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Abstract
Given an edge-weighted graph G, let PerfMatch(G) denote the weighted sum over all perfect
matchings M in G, weighting each matching M by the product of weights of edges in M. If G is
unweighted, this plainly counts the perfect matchings of G.

In this paper, we introduce parity separation, a new method for reducing PerfMatch to
unweighted instances: For graphs G with edge-weights 1 and −1, we construct two unweighted
graphs G1 and G2 such that PerfMatch(G) = PerfMatch(G1) − PerfMatch(G2). This yields a
novel weight removal technique for counting perfect matchings, in addition to those known from
classical #P-hardness proofs. Our technique is based upon the Holant framework and matchgates.
We derive the following applications:

Firstly, an alternative #P-completeness proof for counting unweighted perfect matchings.
Secondly, C=P-completeness for deciding whether two given unweighted graphs have the same

number of perfect matchings. To the best of our knowledge, this is the first C=P-completeness
result for the “equality-testing version” of any natural counting problem that is not already
#P-hard under parsimonious reductions.

Thirdly, an alternative tight lower bound for counting unweighted perfect matchings under
the counting exponential-time hypothesis #ETH.
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1 Introduction

The problem of counting perfect matchings has played a central role in counting complexity
since Valiant [27] introduced the class #P and established #P-completeness of counting
perfect matchings in unweighted bipartite graphs. This problem was previously already
considered in statistical physics [26, 21, 22] and Valiant’s computational hardness result
explains the lack of progress encountered in this area for finding efficient algorithms for
counting perfect matchings.

As complexity theorists, we can appreciate this seminal #P-completeness result from
another perspective: The problem of counting perfect matchings in unweighted graphs
presented the first example of a natural hard counting problem with an easy decision version,
since Edmond’s classical algorithm [14] allows to decide in polynomial time whether a graph
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47:2 Parity Separation: A Scientifically Proven Method for Permanent Weight Loss

contains at least one perfect matching. This showed exemplarily that the complexity-theoretic
study of counting problems amounts to more than merely checking whether NP-hardness
proofs for decision problems carry over to their counting versions.

For instance, a fundamental peculiarity of counting problems that is not shared by decision
problems are cancellations: In (weighted) counting problems, witness structures may cancel
each other out, and this can have strong effects on the complexity of the problem. The most
prominent example of this phenomenon might be the situation of the determinant and the
permanent, both summing over the same permutations, however with different weights. This
results in the permanent being #P-complete by Valiant’s result, whereas the determinant
can be computed in polynomial time. The accidental and holographic algorithms introduced
by Valiant [28, 29] provide examples for further and more unexpected cancellations that
render counting problems easy.

However, cancellations are also crucial for negative results: In many #P-hardness proofs,
such as [4, 2, 3], we first define an intermediate variant of the target problem on weights
±1. Examples for this strategy include the original reduction from #SAT to counting
unweighted perfect matchings [27]: In this setting, let G be a graph with edge-weights
w : E(G)→ {−1, 1}, let PM[G] denote its set of perfect matchings, and define

PerfMatch(G) :=
∑

M∈PM[G]

∏
e∈M

w(e). (1)

Given an instance to this weighted problem, that is, a graph G derived from a 3-
CNF formula, its space of witness structures PM[G] can then be partitioned into “good”
structures that correspond to satisfying assignments, and “bad” structures that could be
called combinatorial noise. By careful construction of such a graph G on edge-weights ±1,
we can ensure that bad structures come in pairs of weight +1 and −1, thus canceling out,
whereas good structures all have weight +1.

To conclude #P-completeness of counting unweighted perfect matchings, it remains to
simulate the weight −1 from the intermediate problem. This can be achieved by several
techniques, which we survey in the next part of the introduction. Let us however first point
out that the main contribution of this paper is a novel technique for precisely this part
of the reduction: Using a method we call parity separation, we reduce the computation of
PerfMatch(G) for a ±1-weighted graph G to the difference of PerfMatch for two unweighted
graphs, that is, to the difference of two numbers of perfect matchings.

