 1 

Tree graph of a relation in a relational database 
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3 Structured Data 

Structured data are sets of relations with specified systems of participant relations. 

Formally, we have: 

Definition 9: Let 𝑉 be a set of atomic data. 

1. A structured data is a finite sequence of relations 

𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚] 

where 

i. r0 is finite subset of 𝑉, 

ii. For all 𝑖 = 1,… ,𝑚, 𝑟𝑖 is a relation constructed by atomic data in 𝑟0 and 

preceding data, i.e. 𝑟𝑖 is a finite set or a finite queue of elements from 𝑟0 ∪
{𝑟1, 𝑟2, … , 𝑟𝑖−1}. 

The set of all structured data over 𝑉 is denoted by 𝑆𝑉. 

2. A structured data 𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚] is simple if 

iii. 𝑟𝑗 ≠ 𝑟i for 𝑖 ≠ 𝑗 and 𝑟𝑗 , 𝑟𝑖 are not elements from 𝑟0 

In a simple structured data the condition iii. guarantees that only elements from 𝑟0 

may be repeated. 

Definition 10: Let 𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚] be a structured data. 

1. By 𝑙(𝛼) = [𝑙(𝑟0), 𝑙(𝑟1), … , 𝑙(𝑟𝑚)] we denote the linear representation of 𝛼 

where 𝑙(𝑟𝑖) is some linear representation of 𝑟𝑖 for all 𝑖 = 1,… ,𝑚. 

2. By 𝑡(𝛼) = {𝑡(𝑟0), 𝑡(𝑟1), … , 𝑡(𝑟𝑚)} we denote the multi tree of 𝛼 which is 

constructed as follows: 

i. 𝑡(𝑟0) contains the nodes marked by elements in 𝑟0, 

ii. 𝑡(𝑟𝑖) is the tree of 𝑟𝑖 for all 𝑖 = 1, … ,𝑚. 

Example 2: In Table 1 we can see a linear representation of a structured data: 

Table 1 

Linear representation of a structured data 

𝛼 = [𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5] 𝑙(𝛼) = [𝑙(𝑟0), 𝑙(𝑟1), 𝑙(𝑟2), 𝑙(𝑟3), 𝑙(𝑟4), 𝑙(𝑟5)] 

𝑟0 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} 𝑙(𝑟0) = {𝑣1, 𝑣2, 𝑣3, 𝑣4} 

𝑟1 = 〈𝑣1, 𝑣2〉 𝑙(𝑟1) = 〈𝑣1, 𝑣2〉 

𝑟2 = 〈𝑣2, 𝑣3〉 𝑙(𝑟2) = 〈𝑣2, 𝑣3〉 

𝑟3 = {𝑣1, 𝑟1, 𝑟2}  𝑙(𝑟3) = {𝑣1, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉} 

𝑟4 = {𝑣2, 〈𝑣4, 𝑟3〉} 𝑙(𝑟4) = {𝑣2, 〈𝑣4, {𝑣1, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉}〉} 

𝑟5 = {𝑟4, 〈𝑟1, 𝑟3, 𝑟4〉} 𝑙(𝑟5) = {{𝑣2, 〈𝑣4, {𝑣1, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉}〉},                                         

〈〈𝑣1, 𝑣2〉, {𝑣1, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉}, {𝑣2, 〈𝑣4, {𝑣1, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉}〉}〉}
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Example 3: Let Atomic data = {N, BD, Na, NID, NV, NC, NM, T, C, NDL} 

where N, BD, Na, NID, NV, NC, NM, T, C, NDL is the abbreviation of Name, 

Birth date, Nationality, Number of ID card, Number of Vehicle registration card, 

Number of chassis, Number of motor, Type, Category of vehicle and Number of 

Driving license, respectively. Furthermore, let ID card = <NID, N, BD, Na>, 

Vehicle registration card = <NV, NC, NM, T, C>, Driving license = <NDL, N, 

BD, C>, Personal Document = {ID card, Vehicle registration card, Driving 

license}. 

In fact, Personal Document may be considered as a structured data: Personal 

Document = [Atomic data, ID card, Vehicle registration card, Driving license, 

{ID card, Vehicle registration card, Driving license}]. 

The tree graph of Personal Document is 𝑡(Personal Document): 

 

Figure 2 

The tree graph of Personal Document 

3.1 Operations of Structured Data 

Let 𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚], 𝛽 = [𝑠0, 𝑠1, … , 𝑠𝑛]  be structured data over 𝑉. Then: 

1. Union: The union of 𝛼, 𝛽 is 

{𝛼, 𝛽} = [𝑟0 ∪ 𝑠0, 𝑟1, … , 𝑟𝑚, 𝑠1, … , 𝑠𝑛 , {𝑟𝑚 , 𝑠𝑛}] 

The union of two structured data is also a structured data. 

