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Abstract—We prove the following theorem. Given a planar
graph G and an integer k, it is possible in polynomial time to
randomly sample a subset A of vertices of G with the following
properties:

• A induces a subgraph of G of treewidth O(
√
k log k), and

• for every connected subgraph H of G on at most k
vertices, the probability that A covers the whole vertex
set of H is at least (2O(

√
k log2 k) · nO(1))−1, where n is

the number of vertices of G.

Together with standard dynamic programming techniques for
graphs of bounded treewidth, this result gives a versatile
technique for obtaining (randomized) subexponential param-
eterized algorithms for problems on planar graphs, usually
with running time bound 2O(

√
k log2 k)nO(1). The technique

can be applied to problems expressible as searching for a
small, connected pattern with a prescribed property in a large
host graph; examples of such problems include DIRECTED

k-PATH, WEIGHTED k-PATH, VERTEX COVER LOCAL SEARCH,
and SUBGRAPH ISOMORPHISM, among others. Up to this point,
it was open whether these problems can be solved in subex-
ponential parameterized time on planar graphs, because they
are not amenable to the classic technique of bidimensionality.
Furthermore, all our results hold in fact on any class of graphs
that exclude a fixed apex graph as a minor, in particular on
graphs embeddable in any fixed surface.
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I. INTRODUCTION

Most of the natural NP-hard problems on graphs remain

NP-hard even when the input graph is restricted to be

planar. However, it was realized already in the dawn of

algorithm design that the planarity of the input can be

exploited algorithmically. Using the classic planar separator

theorem of Lipton and Tarjan [1], one can design algorithms

working in subexponential time, usually of the form 2O(
√
n)

or 2O(
√
n logn), for a wide variety of problems that behave

well with respect to separators; such running time cannot

be achieved on general graph unless the Exponential Time

Hypothesis (ETH) fails [2]. From the modern perspective,

the planar separator theorem implies that a planar graph

on n vertices has treewidth O(
√
n), and the obtained tree

decomposition can be used to run a Divide&Conquer al-

gorithm or a dynamic programming subroutine. The idea

of exploiting small separators plays a crucial role in modern

algorithm design on planar graphs and related graph classes,

including polynomial-time, approximation, and parameter-

ized algorithmic paradigms.

Let us take a closer look at the area of parameterized com-

plexity. While for most parameterized NP-hard problems the

exponential dependence on the parameter is the best we can

hope for, under ETH, there are plenty of problems admitting

subexponential parameterized algorithms when restricted to

planar graphs. This was first observed in 2000 by Alber

et al. [3], who obtained a subexponential parameterized

algorithm for deciding whether a given n-vertex planar graph

contains a dominating set of size k in time 2O(
√
k)nO(1).

It turned out that the phenomenon is much more general.

A robust framework explaining why various problems like

FEEDBACK VERTEX SET, VERTEX COVER, DOMINATING

SET or LONGEST PATH admit subexponential parameterized

algorithms on planar graphs, usually with running times of

the form 2O(
√
k) ·nO(1) or 2O(

√
k log k) ·nO(1), is provided by

the bidimensionality theory of Demaine et al. [4]. Roughly
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speaking, the idea is to exploit the relation between the

treewidth of a planar graph and the size of a grid minor that

can be found in it. More precisely, the following win/win

approach is implemented. Either the treewidth of the graph

is O(
√
k) and the problem can be solved using dynamic

programming on a tree decomposition, or a c
√
k × c

√
k

grid minor can be found, for some large constant c, which

immediately implies that we are working with a yes- or with

a no-instance of the problem. Furthermore, it turns out that

for a large majority of problems, the running time yielded

by bidimensionality is essentially optimal under ETH: no

2o(
√
k) · nO(1)-time algorithm can be expected. We refer to

the survey [5], as well as the textbook [6, Chapter 7] for an

overview of bidimensionality and its applications.
While the requirement that the problem can be solved ef-

ficiently on bounded treewidth graphs is usually not restric-

tive, the assumption that uncovering any large grid minor

provides a meaningful insight into the instance considerably

limits the applicability of the bidimensionality methodology.

Therefore, while bidimensionality can be extended to more

general classes, like H-minor-free graphs [4], [7], map

graphs [8], or unit disk graphs [9], there are many problems

that are “ε-close” to being bidimensional, and yet their

parameterized complexity remained open for years.
One example where such a situation occurs is the DI-