I Lemma 1 (Parity Separation). Let G be a graph on n vertices and m edges that is weighted
by a function w : E(G)→ {−1, 1}. Then we can construct in time O(n+m) two unweighted
graphs G1 and G2, each on O(n+m) vertices and edges, such that

PerfMatch(G) = PerfMatch(G1)− PerfMatch(G2). (2)

Intuitively speaking, this allows us to “collect” positive and negative terms of PerfMatch(G)
for ±1-weighted graphs. This way, we can reduce the effect of cancellations incurred within
PerfMatch to a mere difference outside of PerfMatch.

In the remainder of this introduction, we present parity separation in more detail and
demonstrate three applications that can be derived from it: Firstly, and not surprisingly,
we obtain a new #P-completeness proof for counting perfect matchings. Secondly, we can
show C=P-completeness of deciding whether two graphs have the same number of perfect
matchings. Thirdly, we also obtain tight lower bounds under the exponential-time hypothesis.
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1.1 #P-completeness via parity separation
To put parity separation into context, we first recapitulate Valiant’s #P-hardness result
for counting perfect matchings in more detail. Let us denote the problem of evaluating
PerfMatch on graphs with edge-weights from A ⊆ Q by PerfMatchA. For consistency with
[13], we write PerfMatch0,1 for the problem of counting perfect matchings in unweighted
graphs. That is, we explicitly include 0 ∈ A for PerfMatchA, although zero-weight edges
could be simply deleted.

First step: From #SAT to PerfMatch−1,0,1

It is shown in [27, Lemma 3.1] that PerfMatchW is #P-hard for W := {−1, 0, 1, 2, 3}. More
precisely, from a 3-CNF formula ϕ, a number t(ϕ) ∈ N and a bipartite graph G = G(ϕ) on
weights W are constructed in polynomial time, such that

#SAT(ϕ) = PerfMatch(G)
4t(ϕ) , (3)

This however only yields hardness for a weighted generalization of counting perfect
matchings. To obtain a useful reduction source for further problems, it is crucial to re-
duce PerfMatchW to PerfMatch0,1, as reductions from PerfMatch to other problems would
otherwise need to take care of the weights in W , which is particularly problematic for the
edge-weight −1 in the case of unweighted reduction targets.

In fact, the weight −1 is the only problem we encounter: Edges e of positive integer
edge-weight w can be simulated easily by replacing e with w parallel edges of unit weight,
possibly subdividing edges twice to obtain simple graphs. This trick however clearly does
not apply for the weight −1, so we need a different strategy.

Second step: From PerfMatch−1,0,1 to PerfMatch0,1

By now, two different strategies are known for removing the weight −1, which we briefly
survey in the following. Let G be a graph with n vertices and m > 0 edges, all on weights
−1 and 1.

Modular arithmetic: Variations of the following approach were originally used by Valiant
[27] and later by Zanko [32] and Ben-Dor and Halevi [1]: Write M = 2m + 1 and observe
that PerfMatch(G) < M . We can hence replace the weight −1 by the positive integer
M − 1 to obtain a graph G′ satisfying PerfMatch(G) ≡ PerfMatch(G′) modulo M . The
weight M − 1 can be simulated by a gadget as in the previous paragraph, and using a
more involved construction [32], it can be seen that a gadget on O(m) vertices and edges
suffices, yielding a total number of O(nm) vertices and O(m2) edges in G′. Then we
compute PerfMatch(G′) modulo M and obtain PerfMatch(G), as we may assume from
(3) that PerfMatch(G) ≥ 0. In total, we obtain one reduction image for PerfMatch0,1 on
O(nm) vertices and O(m2) edges.
Polynomial interpolation: An alternative technique for removing the edge-weight −1
from G is to replace it by an indeterminate x. This gives rise to a graph Gx on edge-weights
{1, x} for which PerfMatch(Gx) is a polynomial p(x) ∈ Z[x] of degree at most n/2. We can
evaluate p(i) for i ∈ {0, . . . , n/2} by substituting x← i in Gx and simulating this positive
weight by a gadget as discussed before. This allows us to recover p(−1) = PerfMatch(G)
via Lagrangian interpolation. In total, using gadgets as in [32, 13], we obtain O(n)
reduction images for PerfMatch0,1 on O(m logn) vertices and O(m logn+m) edges each.
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47:4 Parity Separation: A Scientifically Proven Method for Permanent Weight Loss