2. Queuing : The queuing of 𝛼, 𝛽 is 

〈𝛼, 𝛽〉 = [𝑟0 ∪ 𝑠0, 𝑟1, … , 𝑟𝑚 , 𝑠1, … , 𝑠𝑛 , 〈𝑟𝑚 , 𝑠𝑛〉] 

The queuing of two structured data is also a structured data. 

3. Projection: If U ⊆ 𝑉, then the projection of 𝛼 on U  is 

𝑃𝑟𝑈(𝛼)  = [𝑃𝑟𝑈(𝑟0), 𝑃𝑟𝑈(𝑟1), … , 𝑃𝑟𝑈(𝑟𝑚)] 

The projection of a structured data is also a structured data. 
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4. Conjunction: Let 𝛼𝑖 = [𝑟0
𝑖 , 𝑟1

𝑖 , … , 𝑟𝑚𝑖
𝑖 ] be structured data over 𝑉 for 

all 𝑖 = 1, … , 𝑘, 𝑟0 = ⋃ 𝑟0
𝑖

𝑖 . If 𝑟 is a finite set of queues on 𝑟0 ∪

{𝑟𝑗
𝑖|𝑗 = 1,… ,𝑚𝑖 , 𝑖 = 1, … , 𝑘}, i.e. 𝑟 ∈ ℛ(𝑟0 ∪ {𝑟𝑗

𝑖|𝑗 = 1,… ,𝑚𝑖 , 𝑖 =

1, … , 𝑘}), then the conjunction of 𝛼𝑖’s by 𝑟 is 

𝑟(𝛼1, 𝛼2, … , 𝛼𝑘) = [𝑟0, 𝑟1
1, 𝑟2

1, … , 𝑟𝑚1
1 , 𝑟1

2, 𝑟2
2, … , 𝑟𝑚2

2 , … , 𝑟1
𝑘 , 𝑟2

𝑘 , … , 𝑟𝑚𝑘
𝑘 , 𝑟] 

One can see that the conjunction of structured data is also a structured data. 

The union and the queuing operations are special cases of the conjunction. 

3.2 Homomorphism, Isomorphism between Structured Data 

Let 𝑉, 𝑊 be two sets of atomic data, 𝜑: 𝑉 → 𝑊 and 𝑟 ∈ ℛm(𝑉). Then the 

homomorphic image of 𝑟  is defined as follows: 

Definition 11: Let 𝑉, 𝑊 be two sets of atomic data, 𝜑: 𝑉 → 𝑊 and 𝑟 ∈ ℛm(𝑉). 

i. If 𝑟 ∈ ℛ1(𝒜) = ℛ(𝑉), i.e. 𝑟 is finite set of queues from 𝑉, 𝑟 = {𝑟1, … , 𝑟𝑘}, 

where  𝑟𝑖 =  〈𝑟1
𝑖 , 𝑟2

𝑖 , … , 𝑟𝑚𝑖
𝑖 〉, 𝑟j

i ∈ 𝑉, then 

𝜑(𝑟) = {〈𝜑(𝑟1
1), 𝜑(𝑟2

1), … , 𝜑(𝑟𝑚1
1 )〉, , … , 〈𝜑(𝑟1

𝑘), 𝜑(𝑟2
𝑘), … , 𝜑(𝑟𝑚𝑘

𝑘 )〉} 

ii. Suppose that 𝜑(𝑠) has been defined for all 𝑠 ∈ ℛm(𝑉). If  𝑟 ∈ ℛm+1(𝑉) =

ℛ(ℛm(𝑉)), 𝑟 = {𝑟1, … , 𝑟𝑘}, where  𝑟𝑖 = 〈𝑟1
𝑖 , 𝑟2

𝑖 , … , 𝑟𝑚𝑖
𝑖 〉, 𝑟j

i ∈ ℛm(𝑉), then 

𝜑(𝑟) = {〈𝜑(𝑟1
1), 𝜑(𝑟2

1), … , 𝜑(𝑟𝑚1
1 )〉, , … , 〈𝜑(𝑟1

𝑘), 𝜑(𝑟2
𝑘), … , 𝜑(𝑟𝑚𝑘

𝑘 )〉} 

𝜑(𝑟) is the homomorphic image of 𝑟 through 𝜑. 