RECTED LONGEST PATH problem. While the existence of

a
√
k ×

√
k grid minor in an undirected graph immediately

implies the existence of an undirected path on k vertices, the

same principle cannot be applied in the directed setting: even

if we uncover a large grid minor in the underlying undirected

graph, there is no guarantee that a long directed path can

be found, because we do not control the orientation of the

arcs. Thus, DIRECTED LONGEST PATH can be solved in

time 2O(k)nO(1) on general graphs using color coding [10],

but no substantially faster algorithms on planar graphs

were known. On the other hand, no 2o(
√
k) · nO(1)-time

algorithm on planar graphs can be expected under ETH,

which leaves a large gap between the known upper and lower

bounds. Closing this embarrassing gap was mentioned as

an open problem in [11]–[14]. A similar situation happens

for WEIGHTED LONGEST PATH, where we are looking for

a k-path of minimum weight in an edge-weighted planar

graph; the question about the complexity of this problem

was raised in [11], [15]. Another example is k-CYCLE:

deciding whether a given planar graph contains a cycle of

length exactly k. While the property of admitting a cycle

of length at least k is bidimensional, and therefore admits a

2O(
√
k)nO(1)-time algorithm on planar graphs, the technique

fails for the variant when we ask for length exactly k. This

question was asked in [11]. We will mention more problems

with this behavior later on.
The theme of “subexponential algorithms beyond bidi-

mensionality” has recently been intensively investigated,

with various success. For a number of specific problems

such algorithms were found; these include planar variants of

STEINER TREE parameterized by the size of the tree [16],

[17], SUBSET TSP [18], or MAX LEAF OUTBRANCH-

ING [12]. In all these cases, the algorithms were technically

very involved and depended heavily on the combinatorics

of the problem at hand. A more systematic approach is

offered by the work of Dorn et al. [12] and Tazari [13],

[14], who obtained “almost” subexponential algorithm for

DIRECTED LONGEST PATH on planar, and more generally,

apex-minor-free graphs. More precisely, they proved that for

any ε > 0, there is δ such that the DIRECTED LONGEST

PATH problem is solvable in time O((1 + ε)k · nδ) on

planar directed graphs, and more generally, on directed

graphs whose underlying undirected graph excludes a fixed

apex graph as a minor. This technique can be extended to

other problems that can be characterized as searching for a

connected pattern in a large host graph, which suggests that

some more robust methodology is hiding just beyond the

frontier of our understanding.

Main result. In this paper, we introduce a versatile technique

for solving such problems in subexponential parameterized

time, by proving the following theorem.

Theorem 1. Let C be a class of graphs that exclude a
fixed apex graph as a minor. Then there exists a randomized
polynomial-time algorithm that, given an n-vertex graph G
from C and an integer k, samples a vertex subset A ⊆ V (G)
with the following properties:
(P1) The induced subgraph G[A] has treewidth

O(
√
k log k).

(P2) For every vertex subset X ⊆ V (G) with |X| ≤ k that
induces a connected subgraph of G, the probability
that X is covered by A, that is X ⊆ A, is at least
(2O(

√
k log2 k) · nO(1))−1.

Here, by an apex graph we mean a graph that can be made

planar by removing one vertex. Note that Theorem 1 in par-

ticular applies to planar graphs, and to graphs embeddable

in a fixed surface.

Applications. Similarly as in the case of bidimensionality,

Theorem 1 provides a simple recipe for obtaining subex-

ponential parameterized algorithms: check how fast the

considered problem can be solved on graphs of bounded

treewidth, and then combine the treewidth-based algorithm

with Theorem 1. We now show how Theorem 1 can be

used to obtain randomized subexponential parameterized

algorithms for a variety of problems on apex-minor-free

classes; for these problems, the existence of such algorithms

so far was open even for planar graphs. We only list the most

interesting examples to showcase possible applications.

Directed and weighted paths and cycles. As mentioned

earlier, the question about the existence of subexponential

parameterized algorithms for DIRECTED LONGEST PATH
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and WEIGHTED LONGEST PATH on planar graphs was asked

in [11]–[14]. Let us observe that on a graph of treewidth t,
both DIRECTED LONGEST PATH and WEIGHTED LONGEST

PATH, as well as their different combinations, like finding

a maximum or minimum weight directed path or cycle

on k vertices, are solvable in time 2O(t log t)nO(1) by the

standard dynamic programming [6, Chapter 7], and single-

exponential running time 2O(t)nO(1) is achievable [19]–[21].

In order to obtain a subexponential parameterized algo-

rithm for, say, DIRECTED LONGEST PATH on planar directed

graphs, we do the following. Let G be the given planar

directed graph, and let U(G) be its underlying undirected

graph. Apply the algorithm of Theorem 1 to U(G), which in

polynomial time samples a subset A ⊆ V (U(G)) such that

G[A] has treewidth at most O(
√
k log k), and the probability

that A covers some directed k-path in G, provided it exists,

is at least (2O(
√
k log2 k) ·nO(1))−1. Then, we verify whether

G[A] admits a directed k-path using standard dynamic

programming in time 2O(
√
k log k) · nO(1). Provided some

directed k-path exists in the graph, this algorithm will

find one with probability at least (2O(
√
k log2 k) · nO(1))−1.

Thus, by making 2O(
√
k log2 k) · nO(1) independent runs of

the algorithm, we can reduce the error probability to at

most 1/2. All in all, the obtained algorithm runs in time

2O(
√
k log2 k) ·nO(1) and can only report false negatives with

probability at most 1/2

Note that in order to apply the dynamic programming al-

gorithm, we need to construct a suitable tree decomposition

of G[A]. However, a variety of standard algorithms, e.g., the

classic 4-approximation of Robertson and Seymour [22], can

be used to construct such an approximate tree decomposition

within the same asymptotic running time. Actually, a closer

look into the proof of Theorem 1 reveals that the algorithm

can construct, within the same running time, a tree decom-

position of G[A] certifying the upper bound on its treewidth.