Both weight removal techniques allow to reduce PerfMatch−1,0,1 to PerfMatch0,1 and
thus complete the #P-completeness proof of the latter problem. Note however that both
approaches map weighted graphs G with m edges to unweighted graphs with a super-linear
number of edges. Using parity separation, we obtain a third way of performing the weight
removal step, which differs substantially from both approaches mentioned before and features
only constant blowup:

Parity separation: Using Lemma 1, compute two unweighted graphs G1 and G2 from G

such that PerfMatch(G) is the mere difference of PerfMatch(G1) and PerfMatch(G2). In
total, we obtain 2 reduction images for PerfMatch0,1 on O(n+m) vertices and edges.

Together with the first step, this implies an alternative #P-completeness proof for the
problem PerfMatch0,1 of counting perfect matchings in unweighted graphs. For the sake of
completeness, we also include a self-contained reduction from #SAT to PerfMatch−1,0,1.

I Theorem 2. PerfMatch0,1 is #P-complete under polynomial-time Turing reductions.

1.2 C=P-completeness via parity separation
Apart from an alternative #P-completeness proof, Lemma 1 also yields implications for the
structural complexity of PerfMatch: We show that deciding whether two unweighted graphs
have the same number of perfect matchings is complete for the complexity class C=P, which
was introduced in [25, 31] and further elaborated in [16, 15].

To define C=P, let us associate the following language A= with each counting problem
A ∈ #P: The inputs to A= are pairs (x, y) of instances to A, and we are asked to determine
whether A(x) = A(y) holds. We can then define1 the class C=P := {A= | A ∈ #P}.

For instance, it is clear that #SAT=, the problem that asks whether two 3-CNF formulas
have the same number of satisfying assignments, is C=P-complete under polynomial-time
many-one reductions. In fact, C=P-completeness holds for every problem A= whose count-
ing version #A is #P-complete under parsimonious reductions. We recall the notion of
parsimonious (and other) reductions in Definition 5.

The relationship between C=P and other complexity classes has been studied in structural
complexity theory, and several results are surveyed in [15]. For instance, we clearly have
coNP ⊆ C=P, and using the witness isolation technique [30], we see that NP is contained in
C=P under randomized reductions. Let us also observe that NP#P ⊆ NPC=P: Whenever we
issue an oracle call to #P, we may instead guess the output number, and then check whether
we guessed correctly by using the C=P oracle.

To the best of the author’s knowledge, no natural C=P-complete problem A= is known
whose counting version A is not #P-complete under parsimonious reductions.2 It is clear that
the problem PerfMatch0,1 of counting unweighted perfect matchings cannot be #P-complete
under parsimonious reductions, unless P = NP. Therefore, the following completeness

1 We deviate here from the standard definition of C=P, according to which we have L ∈ C=P iff the
following holds: There is a polynomial-time nondeterministic Turing machine M such that x ∈ L iff the
numbers of accepting and rejecting computation paths of M(x) are equal. It can be verified easily that
this is equivalent to our definition.

2 Here, we stressed natural, because we can easily construct artificial C=P-complete problems A= whose
counting version #A admits no parsimonious reduction from #SAT: Consider as an example the
counting problem #SAT′ that asks to count satisfying assignments, incremented by 1. If #SAT′ had a
parsimonious reduction from #SAT, then every CNF-formula would be satisfiable. On the other hand,
the reduction from #SAT= to #SAT′

= is trivial.
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result for PerfMatch0,1
= seems relevant for structural complexity theory, as it establishes a

C=P-variant of Valiant’s result.