Remark: Let 𝜑: 𝑉 → 𝑊 and let 𝛼 =  [𝑟0, 𝑟1, … , 𝑟𝑚] ∈ 𝑆𝑉 be a structured data 

over 𝑉. It can be verified that 𝜑(𝛼) = [𝜑(𝑟0), 𝜑(𝑟1), … , 𝜑(𝑟𝑚)]  is also a 

structured data over 𝑊: 

i. 𝜑(𝑟0) = {𝜑(𝑎)|𝑎 ∈ 𝑉} is a finite set over 𝑊. 

ii. For 𝑖 = 1,2, … ,𝑚 we have 𝑟i  ∈ ℛ(𝑟0 ∪ {𝑟1, 𝑟2, … , 𝑟𝑖−1}), i.e. 𝑟𝑖 =

{𝑢1, 𝑢2, … , 𝑢𝑘}, where 𝑢𝑗 = 〈𝑢1
𝑗
, 𝑢2
𝑗
, … , 𝑢𝑚𝑗

𝑗 〉, 𝑢t
j
∈ 𝑟0 ∪ {𝑟1, 𝑟2, … , 𝑟𝑖−1}. By 

Definition 11 𝜑(𝑟𝑖) = {𝜑(𝑢1), 𝜑(𝑢2), … , 𝜑(𝑢𝑘)}, where 𝜑(𝑢𝑗) =

〈𝜑(𝑢1
𝑗
), 𝜑(𝑢2

𝑗
), … , 𝜑(𝑢𝑚𝑗

𝑗
)〉. 

Since 𝜑(𝑢𝑡
𝑗
) ∈ 𝜑(𝑟0) ∪ {𝜑(𝑟1), 𝜑(𝑟2), … , 𝜑(𝑟𝑖−1)}, we have: 

𝜑(𝑟𝑖) ∈ ℛ(𝜑(𝑟0) ∪ {𝜑(𝑟1), 𝜑(𝑟2), …, 𝜑(𝑟𝑖−1)}), i.e. [𝜑(𝑟0), 𝜑(𝑟1), … , 𝜑(𝑟𝑚)] is a 

structured data over 𝑊 

Definition 12: 

Let 𝜑: 𝑉 → 𝑊  and 𝛼 =  [𝑟0, 𝑟1, … , 𝑟𝑚] ∈ 𝑆𝑉 . 
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1. The homomorphic image of 𝛼 by 𝜑 is 𝜑(𝛼) = [𝜑(𝑟0), 𝜑(𝑟1), … , 𝜑(𝑟𝑚)]. 

2. If 𝜑 is bijective then 𝜑(𝛼) is the isomorphic image of 𝛼 by 𝜑. 

By the previous remark we can see that the homomorphic image of a structured 

data is also a structured data. In other words, 𝜑: 𝑉 → 𝑊 can be extended 

into 𝜑: 𝑆𝑉 → 𝑆𝑊. We have: 

Theorem 5: Let 𝜑: 𝑉 → 𝑊. Then 

1. For all 𝑟 ∈ ℛm(𝑉) we have 𝜑(𝑙(𝑟)) = 𝑙(𝜑(𝑟)) 

2. For all 𝛼 ∈ 𝑆𝑉 we have 𝜑(𝑙(𝛼)) = 𝑙(𝜑(𝛼)) 

Example 4: 

Let 𝜑: 𝑉 → 𝑊, where 𝑉 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, 𝑊 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝜑(𝑥1) = 𝑎, 

𝜑(𝑥2) = 𝑏, 𝜑(𝑥3) = 𝜑(𝑥4) = 𝑐. Then 

Table 2 

Homomorphic image of a structured data 

𝛼 = [𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5] 𝜑(𝛼) = [𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5] 

𝑟0 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} 𝑠0 = 𝜑(𝑟0) = {𝑎, 𝑏, 𝑐} 

𝑟1 = 〈𝑥1, 𝑥2〉 𝑠1 = 𝜑(𝑟1) =  〈𝑎, 𝑏〉 

𝑟2 = 〈𝑥2, 𝑥3〉 𝑠2 = 𝜑(𝑟2) = 〈𝑏, 𝑐〉 

𝑟3 = {𝑥1, 𝑟1, 𝑟2} 𝑠3 = 𝜑(𝑟3) =  {𝑎, 𝑠1, 𝑠2} 

𝑟4 = {𝑥2, 〈𝑥4, 𝑟3〉} 𝑠4 = 𝜑(𝑟4) = {𝑏, 〈𝑐, 𝑠3〉}  = {𝑏, 〈𝑐, {𝑎, 〈𝑎, 𝑏〉, 〈𝑏, 𝑐〉}〉} 

𝑟5 = {𝑟4, 〈𝑟1, 𝑟3, 𝑟4〉} 𝑠5 = 𝜑(𝑟5) = {𝑠4, 〈〈𝑎, 𝑏〉, 𝑠3, 𝑠4〉} 

Remark: There exists 𝜑: 𝑉 → 𝑊, 𝑟, 𝑠 ∈ ℛm(𝑉) such that: 