Observe that the same approach works also for any apex-

minor-free class C, and can be applied also to WEIGHTED

LONGEST PATH and k-CYCLE. We obtain the following.

Corollary 2. Let C be a class of graphs that exclude some
fixed apex graph as a minor. Then problems: WEIGHTED

LONGEST PATH, k-CYCLE, and DIRECTED LONGEST

PATH, are all solvable in randomized time 2O(
√
k log2 k) ·

nO(1) on graphs from C. In case of DIRECTED LONGEST

PATH, we mean that the underlying undirected graph of the
input graph belongs to C.

Note here that the approach presented above works in

the same way for various combinations and extensions of

problems in Corollary 2, like weighted, colored, or directed

variants, possibly with some constraints on in- and out-

degrees, etc. In essence, the only properties that we need

is that the sought pattern persists in the subgraph induced

by the covering set A, and that it can be efficiently found

using dynamic programming on a tree decomposition. To

give one more concrete example, Sau and Thilikos in [15]

studied the problem of finding a connected k-edge subgraph

with all vertices of degree at most some integer Δ; for Δ = 2
this corresponds to finding a k-path or a k-cycle. For fixed

Δ they gave a subexponential algorithm on (unweighted)

graphs excluding some fixed graph as a minor, and asked

if the weighted version of this problem can be solved in

subexponential parameterized time. Theorem 1 immediately

implies that for fixed Δ, the weighted variant of the problem

is solvable in randomized time 2O(
√
k log2 k) ·nO(1) on apex-

minor-free graphs.

Subgraph Isomorphism. SUBGRAPH ISOMORPHISM is a

fundamental problem, where we are given two graphs: an

n-vertex host graph G and a k-vertex pattern graph P . The

task is to decide whether P is isomorphic to a subgraph

of G. Eppstein [23] gave an algorithm solving SUBGRAPH

ISOMORPHISM on planar graphs in time kO(k)n, which was

subsequently improved by Dorn [24] to 2O(k)n. The first

implication of our main result for SUBGRAPH ISOMOR-

PHISM concerns the case when the maximum degree of P is

bounded by a constant. Matoušek and Thomas [25] proved

that if a tree decomposition of the host graph G of width

t is given, and the pattern graph P is connected and of

maximum degree at most some constant Δ, then deciding

whether P is isomorphic to a subgraph of G can be done

in time O(kt+1n). By combining this with Theorem 1 as

before, we obtain the following.

Corollary 3. Let C be a class of graphs that exclude some
fixed apex graph as a minor, and let Δ be a fixed constant.
Then, given a connected graph P with at most k vertices and
maximum degree not exceeding Δ, and a graph G ∈ C on
n vertices, it is possible to decide whether P is isomorphic
to a subgraph of G in randomized time 2O(

√
k log2 k) ·nO(1).

In a very recent work, Bodlaender et al. [26] proved

that SUBGRAPH ISOMORPHISM on planar graphs cannot be

solved in time 2o(n/ logn) unless ETH fails. The lower bound

of Bodlaender et al. holds for two very special cases. The

first case is when the pattern graph P is a tree and has only

one vertex of super-constant degree. Then the second case

is when P is not connected, but its maximum degree is a

constant. Thus, the results of Bodlaender et al. show that

both the connectivity and the bounded degree constraints

on pattern P in Corollary 3 are necessary to keep the

square root dependence on k in the exponent. However, a

possibility of solving SUBGRAPH ISOMORPHISM in time

2O(k/ log k) · nO(1), which is still parameterized subexpo-

nential, is not ruled out by the work of Bodlaender et

al. Interestingly enough, Bodlaender et al. [26], also give

a matching dynamic programming algorithm that can be

combined with our theorem.

Theorem 4 ( [26]). Let H be a fixed graph, and let us fix
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any ε > 0. Given a pattern graph P on at most k vertices,
and an H-minor-free host graph G of treewidth at most
O(k1−ε), it is possible to decide whether P is isomorphic
to a subgraph of G in time 2O(k/ log k) · nO(1).

We remark that Bodlaender et al. [26] claim only a subex-

ponential exact algorithm with running time 2O(n/ logn), but

the dynamic programming subroutine underlying this result

actually gives the stronger algorithmic result as stated above.

By combining Theorem 4 with Theorem 1 in the same

way as before, we obtain the following.

Corollary 5. Let C be a class of graphs that exclude some
fixed apex graph as a minor. Then, given a connected graph
P with at most k vertices, and a graph G ∈ C on n
vertices, it is possible to decide whether P is isomorphic
to a subgraph of G in randomized time 2O(k/ log k) · nO(1).

Let us stress here that the lower bounds of Bodlaender et

al. [26] show that the running time given by Corollary 5 is

tight: no 2o(k/ log k) · nO(1)-time algorithm can be expected

under ETH.

Local search. Fellows et al. [27] studied the following pa-

rameterized local search problem on apex-minor-free graphs.