I Theorem 3. PerfMatch0,1
= (deciding whether two unweighted graphs have the same number

of perfect matchings) is C=P-complete under polynomial-time many-one reductions.

To prove this theorem, we first reduce instances (ϕ,ϕ′) for #SAT= to ±1-weighted graphs G
that satisfy PerfMatch(G) = 0 iff #SAT(ϕ) = #SAT(ϕ′). This requires a modification of the
first step in the #P-hardness reduction, which is however supported easily by our alternative
proof. Then we apply Lemma 1 on the graph G to obtain unweighted graphs G1 and G2
satisfying (2). In particular, their numbers of perfect matchings agree iff PerfMatch(G)
vanishes, that is, iff (ϕ,ϕ′) is a yes-instance for #SAT=.

To conclude this subsection, we note that the complexity of a similar problem was posed
as an open question in [8]: Given two directed acyclic graphs, decide whether their numbers
of topological orderings agree. It was shown in [5] that counting topological orderings is
#P-complete under Turing reductions, but the decision version is trivial for DAGs. Our result
for PerfMatch0,1

= might be useful to prove C=P-completeness for this and other problems.
For instance, a reduction was recently found [24] from PerfMatch0,1

= to deciding whether two
formulas in 2-CNF are satisfied by the same number of assignments.

1.3 Tight lower bounds via parity separation
We turn our attention to conditional quantitative lower bounds: A relatively new subfield in
computational complexity makes use of assumptions stronger than P 6= NP or FP 6= #P to
prove tight (exponential) lower bounds on the running times needed to solve computational
problems. A popular such assumption is the exponential-time hypothesis ETH, introduced
by Impagliazzo et al. [19, 20], which states that the satisfiability of n-variable formulas ϕ in
3-CNF cannot be decided in time 2o(n). For counting problems, an analogous variant #ETH
was introduced by Dell et al. [13], and it postulates the same for the problem of counting
satisfying assignments to ϕ.

Assuming ETH, it was shown for a vast body of popular decision problems that the
known exponential-time exact algorithms are somewhat optimal: For instance, there is a
trivial 2O(m) time algorithm for finding a Hamiltonian cycle (or various other structures) in
an m-edge graph, but 2o(m) time algorithms would refute ETH. See [23] for a nice survey.

Similar lower bounds were shown for counting problems under #ETH, see [17, 18, 13],
and a very recent paper [9] introduced block interpolation, an approach to make the technique
of polynomial interpolation (as seen in the second step of Section 1.1) compatible with tight
lower bounds under #ETH. For several problems, that of counting perfect matchings being
among them, block interpolation gave the first tight 2Ω(m) lower bounds under #ETH.

When applying this framework to PerfMatch0,1, we would first reduce #SAT on n-variable
3-CNFs ϕ to instances G = G(ϕ) for PerfMatch−1,0,1 with O(n) edges as in the first step
of the #P-hardness proof. Then we apply the block interpolation technique to reduce G to
2o(n) unweighted instances G′ for PerfMatch0,1 with O(n) edges. While this sub-exponential
number of instances is compatible with the goal of proving tight lower bounds, it leaves open
the natural question whether the same reduction could be achieved with only polynomially
many oracle calls on graphs with O(n) edges.

Using Lemma 1, we obtain a strong positive answer to this question: Replacing the
application of block interpolation by one of parity separation, we obtain a reduction to merely
two instances of PerfMatch0,1. And as a synthesis of structural and quantitative complexity,
we also obtain a tight lower bound for the equality-testing problem PerfMatch0,1

= .

ICALP 2016
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I Theorem 4. Unless #ETH fails, the problem PerfMatch0,1 admits no algorithm with
running time 2o(m) on simple graphs with m edges. Furthermore, the same applies to
PerfMatch0,1

= under the decision version ETH.

Organization of this paper
The remainder of this paper is structured as follows: In Section 2, we introduce the Holant
framework and matchgates, concepts that are crucial to our constructions. These are put to
use in Section 3, where we prove Lemma 1, our main result. Its applications, as discussed
above, are shown in Section 4.