1. φ(𝑃𝑟𝑈(s)) ≠ 𝑃𝑟φ(𝑈)(φ(𝑠)) 

2. 𝑟 ⊲ 𝑠, but φ(𝑟) ⋪ φ(𝑠) 

Let 𝑉 = {𝑥, 𝑦, 𝑢}, 𝑈 = {𝑦, 𝑢}, φ (𝑥) = φ(𝑦) = a, φ(𝑢) = 𝑏. Then φ(𝑈) = {𝑎, 𝑏}. 
For 𝑟 = {𝑢, 〈𝑦, 𝑢〉}, 𝑠 = {𝑥, 〈𝑥, 𝑢〉, 〈𝑦, 𝑢〉}, we see 𝑟 = 𝑃𝑟𝑈(𝑠), therefore 𝑟 ⊲ 𝑠. 

Moreover, φ(𝑟) = φ(𝑃𝑟𝑈(s)) = {𝑏, 〈𝑎, 𝑏〉} and φ(𝑠) = 𝑃𝑟φ(𝑈)(φ(𝑠)) =

{𝑎, 〈𝑎, 𝑏〉 }. One can see φ(𝑃𝑟𝑈(s)) ≠ 𝑃𝑟φ(𝑈)(φ(𝑠)) and φ(𝑟) ⋪ φ(𝑠). 

3.3 Sub-Data 

Below we define sub-data of the given structured data. In a sense, sub-data are not 

simply parts of structured data, but inherit the given structure. 

Definition 13: 

For two structured data 𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚], 𝛽 = [𝑠0, 𝑠1, … , 𝑠𝑛]  over 𝑉 we say that 

𝛼 is a sub-data of 𝛽 if:  
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i. 𝑟0 ⊆ 𝑠0, and 

ii.  ∀𝑖 ≥ 1  ∃𝑗 ≥ 1: 𝑟𝑖 = 𝑠𝑗 

Then we write 𝛼 ⊑ 𝛽. The set of all sub-data of 𝛽 is denoted by 𝑆𝑈𝐵𝐷(𝛽). 

Example 5: 

Let 𝛼 = [𝑟0, 𝑟1, 𝑟2, 𝑟3], 𝛽 = [𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4] where 𝑠0 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, 𝑠1 =
〈𝑥2, 𝑥4〉, 𝑠2 = {𝑥1, 𝑠1} = {𝑥1, 〈𝑥2, 𝑥4〉}, 𝑠3 = 〈𝑥3, 𝑥4〉, 𝑠4 = {𝑠2, 𝑠3} =

{{𝑥1, 〈𝑥2, 𝑥4〉}, 〈𝑥3, 𝑥4〉} and 𝑟0 = {𝑥1, 𝑥2, 𝑥4}, 𝑟1 = 𝑠1 = 〈𝑥2, 𝑥4〉, 𝑟2 = 𝑠2 =

{𝑥1, 〈𝑥2, 𝑥4〉}. One can see that 𝛼 ⊑ 𝛽. 

It is evident that the relation ⊑ defined in Definition 13 is a partial order on the set 

of structured data. 

3.4 Components of Structured Data 

Not all sub-data of structured data are its components. The components of 

structured data are all those sub-data that are maximal in a sense. 

Definition 14: 

1. Let 𝛼, 𝛽 ∈ 𝑆𝑉 be structured data. We say that 𝛼 is a component of 𝛽 if 

i. 𝛼 ⊑ 𝛽, 

ii. There is no structured data 𝛾 ∈ 𝑆𝑉 such that 𝛼 ⊑ 𝛾, 𝛾 ⊑ 𝛽, and 𝛾 ≠ 𝛼, 𝛾 ≠
𝛽. 

The set of all components of a structured data 𝛽 is denoted by 𝐶𝑂𝑀𝑃(𝛽). 

2. Let 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝐶𝑂𝑀𝑃(𝛽). We say that {𝛼1, 𝛼2, … , 𝛼𝑛} is an adequate 

set of components of 𝛽 if 𝛽 = 𝛼1 ∪ 𝛼1 ∪ …∪ 𝛼𝑛. 

3. We say that {𝛼1, 𝛼2, … , 𝛼𝑛} is a minimal adequate set of components 

(MASC) of 𝛽 if: 

i. {𝛼1, 𝛼2, … , 𝛼𝑛} is an adequate set of components of 𝛽, 

ii. There is no real subset of {𝛼1, 𝛼1, … , 𝛼𝑛} that is also adequate set of 

components of 𝛽. 

In other words, a component of a structured data is some it’s sub-data that is 

maximal in the partial order defined by ⊑. 