In the LS VERTEX COVER problem we are given an n-vertex

graph G, a vertex cover S in G, and an integer k. The task

is to decide whether G contains a vertex cover S′, such

that |S′| < |S| and the Hamming distance |S�S′| between

sets S and S′ is at most k. In other words, for a given

vertex cover, we ask if there is a smaller vertex cover which

is k-close to the given one, in terms of Hamming (edit)

distance. Fellows et al. [27] gave an algorithm solving LS

VERTEX COVER in time 2O(k) ·nO(1) on planar graphs. The

question whether this can be improved to subexponential

parameterized time was raised in [27], [28].

The crux of the approach of Fellows et al. [27] is the

following observation. If there is solution to LS VERTEX

COVER, then there is a solution S′, such that S�S′ induces

a connected subgraph in G. Since S�S′ contains at most

k vertices and is connected, our Theorem 1 can be used

to sample a vertex subset A that induces a subgraph of

treewidth O(
√
k log k) and covers S�S′ with high prob-

ability. Thus, by applying the same principle of independent

repetition of the algorithm, we basically have search for

suitable sets S \S′ and S′ \S in the subgraph of G induced

by A. We should be, however, careful here: there can be

edges between A and its complement, and these edges also

need to be covered by S′, so we cannot just restrict our

attention to G[A]. To handle this, we apply the following

preprocessing. For every vertex v ∈ A, if v is adjacent to

some vertex outside of A that is not included S, then v must

be in S and needs also to remain in S′. Hence, we delete all

such vertices from G[A], and it is easy to see that now the

problem boils down to looking for feasible S \S′ and S′ \S
within the obtained induced subgraph. This can be easily

done in time 2O(t) · nO(1), where t ≤ O(
√
k log k) is the

treewidth of this subgraph; hence we obtain the following:

Corollary 6. Let C be a class of graphs that exclude
some fixed apex graph as a minor. Then LS VERTEX

COVER on graphs from C can be solved in randomized time
2O(

√
k log2 k) · nO(1).

Steiner tree. STEINER TREE is a fundamental network de-

sign problem: for a graph G with a prescribed set of terminal

vertices S, and an integer k, we ask whether there is a tree on

at most k edges that spans all terminal vertices. Pilipczuk et

al. [16] gave an algorithm for this problem with running time

2O((k log k)2/3) ·n on planar graphs and on graphs of bounded

genus. With much more additional work, the running time

was improved to 2O(
√
k log k) · n in [17].

Again, by combining the standard dynamic programming

solving STEINER TREE on graphs of treewidth t in time

2O(t log t)nO(1), see e.g. [29], with Theorem 1, we immedi-

ately obtain the following.

Corollary 7. Let C be a class of graphs that exclude some
fixed apex graph as a minor. Then STEINER TREE on graphs
from C can be solved in randomized time 2O(

√
k log2 k)·nO(1).

Contrary to the much more involved algorithm of

Pilipczuk et al. [17], the algorithm above can equally easily

handle various variants of the problem. For instance, we

can look for a Steiner tree on k edges that minimizes the

total weight of the edges, or we can ask for a Steiner out-

branching in a directed graph, or we can put additional

constraints on vertex degrees in the tree, and so on.

Outline. This extended abstract contains only an overview

of the proof of Theorem 1. A full version of the paper is

available on arXiv [30].

II. OVERVIEW OF THE PROOF OF THEOREM 1

We now give an informal overview of the proof of

Theorem 1 in the case of planar graphs. In fact, the only

two properties of planar graphs which are essential to the

proof are (a) planar graphs are minor-closed, and (b) they

have locally bounded treewidth by a linear function, that is,

there exists a constant ctw such that every planar graph of

radius k has treewidth at most ctw · k. In fact, for planar

graphs one can take ctw = 3 [31], and as shown in [32],

the graph classes satisfying both (a) and (b) are exactly

graph classes excluding a fixed apex graph as a minor.

However, in a planar graph we can rely on some topological

intuition, making the presentation more intuitive. We assume

familiarity with tree decompositions.

Locally bounded treewidth of planar graphs. As a warm-

up, let us revisit a proof that planar graphs have locally

bounded treewidth. The considered proof yields a worse

constant than ctw = 3, but one of the main ideas — to
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find a separator in a planar graph by finding many disjoint

paths, present already in [33] — it is insightful for our

argumentation. Let G0 be a graph of radius k, that is, there

exists a root vertex r0 such that every vertex of G0 is within

distance at most k from r0.

As with most proofs showing that a graph in question

has bounded treewidth, we will recursively construct a tree

decomposition of bounded width. To this end, we need

to carefully define the state of the recursion. We do it as

follows: the recursive step aims at decomposing a subgraph

G of the input graph G0, with some chosen set of terminals

T ⊆ V (G) on the outer face of G. The terminals T represent

connections between G and the rest of G0. In order to be

able to glue back the obtained decompositions from the

recursive step, our goal is to provide a tree decomposition

of G with T contained in the root bag of the decomposition,

so that later we can connect this bag to decompositions of

other pieces of the graph that also contain the vertices of T .

During the process, we keep the invariant that |T | ≤ 8(k+2),
allowing us to bound the width of the decomposition.

