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Abstract

Given a simple polygon P on n vertices, two points
x, y in P are said to be visible to each other if the
line segment between x and y is contained in P. The
point-guard art gallery problem asks for a minimum
set S such that every point in P is visible from a
point in S. Assuming integer coordinates and a spe-
cial general position assumption, we present the first
O(log OPT)-approximation algorithm for the point
guard art gallery problem. This algorithm combines
ideas of Efrat and Har-Peled [7] and Deshpande et
al. [3, 4]. In addition, we point out a mistake in the
latter.

1 Introduction

In 1973, Victor Klee posed to Chvátal the art gallery
problem as follows. Given a simple polygon P on n
vertices, two points x, y in P are said to be visible
to each other if the line segment between x and y is
contained in P. The point-guard art gallery problem
asks for a minimum set S such that every point in P
is visible from a point in S.

A huge amount of research is committed to the
studies of combinatorial and algorithmic aspects of
the art gallery problem, see the following surveys [10,
18–20]. Most of this research, however is not focused
directly on the art gallery problem but on variants,
based on different definitions of visibility, restricted
classes of polygons, different shapes and positions of
guards and so on. The arguably most natural defi-
nition of visibility is the one we defined above. One
of the first combinatorial results is the elegant proof
of Fisk that bn/3c guards are always sufficient and
sometimes necessary for a polygon with n vertices [9].

On the algorithmic side, very few variants are
solvable in polynomial time [5, 17], but most re-
sults are on approximating the minimum number of
guards [3, 4, 7, 11, 14, 15]. Many of the approxima-
tion algorithms are based on the fact that the range
space defined by the visibility regions has bounded
VC-dimension [12, 13, 21] for simple polygons. This
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makes it easy to use the algorithmic ideas of Clark-
son [1, 2].

On the lower bound side the paper of Eidenbenz
et al. showed for most relevant variants NP-hardness
and inapproximability [8]. In particular, they show for
the main variants that there is no c-approximation al-
gorithm for simple polygons, for some constant c. For
polygons with holes, they can even show that there is
no o(log n)-approximation algorithm.

Very surprisingly, there is only one exact algorithm
for the point guard art gallery problem running in
nO(k) time attributed to Micha Sharir [7]. (Here,
k is the size of the optimal solution.) And only,
we recently the authors could give an almost match-
ing lower bound by ruling out no(k/ log k), assuming
ETH [6].

Regarding approximation algorithms for the point
guard variant, the results are very sparse. For mono-
tone polygons and rectilinear polygons approxima-
tion algorithms are known [16]. For general polygons,
Deshpande et al. gave a randomized pseudopolyno-
mial time O(log n) approximation algorithm [3, 4].
However, we show that their algorithm is not cor-
rect. Efrat and Har-Peled gave a randomized polyno-
mial time algorithm, by restricting guards to a very
fine grid. They show that their grid solution Sgrid is
at most by a factor of log(OPTgrid) away from the
optimal grid solution OPTgrid. However, they could
not prove that their OPTgrid is indeed an approxima-
tion of an optimal guard placement OPT . Develop-
ing the ideas of Deshpande et al. in combination of
the algorithm of Efrat and Har-Peled we attain the
first randomized polynomial time approximation al-
gorithm for general simple polygons.

To keep the proof simple, we introduce a special
general position assumption. We say a line is an ex-
tension of a polygon if it is the supporting line of two
vertices of the polygon v, w ∈ V (P). We say a poly-
gon satisfies the special general position assumption,
if no three points lie on a line and no three extensions
meet in a point p ∈ P \ V (P).

Theorem 1 There is an O(log |OPT |) approxima-
tion algorithm for Point Guard Art Gallery that
runs in randomized polynomial time in the size of the
input, given the following assumption:

integer vertex representation: Vertices are given
by integers, represented in binary.
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special general position assumption: No three
extensions meet in a point p ∈ P \ V (P).

In this four page abstract we focus on the key ideas
and henceforth omit the proofs of most lemmas and
some technical details.

2 Preliminaries

Polygons and visibility. For any two distinct points v
and w in the plane, we denote by seg(v, w) the seg-
ment whose two endpoints are v and w, by ray(v, w)
the ray starting at v and passing through w, by `(v, w)
the supporting line passing through v and w. We also
denote by disk(v, r) the disk centered in point v and
whose radius is r, and by dist(a, b) the distance be-
tween object a and object b.

A polygon is simple if it is not self-crossing and
has no holes. For any point x in a polygon P, V (x)
denotes the visibility region of x within P, that is the
set of all the points y ∈ P such that segment seg(x, y)
is entirely contained in P.