Example 6: 

Let 𝛽 = [{𝑎, 𝑏, 𝑐}, {𝑏, 𝑐}, 〈𝑎, {𝑏, 𝑐}〉, {𝑎, 𝑐}, 〈𝑏, {𝑐, 𝑎}〉, {〈𝑎, {𝑏, 𝑐}〉, 〈𝑏, {𝑐, 𝑎}〉} ] 
and 𝛼 = [{𝑎, 𝑏, 𝑐}, {𝑏, 𝑐}, 〈𝑎, {𝑏, 𝑐}〉]. We can see that 𝛼 is a component of 𝛽. 

The following theorems are evident: 

Theorem 6: 



Acta Polytechnica Hungarica Vol. 13, No. 2, 2016 

 – 71 – 

1. Let 𝛼, 𝛽 ∈ 𝑆𝑉 be structured data and 𝛼 ⊑ 𝛽. Then there is 𝛾 ∈ 𝑆𝑉 such 

that 𝛼 ⊑ 𝛾 and 𝛾 is a component of 𝛽. 

2. Every structured data has at least one component. 

3. Every structured data has at least one MASC. 

Theorem 7: 

Let α ∈ 𝑆𝒳  be structured data and 𝜑:𝒜 → ℬ. If a set of structured data 

{𝛽1, 𝛽1, … , 𝛽𝑛} is a MASC of 𝛼, then {𝜑(𝛽1), 𝜑(𝛽1), … , 𝜑(𝛽𝑛)} is a MASC 

of 𝜑(α). 

3.5 Queries on Structured Data 

Queries are operations that for a given set of data produce a set of data. In general, 

a simple query retrieves from a structured data some its sub-data. In this sense 

selections and projections in relational databases are such simple queries. Joins are 

queries, but are not simple queries. 

Definition 15: Let 𝒟 ⊆ 𝑆𝑉 be a set of structured data over 𝑉. 

1. A query over 𝒟 is a mapping 𝑞: 𝒟 → 𝒟. 

2. A query 𝑞: 𝒟 → 𝒟 is proper for 𝛼 ∈ 𝑆𝑉 if 𝑞(𝛼) ⊑ 𝛼. 

A query 𝑞 is proper for 𝑆 ⊆ 𝑆𝑉 if it is proper for all 𝛼 ∈ 𝑆. 

3. Let 𝒬 be a set of queries over 𝒟 and 𝛼 ∈ 𝑆𝑉 be a structured data over 𝑉. 

Then 𝛼 is minimal applicable data for 𝒬 if: 

i. 𝛼  is applicable for all query 𝑞 ∈ 𝒬. 

ii. There is no 𝛽 ∈ 𝑆𝑉 such that 𝛽 ⊑ 𝛼 and 𝛽 is applicable for all 

queries 𝑞 ∈ 𝒬. 

3.6 Dependency Types and Keys 

In this section we propose a concept of dependency types and the dependencies 

between the sub-data and components defined accordingly to the given 

dependency types are studied. The idea is simple: structured data and their sub-

data, as well as their components are associated to the elements of a “sample set” 

where the “sample dependencies” have been well defined. Thus, the “sample 

dependencies” in the “sample set” induce, on the set of structured data, sample-

like dependencies. Our study is focused on the dependency types defined by the 

lattices with partial order. We show here that functional dependencies in relational 

databases are, in fact, partial order type (or lattice-type) dependencies. This 

approach reveals that most of properties of functional dependencies are inherited 

from the properties of the partial order on the “sample” lattice. 
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Let ℒ be a set with the partial order ≼, then, as usual, for 𝐿 ⊆ ℒ we denote 

𝑆𝑢𝑝(𝐿) = {𝑙 ∈ ℒ| ∀𝑙′ ∈ 𝐿: 𝑙′ ≼ 𝑙} and 𝑆𝑢𝑝∗(𝐿) = {𝑙 ∈ 𝑆𝑢𝑝(𝐿)| ∀𝑙′ ∈ ℒ: 𝑙′ ≼ 𝑙 ⇒
𝑙′ ∉ 𝑆𝑢𝑝(𝐿)}. Similarly, we denote 𝐼𝑛𝑓(𝐿) = {𝑙 ∈ ℒ| ∀𝑙′ ∈ 𝐿: 𝑙 ≼ 𝑙′} 
and 𝐼𝑛𝑓∗(𝐿) = {𝑙 ∈ 𝐼𝑛𝑓(𝐿)| ∀𝑙′ ∈ ℒ: 𝑙 ≼ 𝑙′ ⇒ 𝑙′ ∉ 𝐼𝑛𝑓(𝐿)}. 