Furthermore, the assumption that G0 is of bounded radius

projects onto the recursive subinstances by the following

invariant: every vertex of G is within distance at most k
from some terminal.

In the recursive step, if T = V (G), |T | < 8(k + 2), or

G is not connected, then we can perform some simple steps

that we do not discuss here. The interesting case is when

|T | = 8(k + 2).

We partition T along the outer face into four parts of size

2(k+2) each, called north, east, south, and west terminals.

We compute minimum vertex cuts between the north and the

south terminals, and between the east and the west terminals.

If, in any of these directions, a cut W of size strictly smaller

than 2(k + 2) is found, then we can make a divide-and-

conquer step: for every connected component D of G−(T ∪
W ) we recurse on the graph G[N [D]] with terminals N(D),
obtaining a tree decomposition TD. Finally, we attach all the

obtained tree decompositions below a fresh root node with

bag T ∪W , which is of size less than 10(k + 2).

The crux is that such a separator W is always present

in the graph. Indeed, otherwise there would exist 2(k + 2)
disjoint paths between the north and the south terminals

and 2(k + 2) disjoint paths between the east and the west

terminals. Consider the region bounded by the two middle

north-south and the two middle east-west paths: the vertices

contained in this region are within distance larger than k
from the outer face, on which all terminals lie (see Fig. 1a).

This contradicts our invariant.

Our recursion. In our case, we use a similar, but much

more involved recursion scheme. In the recursive step, we

are given a minor G of the input graph G0, with some

light terminals T li ⊆ V (G) on the outer face, and some

heavy terminals T he ⊆ V (G) \ T li lying anywhere in the

graph. As before, the terminals represent connections to

the other parts of the graph. We require that the terminals

T := T li ∪ T he need to be contained in the root bag

of the tree decomposition that is going to be constructed

in this recursion step. Moreover, we maintain an invariant

that |T | = Õ(
√
k), in order to bound the width of the

decomposition. The graph G is a minor of the input graph

G0, since we often prefer to contract some edges instead of

deleting them; thus we maintain some distance properties of

G.

In our recursion, the light terminals originate from cutting

the graph in a similar fashion as in the proof that planar

graphs have locally bounded treewidth, presented above.

Hence, we keep the invariant that light terminals lie on

the outer face. We sometimes need to cut deeply inside G.

The produced terminals are heavy, but every such step

corresponds to a significant progress in detecting the pattern,

and hence such steps will be rare. In every such step, we

artificially provide connectivity of the subinstances through

the heavy terminals; this is technical and omitted in this

overview.

Recall that our goal is to preserve a connected k-vertex

pattern from the input graph. Here, the pattern can become

disconnected by recursing on subsequent separations, but

such cuttings will always be along light terminals. Therefore,

we define a pattern in a subinstance (G,T li, T he) solved

in the recursion as a set X ⊆ V (G) of size at most k
such that every connected component of G[X] contains a

light terminal. Hence, compared to the presented proof of

planarity implying locally bounded treewidth, we aim at

more restricted width of the decomposition, namely Õ(
√
k),

but we can contract or delete parts of G, as long as the

probability of spoiling a fixed, but unknown k-vertex pattern

X remains inverse subexponential in k.

Clustering. Upon deleting a vertex or an edge, some dis-

tance properties that we rely on can be broken. We need the

following sampling procedure that partitions the graph into

connected components of bounded radii, such that the prob-

ability of spoiling a particular pattern is small. The proof of

the following theorem is similar to the metric decomposition

tool of [34] and to the recursive decomposition used in the

construction of Bartal’s HSTs [35].

Theorem 8. There exists a randomized polynomial-time
algorithm that, given a graph G on n > 1 vertices and
a positive integer k, returns a vertex subset B ⊆ V (G) with
the following properties:
(a) The radius of each connected component of G[B] is less

than 9k2 log n.
(b) For each vertex subset X ⊆ V (G) of size at most k, the

probability that X ⊆ B is at least 1− 1
k .

Standard divide&conquer step. We would like to apply a

similar divide&conquer step as in the presented proof that
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Figure 1: Illustrations for Section II. (a) The proof that planarity implies locally bounded treewidth. The vertices in the

gray area are too far from the terminals. (b) Standard partitioning step. The margin is gray and the islands are separated by

dashed lines. The blue separator consists of Õ(
√
k) islands and vertices of the margin. If the blue islands are disjoint from

the solution, we delete them and obtain a balanced separator of size Õ(
√
k). (c) The situation if the standard partitioning

step cannot be applied: we have a component of the pattern (green) stretched between a light terminal and a vertex z inside

the margin. (d) Chain of z-T li separators: a sparse separator that partitions the pattern in a balanced fashion is highlighted.

(e) Contraction of a path Pi (blue) onto its public vertices (blue circles). A significant number of the vertices of the pattern

become much closer to the light terminals.

planar graphs have locally bounded treewidth. The problem

is that we can only afford a separator W of size Õ(
√
k),

however the radius of the graph can be much larger.