3 Approximation

Given a polygon P, we will always assume that all its
vertices are given by positive integers in binary. We
denote by M the largest integer, by D the diameter
of the polygon and define L = 10D. Note that this
implies L ≥ 5M and logL is linear in the input size.
We set the width to w = L−20 and define the grid
Γ as (w · Z2) ∩ P. Note that all vertices of P have
integer coordinates and thus are included in Γ. We
denote byOPT an optimal solution to the point guard
art gallery problem and by k its size. We denote by
OPTgrid an optimal solution to the grid guard art
gallery problem, this is, guards are restricted to lie on
the grid Γ, and denote by kgrid = |OPTgrid|.

The idea is to show that the algorithm of Efrat
and Har-Peled gives an approximation algorithm un-
der the integer vertex representation assumption, the
grid Γ as described above and the special general po-
sition assumption.

Theorem 2 (Efrat, Har-Peled [7]) Given a sim-
ple polygon P with n vertices, one can spread a
grid Γ inside P , and compute an O(log kgrid)-
approximation to the smallest subset of Γ that sees
P. The expected running time of the algorithm is
O(nk2grid log kgrid log(nkgrid) log2 ∆), where ∆ is the
ratio between the diameter of the polygon and the
grid size.

Note that the grid size equals w = L−20, thus ∆ ≤ L21

and consequently log ∆ ≤ 21 logL, which is linear in
the size of the input. It remains to show the following
lemma given the assumptions and notation mentioned
above.

Lemma 3 ∃c ∈ N such that kgrid ≤ c · k.

The way we use the integer coordinate assumption
is to infer distance lower bounds between various ob-
jects of interest.

Lemma 4 (Distances) Let v and w be vertices of
P, `1 and `2 supporting lines of two vertices, and p and
q intersections of supporting lines. Then the following
holds:

1. dist(v, w) > 0⇒ dist(v, w) ≥ 1.

2. dist(v, `1) > 0⇒ dist(v, `1) ≥ 1/L.

3. dist(p, `1) > 0⇒ dist(p, `1) ≥ 1/L5.

4. dist(p, q) > 0⇒ dist(p, q) ≥ 1/L4.

5. Let `1 6= `2 be parallel. Then dist(`1, `2) ≥ 1/L.

6. Let a ∈ P be a point and `1 and `2 be some lines
with dist(`i, a) < d, for i = 1, 2. Then `1 and `2
intersect in a point p with dist(a, p) ≤ dL2.

Proof. The idea of the proof is very simple. We look
up the formula for each claimed distance. This for-
mula is in most cases a fraction. By the assumption
the nominator is at least one. The variables in the
denominator can be safely upper bounded by L. The
claim follows immediately. �

Grid points. See Figure 1 for the following descrip-
tion. Each point x of the optimal solution is in some
grid cell grid(x). For the sake of brevity, we assume
that the grid cell does not contain any point of the
boundary of the polygon, as in Figure 1 b) and c).

a) b) c)

Figure 1: The way that the polygon boundary might
interact with the grid cell.

Local visibility containment property. We say a
point x in the grid cell formed by g1, g2, g3, g4 has
the local visibility containment property (LVCP) if
V (x) ⊆ V (g1) ∪ V (g2) ∪ V (g3) ∪ V (g4).

Cones. Given a point x and two points r1, r2 in the
plane, we define the cone of x with respect to r1 and r2
as the unique cone C(x) with apex x that is bounded
by ray(x, r1) and ray(x, r2) and forms an angle smaller
than π.
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Opposite reflex vertices and bad regions. Given a
polygon P and two reflex vertices r1 and r2, consider
the supporting line ` = `(r1, r2) restricted to P. The
supporting line defines two halfplanes `+ and `−. We
say r1 is opposite to r2 if disk(r1, ε) ∩ ∂P ⊂ `+ and
disk(r2, ε) ∩ ∂P ⊂ `− for some ε > 0.

Given two opposite reflex vertices r1 and r2, we
define their bad regions as the stripe around `(r1, r2)
with width 8wL, see Figure 2.

r1
r28wL

Figure 2: Illustration of opposite reflex vertices and
bad regions.

Lemma 5 (Loc.Visib. Containment Prop.) Let
x ∈ P be outside any bad region then x has the local
visibility property.