Definition 16: 

1. Let ℛ ⊆ ℛ∞(𝑉) be a set of relations over 𝑉. By dependency type on ℛ we 

understand a couple (ℒ, 𝜑) where ℒ is a lattice with the partial order ≼, 
𝜑:ℛ → ℒ is a mapping that satisfies the following conditions: 

i. For 𝑟, 𝑠 ∈ ℛ if 𝜑(𝑟) are determined and 𝑠 ≤ 𝑟 then 𝜑(𝑠) is determined 

and 𝜑(𝑠) ≼ 𝜑(𝑟) 

ii. For 𝑟, 𝑠 ∈ ℛ, if 𝑠 = 〈𝑠1, 𝑠2, … , 𝑠n〉, 𝑟 = 〈𝑟1, 𝑟2, … , 𝑟𝑛〉;  𝜑(𝑠𝑖), 𝜑(𝑟𝑖) are 

determined and  𝜑(𝑠𝑖) ≼ 𝜑(𝑟𝑖) for all 𝑖 = 1,2,… , 𝑛, then 𝜑(𝑠), 𝜑(𝑟) 
are determined and 𝜑(𝑠) ≼ 𝜑(𝑟). 

iii. For 𝑟, 𝑠 ∈ ℛ, if 𝑠 = {𝑠1, 𝑠2, … , 𝑠n}, 𝑟 = {𝑟1, 𝑟2, … , 𝑟𝑚};  𝜑(𝑠𝑖), 𝜑(𝑟𝑗) are 

determined and for all 𝑖 = 1,2, … , 𝑛 there exists 𝑗 = 1,2, … ,𝑚 such 

that 𝜑(𝑠𝑖) ≼ 𝜑(𝑟𝑗), then 𝜑(𝑠), 𝜑(𝑟) are determined and 𝜑(𝑠) ≼ 𝜑(𝑟) 

2. For two relations 𝑟, 𝑠 ∈ ℛ we say that 𝑠 depends on 𝑟 in dependency 

type (ℒ, 𝜑) if 𝜑(𝑠) ≼ 𝜑(𝑟). Then we write 𝑟
ℒ,𝜑
→ 𝑠 or for simplicity 𝑟 → 𝑠 if 

ℒ, 𝜑 are well known. 

3. For two structured data 𝛼, 𝛽 ∈ 𝑆𝑉, 𝛼 = [𝑟1, 𝑟2, … , 𝑟𝑚], 𝛽 = [𝑠1, 𝑠2, … , 𝑠n],  
we say that 𝛽 depends on 𝛼 in dependency type (ℒ, 𝜑) if {𝑟1, 𝑟2, … , 𝑟𝑚} → 𝑠i 
for all 𝑖 = 1,2, … , 𝑛. Then we write 𝛼

ℒ,𝜑
→ 𝛽 or for simplicity 𝛼 → 𝛽 if ℒ, 𝜑 

are well known. 

The dependencies defined in the Definition 16 are called partial order 

dependencies or lattice-like dependencies. 

Theorem 8: Let (ℒ, 𝜑) be a dependency type, where ℒ is a set with the partial 

order ≼, 𝜑:ℛ → ℒ. 

1. If 𝑠 = 〈𝑠1, 𝑠2, … , 𝑠n〉, 𝜑(𝑠𝑖) is determined for all 𝑖 = 1,2, … , 𝑛, then 𝜑(𝑠) is 

determined and 

𝜑(𝑠) ∈ 𝑆𝑢𝑝∗(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n)) 

2. If 𝑠 = {𝑠1, 𝑠2, … , 𝑠n}, 𝜑(𝑠𝑖) is determined for all 𝑖 = 1,2, … , 𝑛, then 𝜑(𝑠) is 
determined and 

𝜑(𝑠) ∈ 𝑆𝑢𝑝∗(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n)) 

Proof: 
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If 𝑠 = 〈𝑠1, 𝑠2, … , 𝑠n〉 or 𝑠 = {𝑠1, 𝑠2, … , 𝑠n}, 𝜑(𝑠𝑖) is determined for all 𝑖 =
1,2, … , 𝑛, then 𝜑(𝑠) is determined. Moreover, 𝑠𝑖 ≤ 𝑠, therefore 𝜑(𝑠𝑖) ≼ 𝜑(𝑠) for 

all 𝑖 = 1,2, … , 𝑛, i.e. 𝜑(𝑠) ∈ 𝑆𝑢𝑝(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n)). 

Moreover, if 𝜑(𝑠′) ∈ 𝑆𝑢𝑝(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n)), then 𝜑(𝑠𝑖) ≼ 𝜑(𝑠′), for 

all 𝑖 = 1,2, … , 𝑛. 