Let us define the margin M to be the set of vertices

within distance at most 2000
√
k lg k = Õ(

√
k) from any

light terminal. Intuitively, our case should be easy if every

vertex of the pattern X is in the margin: we could then

just throw away all vertices of G − M and use locally

bounded treewidth, as the light terminals lie on the outer

face. However, we cannot just branch (guess) whether this

is the case: the information that G−M contains a vertex of

the pattern is not directly useful.

Instead, we make a localized analog of this guess: we

identify a relatively compact set of vertices of G − M
that prohibit us from making a single step of the recursion

sketched above. First, we apply the clustering procedure

(Theorem 8) to the graph G −M , so that we can assume

that every connected component of G − M , henceforth

called an island, is of radius bounded polynomially in k
and lg n. Second, we construct an auxiliary graph H by
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contracting every island C into a single vertex uC . Note

that now in H every vertex is within distance at most

2000
√
k lg k + 1 = Õ(

√
k) from a light terminal. Thus

H has treewidth Õ(
√
k). By standard arguments, we can

find a balanced separator WH in H , that is, a separator

of size Õ(
√
k) such that every connected component of

H−WH , after lifting it back to G by reversing contractions,

contains (a) at most |T |/2 terminals from G, and (b) at most

|V (G) \ T |/2 non-terminal vertices of G.

The separator WH can be similarly lifted to a separator W
in G that corresponds to Õ(

√
k) vertices of M and Õ(

√
k)

islands. Now it is useful to make a guess if some vertex of

an island in W (i.e., a vertex of W \ M ) belongs to the

solution: if this is not the case, we can delete the whole

W \M from the graph, and apply the procedure recursively

to connected components of G−W ; if this is the case, the

area to search for such a vertex of the pattern is limited

to Õ(
√
k) components of radius polynomial in k and lg n.

Therefore, with some probability q we decide to assume

that W \M contains a vertex of the pattern, and with the

remaining probability 1−q we decide that this is not the case.

In the latter case, we remove W \M from the graph, and

recurse using W∩M , which has size Õ(
√
k), as a separator;

see Fig. 1b. The fact that every connected component of

G−W contains at most |T |/2 terminals allows us to keep

the invariant that |T | = Õ(
√
k).

Let us now analyze what probability q we can afford.

Observe that in every subinstance solved recursively, the

number of nonterminal vertices is halved. Thus, every vertex

x of the pattern X is contained in G only in O(lg n)
subinstances in the whole recursion tree; here we exclude

the subinstances where x is a light terminal, because then

its treatment is determined by the output specification of the

recursive procedure. Consequently, we care about correct

choices only in O(k lg n) steps of the recursion. In these

steps, we want not to make a mistake during the clustering

procedure (1/k failure probability) and to correctly guess

that W \ M is disjoint with the pattern, provided this is

actually the case (q failure probability). Thus, if we put

q = 1/k, then the probability that we succeed in all

O(k lg n) steps we care about is inverse-polynomial in n;

this is sufficient for our needs.

Island with a vertex of the pattern. We are left with

the second case, where some island C ⊆ W intersects the

pattern. We have q = 1/k probability of guessing correctly

that this is the case, and independently we have (1 − 1/k)
probability of not making a mistake in the clustering step.

The bound on the radii of the islands, as well as the

fact that only Õ(
√
k) islands are contained in W , allow

us to localize this vertex of the pattern even closer. Recall

that the radius of each island is bounded by 9k2 lg n. For

the rest of this overview we assume that lg n is bounded

polynomially in k, and hence the radius of each island is

polynomial in k. Intuitively, this is because if, say, we had

lg n > 100 · k100, then n > 2100k
100

and with 2100k
100

allowed factor in the running time bound we can apply a

variety of other algorithmic techniques. More formally, we

observe that (lg n)
˜O(
√
k) is bounded by 2

˜O(
√
k) ·no(1), which

is sufficient to make sure that all the experiments whose

success probability depend on lg n succeed simultaneously

with probability at least (2
˜O(
√
k) · no(1))−1.

We first guess (by sampling at random) an island C ⊆
W that contains a vertex of the pattern. Then, we pick an

arbitrary vertex z ∈ C, and guess (by sampling at random)

the distance d in C between z and the closest vertex of the

pattern in C. By contracting all vertices within distance less

than d from z, with success probability inverse-polynomial

in k, we arrive at the following situation: (see Fig. 1c)

we have a vertex z /∈M such that either z
or a neighbor of z belongs to the pattern X .

Chain of separators. Hence, one of the components of

G[X] is stretched across the margin M , between a light

terminal on the outer face and the vertex z inside the

margin. Our idea now is to use this information to cut

X in a balanced fashion. Note that we have already intro-

duced an inverse-polynomial in k multiplicative factor in the

success probability. Hence, to maintain the overall inverse-

subexponential dependency on k in the success probability,

we should aim at a progress that will allow us to bound the

number of such steps by Õ(
√
k).