Proof. Here, we give only the idea. Let x ∈ P be
some point and g1, g2, g3, g4 be the grid points sur-
rounding x. Further let r1 and r2 be any two reflex
vertices visible from x. the same fashion. We can
restrict ourselves to show C(x) ⊆ C(g1) ∪ C(g2) ∪
C(g3)∪C(g4). Further, we only have to show this for
the region behind `(r1, r2). In case that there is some
gi ∈ C(x), this is trivially true. For the other case,
see Figure 3. In Figure 3, we see that the dark red

r1

r2

x

g1

g2

Figure 3: The cones C(g1) and C(g2) are not covering
the same area as C(x), behind `(r1, r2). The reason
is that ray(g1, r2) and ray(g2, r2) intersect.

area of C(x) is not covered by by C(g1) and C(g2).
It is not so difficult to see that it is sufficient to show
that this situation will not appear. For this purpose it
is sufficient to show that ray(g1, r1) and ray(g2, r2) do
not cross. Roughly speaking, we compare the distance
between the rays close to x and close to the reflex ver-
tices. If the distance between the rays increases, we
know that they will never meet. Very helpful for us is
the distance of at least one between the reflex vertices
and that x is outside of any bad region. �

It is easy to believe that the local visibility contain-
ment property also holds inside the bad region. How-
ever this is not true. Here, we will briefly describe a
counter-example. In particular, this example shows
that the algorithm of Deshpande et al. is not correct
as it is stated. However, we want to mention that
their paper has ideas that motivated the algorithm
presented in this preprint.

Deshpande et al. described an algorithm that
worked in several steps [3, 4]. In the first step they
generate a large number of points P that they store
explicitly in memory. Thereafter, they find a solu-
tion for the point guard art gallery problem S ⊂ P .
The crucial point is the claim that their point set P
satisfies some variant of local visibility containment
property. To be more precise, we say a set of points
P has the general local visibility containment prop-
erty, if for every point x ∈ P exists a finite collection
C ⊂ P ∩ disk(x, 1), such that V (x) ⊆

⋃
p∈C V (p).

Our example shows that it is impossible to attain any
finite point set that has this property.

Example See Figure 4, for the following description.

a1

a2

a3
t

Figure 4: Illustration of the counter-example to the
algorithm of Deshpande et al. [3, 4].

We have two opposite reflex vertices with supporting
line `. The points (ai)i∈N are chosen closer and closer
to ` on the right side of the polygon. None of the
ai can see t, as this would require to be actually on
`. We choose the points (ai)i∈N in a way that their
intervals will be all disjoint and arbitrarily close to t.

Consider now any finite set of points C in the
“vicinity” of the (ai)i∈N. We will show that there
is some ai, which sees some interval close to t, that is
not seen by any point in C. Recall that no point sees
the entire interval around t, but the visibility of the
ais come arbitrarily close to t. Thus, there is some ai
that sees something that is not visible by any point
in C.

This shows that the general local visibility con-
tainment property cannot be attained already in this
fairly straightforward polygon.

Despite the fact that it is not possible to achieve
a general local visibility containment property for all
points in P, the exceptions are only for points in the
bad regions. These cases we can handle in a different
manner.

Lemma 6 Let x ∈ P in three or more bad regions.
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Then there exists a reflex vertex r with dist(x, r) ≤
wL3. And r is one of the defining reflex vertices for
all bad regions that x belongs to.

Proof. Let `1, `2, `3 be three different extensions.
And we assume that x is in the bad region of all three
of them. In case they all have on reflex vertex in com-
mon, it must be a defining reflex vertex and x cannot
be too far away from r.

So assume that they do not have a reflex vertex
in common. We want to show that the intersection
of their corresponding bad regions is empty. These
three lines form a triangle ∆ with vertices of pairwise
distance at least L−4 by Lemma 4 Item 4. Assume
for the purpose of contradiction that x is in the bad
region of all three lines. Then x has distance at most
4wL to all lines. By Lemma 4 Item 6 x has distance
at most 4wL3 to the vertices of ∆. By the triangle
inequality the vertices have pairwise distance at most
8wL3 � L−4 – a contradiction. �

Proof. [Lemma 3] Let OPT be an optimal solu-
tion of size k. We construct a set of 6k guards
G ⊂ Γ, which see the entire polygon. For each guard
x ∈ OPT , we add the four grid points of x into G.
Further, if x is in one or two bad regions, add the cor-
responding reflex vertex for each bad region into G.
In case x is in more than two bad regions there is one
reflex vertex that is defining all of them. Add it to
G. For each x ∈ OPT the local containment property
holds, except for the bad regions it is in. These parts
are seen by the reflex vertices we added. �
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