1. By ii. in Definition 16, if 𝑠 = 〈𝑠1, 𝑠2, … , 𝑠n〉 then by 𝑠′ = 〈𝑠′, 𝑠′, … , 𝑠′〉, we 

have  𝜑(𝑠) ≼ 𝜑(𝑠′). This proves that 

𝜑(𝑠) ∈ 𝑆𝑢𝑝∗(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n)). 

2. By ii. in Definition 16, if 𝑠 = {𝑠1, 𝑠2, … , 𝑠n} then by 𝑠′ = {𝑠′}, we have 

 𝜑(𝑠) ≼ 𝜑(𝑠′). This proves that 𝜑(𝑠) ∈ 𝑆𝑢𝑝∗(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n)) 

Theorem 9: The functional dependencies in relations of relational database are 

partial order dependencies. 

Proof: In the Example 1 we have shown that every relation 𝑟 = {𝐴1, 𝐴2, … , 𝐴𝑚} in 

relational database with the columns 𝐴𝑖 = (𝑎𝑖𝑗), 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛 can 

be considered as a 2-order relation: 

𝑟 = {〈𝑎11, 𝑎12, … , 𝑎1𝑛〉, 〈𝑎21, 𝑎22, … , 𝑎2𝑛〉, … , 〈𝑎𝑚1, 𝑎𝑚2, … , 𝑎𝑚𝑛〉} 

 In fact, 𝑟 can be considered as a structured data 

𝑟 = [𝑟0, 𝑟1, 𝑟2, … , 𝑟𝑚 , 𝑟𝑚+1] 

where 𝑟0 = {𝑎𝑖𝑗|𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛}, 𝑟𝑖 = 〈𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛〉 for 𝑖 =

1,2, … ,𝑚 and 𝑟𝑚+1 = {𝑟1, 𝑟2, … , 𝑟𝑚}. 

The functional dependency between the columns of 𝑟 can be defined as follows: 

Let ℒ the set of all partitions on the set {𝑙1, 𝑙2, … , 𝑙𝑛}, where 𝑙1, 𝑙2, … , 𝑙𝑛 are the 

rows of 𝑟. We denote by ≼ the following partial order on ℒ: for two partitions 𝑝, 𝑞 

on 𝑙1, 𝑙2, … , 𝑙𝑛 we write 𝑝 ≼ 𝑞 if 

𝑙𝑗~𝑞𝑙𝑘 ⇒ 𝑙𝑗~𝑝𝑙𝑘 

To each 𝑎𝑖𝑗  we associate the partition 𝜑(𝑎𝑖𝑗) over {𝑙1, 𝑙2, … , 𝑙𝑛} defined by the 

following equivalence: 𝑙𝑘~𝑎𝑖𝑗𝑙𝑡  if and only if both 𝑙𝑘 , 𝑙𝑡 contain 𝑎𝑖𝑗  or both 𝑙𝑘 , 𝑙𝑡 

do not contain 𝑎𝑖𝑗 . 

To the column 𝐴𝑖 we associate the partition 𝜑(𝐴𝑖) over {𝑙1, 𝑙2, … , 𝑙𝑛} defined by 

the following equivalence: 𝑙𝑘~𝐴𝑖𝑙𝑡 if and only if 𝑎𝑖𝑘 = 𝑎𝑖𝑡. 

To a set of columns 𝒜 we associate the partition 𝜑(𝒜) over {𝑙1, 𝑙2, … , 𝑙𝑛} defined 

by the following equivalence: 𝑙𝑗~𝒜𝑙𝑘 if and only if 𝑙𝑗~𝐴𝑖𝑙𝑘 for all 𝐴𝑖 ∈ 𝒜. 

One can verify that 𝜑 satisfies the conditions in Definition 16, thus (ℒ, ≼) is 

partial order dependency type. It is easy to see that for two set of columns 𝒜,ℬ 

in 𝑟, ℬ functionally depends on 𝒜, i.e. 𝒜 → ℬ, if and only if 𝜑(ℬ) ≼ 𝜑(𝒜). 
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One can verify that most of rules that hold for functional dependency in fact hold 

also for generalized model, i.e. for partial order dependency. We have: 

Theorem 10: Let (ℒ, 𝜑) be a dependency type on ℛ ⊆ ℛ∞(𝑉). Let 𝛼, 𝛽, 𝛾 be 

relations (or structured data) over 𝑉. We have: 

1. (Reflexivity)  If 𝛽 ≤ 𝛼, then 𝛼 → 𝛽. 

2. (Augmentation) If 𝛼 → 𝛽, then 𝛼 ∪ 𝛾 → 𝛽 ∪ 𝛾 for any 𝛾. 