Unfortunately, it is not obvious how to find such a

separation. It is naive to hope for a z-T li separator of size

Õ(
√
k), and a larger separator seems useless, if there is

only one. However, we can aim at a Baker-style argument:

if we find a chain of p pairwise disjoint z-T li separators

C1, C2, . . . , Cp (see Fig. 1d), we could guess a “sparse

one”, and separate along it. Since the separators are pairwise

disjoint, there exists a “sparse” separator Ci with at most

k/p vertices of the pattern. On the other hand, since the

pattern contains a component stretched from z to a light

terminal, every Ci intersects the pattern. If we omit the first

and the last p/4 separators, and look for a sparse separator

in between with at most 2k/p by means of guessing only

2k/p vertices of X . If all separators are of size bounded

polynomially in k, the optimal choice is p ∼ k2/3, which

leads to success probability inverse in 2
˜O(k2/3).

However, we can apply a bit smarter counting argument.

Take p = 120
√
k lg k. Look at Cp/2 and assume that at

most half of the vertices of X lie on the side of Cp/2 with

separators Ci for i < p/2; the other case is symmetric. The

crucial observation is the following: there exists an index

i ≤ p/2 such that if |Ci ∩X| = α then Ci partitions X into

two parts of size at least α
√
k/10 each. Indeed, otherwise

we have that for every i ≤ p/2 it holds that

|X ∩ Ci| ≥
10√
k
·
∑
j<i

|X ∩ Cj |.
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This implies |X ∩ ⋃
j≤i Cj | ≥ (1 + 10/

√
k)i, and |X ∩⋃

j≤p/2 Cj | > k for p = 120
√
k lg k.

Hence, we guess (by sampling at random) such an index

i, the value of α = |X∩Ci|, and the set X∩Ci. If the size of

Ci is bounded polynomially in k, with success probability

k−O(α) we partition the pattern into two parts of size at

least α
√
k/10 each. A simple amortization argument shows

that all these guessings incur only the promised 2− ˜O(
√
k)

multiplicative factor in the overall success probability. Fur-

thermore, as such a step creates α heavy terminals, it can

be easily seen that the total number of heavy terminals will

never grow beyond Õ(
√
k).

However, the above argumentation assumes we are given

such a chain of separators Ci: they are not only pairwise

disjoint, but also of size polynomial in k. Let us now inspect

how to find them.

Duality. In the warm-up proof of planar graphs having

locally bounded treewidth, the separator W is obtained from

the classic Menger’s maximum flow/minimum cut duality.

Here, we aim at a chain of separators, but we require that

their sizes are polynomial in k. It turns out that we can find

such a chain by formulating a maximum flow of minimum

cost problem, and extracting the separator chain in question

from the optimum solution to its (LP) dual.

Theorem 9. There is a polynomial-time algorithm that given
a connected graph G, a pair s, t ∈ V (G) of different ver-
tices, and positive integers p, q, outputs one of the following
structures in G:
(a) A chain (C1, . . . , Cp) of (s, t)-separators with |Cj | ≤ 2q

for each j ∈ [p].
(b) A sequence (P1, . . . , Pq) of (s, t)-paths with |(V (Pi) ∩⋃

i′ �=i V (Pi′)) \ {s, t}| ≤ 4p for each i ∈ [q].

Since all light terminals lie on the outer face, we can at-

tach an auxiliary root vertex r0 adjacent to all light terminals,

and apply Theorem 9 to (s, t) = (r0, z), p = 120
√
k lg k

and q = poly(k). If the algorithm of Theorem 9 returns a

chain of separators, we proceed as described before. Thus,

we are left with the second output: q = poly(k) nearly-

disjoint paths from T li to z.

Nearly-disjoint paths. The vertex set of every path Pi

can be partitioned into public vertices Pub(Pi), the ones

used also by other paths, and the remaining private vertices

Prv(Pi). We have |Pub(Pi)| ≤ 4p = 480
√
k lg k, and the

sets Prv(Pi) are pairwise disjoint. We can assume q > k,

so there exists a path Pi such that Prv(Pi) is disjoint with

the pattern X . By incurring an additional 1/k multiplicative

factor in the success probability, we can guess, by sampling

at random, such index i.
How can we use such a path Pi? Clearly, we can delete the

private vertices of Pi, because they can be assumed not to be

used by the patter X . However, we choose a different way:

we contract them onto neighboring public vertices along Pi,

reducing Pi to a path with vertex set Pub(Pi). Observe that

by this operation the vertex z changes its location in G: from

a vertex deeply inside G, namely not within the margin M , it

is moved to a place within distance |Pub(Pi)| ≤ 480
√
k lg k

from the light terminals, which is less than a quarter of the

width of the margin; see Fig. 1e.

Furthermore, by the connectivity assumptions on the

pattern X , the vertex z drags along a number of vertices

of X that are close to it. More precisely, if Q is a path in

G[X] connecting z or a neighbor of z with a light terminal,

then the first 500
√
k lg k vertices on Q are moved from being

within distance at least 1500
√
k lg k from all light terminals,

to being within distance at most 1000
√
k lg k from some

light terminal. Hence, if we define that a vertex x ∈ X
is far if it is within distance larger than 1000

√
k lg k (i.e.,

half of the width of the margin) from all light terminals,

and close otherwise, then by contracting the private vertices

of Pi as described above, at least 500
√
k lg k vertices of k

change their status from far to close.

By a careful implementation of all separation steps, we

can ensure that no close vertex of X becomes far again.

Consequently, we ensure that the above step can happen

only Õ(
√
k) times. Since the probability of succeeding in

all guessings within this step is inverse-polynomial in k, this

incurs only a 2− ˜O(
√
k) multiplicative factor in the overall

success probability.

This finishes the overview of the proof of Theorem 1.

III. CONCLUSIONS

In this work we have laid foundations for a new tool

for obtaining subexponential parameterized algorithms for

problems on planar graphs, and more generally on graphs

that exclude a fixed apex graph as a minor. The technique is

applicable to problems that can be expressed as searching for

a small, connected pattern in a large host graph. Using the

new approach, we designed, in a generic manner, a number

of subexponential parameterized algorithms for problems

for which the existence of such algorithms was open. We

believe, however, that this work provides only the basics of a

new methodology for the design of parameterized algorithms

on planar and apex-minor-free graphs. This methodology

goes beyond the paradigm of bidimensionality and is yet

to be developed.

An immediate question raised by our work is whether

the technique can be derandomized. Note that Theorem 1

immediately yields the following combinatorial statement.

Theorem 10. Let C be a class of graphs that exclude a fixed
apex graph as a minor. Suppose G is an n-vertex graph from
C and k is a positive integer. Then there exists a family F of
subsets of vertices G, with the following properties satisfied:

(P1) For each A ∈ F , the treewidth of G[A] is at most
O(
√
k log k).
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(P2) For each vertex subset X ⊆ V (G) such that G[X] is
connected and |X| ≤ k, there exists some A ∈ F for
which X ⊆ A.

(P3) It holds that |F| ≤ 2O(
√
k log2 k) · nO(1).

The proof of Theorem 10 gives only a randomized

algorithm constructing a family F that indeed covers all

small patterns with high probability. We conjecture that

the algorithm can be derandomized; that is, that the family

whose existence is asserted by Theorem 10 can be computed

in time 2O(
√
k log2 k) · nO(1). So far we are able to deran-

domize most of the components of the algorithm, primarily

using standard constructions based on splitters and perfect

hash families [36]. One part of the reasoning with which

we still struggle is the clustering step (Theorem 8). Our

optimism with derandomizing this last part stems from its

resemblance to the construction of HSTs of [35], which have

been subsequently derandomized [37].

Q1. Is it possible to construct a family with properties

described in Theorem 10 in deterministic time

2O(
√
k logc k) · nO(1), for some constant c?

In full version [30] we attempt to generalize our technique

to the case when the pattern is disconnected, and when the

class only excludes some fixed (but arbitrary) graph H as

a minor. In the case of disconnected patterns, we were able

to prove a suitable generalization of Theorem 1, however

the success probability of the algorithm depends inverse-

exponentially on number of connected components of the

pattern. In the case of general H-minor-free classes, we

needed to assume that the pattern admits a spanning tree of

constant maximum degree. So far we do not see any reason

for any of these constraints to be necessary.

Q2. Is it possible to prove Theorem 1 without the

assumption that the subgraph induced by X has

to be connected?

Q3. Is it possible to prove Theorem 1 only under the

assumption that all graphs from C exclude some

fixed (but arbitrary) graph H as a minor?

Our next question concerns local search problems in the

spirit of the LS VERTEX COVER problem considered in Sec-

tion I. Apart from this problem, Fellows et al. [27] designed

FPT algorithms also for the local search for a number of

other problems on apex-minor-free classes, including LS

DOMINATING SET and its distance-d generalization. Here,

we are given a dominating set S in a graph G from some

apex-minor-free class C, and we ask whether there exists

a strictly smaller dominating set S′ that is at Hamming

distance at most k from S. Again, the approach of Fellows

et al. [27] is based on the observation that if there is some

solution, then there is also a solution S′ such that S�S′ can

be connected using at most k additional vertices. Thus, we

need to search for a connected pattern of size 2k, instead

of k, in which suitable sets S \ S′ and S′ \ S are to

be found. Unfortunately, now the preprocessing step fails:

vertices outside A may require to be dominated from within

A, which poses additional constraints that are not visible

in the graph G[A] only. Hence, we cannot just focus on

the graph G[A]. Observe, however, that the whole reasoning

would go through if A covered not just S�S′, but also

its neighborhood. More generally, if the considered problem

concerns domination at distance d, then we should cover

the distance-d neighborhood of S�S′. This motivates the

following question.

Q4. For a fixed d > 0, is it possible to prove a stronger

version of Theorem 1, where the sampled set A is

required to cover the whole distance-d neighbor-

hood of the set X with the same asymptotic lower

bound on the success probability?

Finally, so far we do not know whether the connectivity

condition in Theorem 5 is necessary.

Q5. Is it possible to solve SUBGRAPH ISOMORPHISM

on planar graphs in time 2O(k/ log k) ·nO(1) without

the assumption that the pattern graph is connected?

Note that a positive answer to Q2 implies a positive

answer here as well, as the algorithm of Theorem 4 does

not require the pattern graph to be connected.
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