In the case 𝛼, 𝛽, 𝛾 are relations by 𝛼 ∪ 𝛾, 𝛽 ∪ 𝛾 we understand {𝛼, 𝛾} 
and {𝛽, 𝛾}, respectively. 

3. (Transitivity) If 𝛼 → 𝛽, 𝛽 → 𝛾, then 𝛼 → 𝛾. 

Definition 17: For a structured data 𝛼 ∈ 𝑆𝑉, 𝛼 = [𝑟1, 𝑟2, … , 𝑟𝑚], we say that a set 

𝛽 = {𝑟i1 , 𝑟i2 , … , 𝑟ik} is a key set of 𝛼 in dependency type (ℒ, 𝜑) if {𝑟i1 , 𝑟i2 , … , 𝑟ik}

ℒ,𝜑
→ 𝑟𝑖 for all 𝑖 = 1,2, … ,𝑚. 

The following example shows how a relation in relational database can be 

considered as structured data and how the functional dependencies in it can be 

studied as partial order dependencies. 

Example 7: Let 𝒓 be the relation in the Figure x, where 𝒍𝒊s and 𝒄𝟐 are the rows 

and the columns of 𝒓, respectively. 

Table 3 

Relation 𝒓 in relational database 

 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 

𝒍𝟏 𝑥1 𝑦1 𝑧1 𝑤1 

𝒍𝟐 𝑥1 𝑦2 𝑧2 𝑤1 

𝒍𝟑 𝑥2 𝑦2 𝑧3 𝑤1 

𝒓 can be considered as a structured data [𝒓𝟎, 𝒄𝟏, 𝒄𝟐, 𝒄𝟑, 𝒄𝟒, 𝒓] where 𝒓𝟎 =
{𝑥1, 𝑥2, 𝑦1, 𝑦2 , 𝑧1, 𝑧2, 𝑧3, 𝑤1} is the set of all atomic data, 𝒄𝟏 = 〈𝑥1, 𝑥1, 𝑥2〉, 𝒄𝟐 =
〈𝑦1, 𝑦2, 𝑦2〉, 𝒄𝟑 = 〈𝑧1, 𝑧2, 𝑧3〉, 𝒄𝟒 = 〈𝑤1, 𝑤1, 𝑤1〉 are the columns of the relation 𝒓 =
{𝒄𝟏, 𝒄𝟐, 𝒄𝟑, 𝒄𝟒}. 

Denote the rows of 𝒓 by 𝒍𝟏, 𝒍𝟐, 𝒍𝟑. The set of all partitions on {𝒍𝟏, 𝒍𝟐, 𝒍𝟑} is denoted 

by ℒ. Every partition 𝑝 ∈ ℒ can be determined by the equivalence ~𝑝: 𝒍𝒊, 𝒍𝒋 belong 

to a same class in 𝑝 if and only if 𝒍𝒊~𝑝𝒍𝒋. ℒ is a lattice where the partial order on ℒ 

is defined as usual: 𝑝 ≼ 𝑞 if and only if 𝒍𝒊~𝑞𝒍𝒋 ⇒ 𝒍𝒊~𝑝𝒍𝒋. The partial order on ℒ is 

described in the following diagram: 
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Figure 3 

The partial order between the partitions 

Each relation 𝒙 in the structured data 𝒓, 𝒙 ∈ {𝒓𝟎, 𝒄𝟏, 𝒄𝟐, 𝒄𝟑, 𝒄𝟒, 𝒓}, accordingly to 

Theorem 9, can be associated to a partition 𝜑(𝒙) ∈ ℒ as follows: 

Table 4 

Relations in a structured data and their image in a partially ordered set 

 

Thus one can see the dependencies between the relations in the structured data 𝒓: 

 

Figure 4 

The dependencies between the relations in a structured data 

Conclusions 

In this paper we have proposed a formalization for structured data, in which data 

are constructed recursively by two basic structures, namely, by sets and queues, 

based upon atomic data. Although the approach may not deal with all structured 

data, it does touch on a large portion. The relations, relational databases can be 

handled in this formalization. We show that many well-known concepts and 

results in relational databases, such as keys and functional dependencies, can be 

studied in this generalized model of data. The generalization has certain 

advantages: the concepts and results in relational databases are quite clear in this 

formalization, the properties of keys and functional dependencies are inherited 

from the sample hierarchy in a lattice, etc. Moreover, the proposed approach also 

offers a unique method for managing different operations on structured data. 
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As one can see, the approach poses several problems that may be interesting 

topics for further studies. These problems are: 

─ The operations on structured data should be studied more thoroughly, 

including the composition and decomposition of structured data. 

─ The relational algebra should be developed for structured data. 

─ An optimization and normalization of structured data should be studied that 

guarantees the optimality and consistency of structured data management 

systems. 
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