2 Preliminaries

Graphs in this paper may be edge- or vertex-weighted. Given a graph G and v ∈ V (G),
denote the edges incident with v by I(v). If the context of an argument unambiguously
determines a graph G, we write n = |V (G)| and m = |E(G)|.

We denote the Hamming weight of strings x ∈ {0, 1}∗ by hw(x). Given a statement ϕ,
we let [ϕ] = 1 if ϕ is true, and [ϕ] = 0 otherwise. For convenience, we recall that several
reduction notions are distinguished in the study of counting complexity: The most restrictive
notion is that of parsimonious (many-one) reductions, which can be slightly relaxed to weakly
parsimonious reductions. The most permissive notion is that of Turing reductions.

I Definition 5. Let A and B be counting problems. Let f : {0, 1}∗ → {0, 1}∗ and g :
{0, 1}∗ → Q be polynomial-time computable functions. If A(x) = g(x) · B(f(x)) holds for
all x ∈ {0, 1}∗, then we call (f, g) a weakly parsimonious (polynomial-time) reduction from
A to B and write A ≤p B. If additionally g(x) = 1 holds for all x ∈ {0, 1}∗, then we call f
parsimonious and write A ≤pars

p B.
If T is a deterministic polynomial-time algorithm that solves A with an oracle for B, then

we call T a Turing reduction from A to B and write A ≤T
p B.

2.1 Weighted sums of (perfect) matchings
The quantity PerfMatch on edge-weighted graphs, as defined in (1) and [29], will be the
central object of investigation in this paper. For intermediate steps, we also consider the
quantity MatchSum introduced in [29].

I Definition 6. For vertex-weighted graphs G with w : V (G)→ Q, letM[G] denote the set
of (not necessarily perfect) matchings in G. Recall that PM[G] ⊆M[G] denotes the perfect
matchings in G. For M ∈ M[G], let usat(M) denote the set of unmatched vertices in M .
Then we define

MatchSum(G) =
∑

M∈M[G]

∏
v∈usat(M)

w(v).

Given W ⊆ Q, we write PerfMatchW for the problem of evaluating PerfMatch(G) on graphs
G with weights w : E(G) → W . Likewise, write MatchSumW on graphs with weights
w : V (G) → W . Please note that an edge of weight 0 in PerfMatch can be treated as if
it were not present, whereas weight 0 at a vertex v in MatchSum signifies that v must be
matched. We can easily reduce PerfMatchW for finite W ⊆ Q to PerfMatch−1,0,1:
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I Lemma 7 (folklore). Let G be edge-weighted by w : E(G)→ Q. Let q ∈ N denote the least
common denominator of the weights in G, and let T = maxe∈E(G) q · w(e). Then we can
compute a number B ∈ N and an edge-weighted graph G′ on O(n+ Tm) vertices and edges,
all of weight ±1, such that PerfMatch(G) = q−B · PerfMatch(G′).

2.2 Holant problems
We give an introduction to the Holant framework, summarizing ideas from [29, 6, 7]. A more
detailed introduction to our notation can be found in [11].

I Definition 8 (adapted from [29]). A signature graph is an edge-weighted graph Ω, which
may feature parallel edges, with a vertex function fv : {0, 1}I(v) → Q at each v ∈ V (Ω).

The Holant of Ω is a particular sum over edge assignments x ∈ {0, 1}E(Ω). We sometimes
identify x with the set x−1(1) of indices that have value 1 under x. Given S ⊆ E(Ω), we
write x|S for the restriction of x to S, which is the unique assignment in {0, 1}S that agrees
with x on S. Then we define

Holant(Ω) :=
∑

x∈{0,1}E(Ω)

(∏
e∈x

w(e)
) ∏

v∈V (Ω)

fv(x|I(v))

 . (4)

As a first example, we can reformulate PerfMatch(G) easily as the Holant of a signature
graph Ω = Ω(G) by declaring fv : {0, 1}I(v) → {0, 1} for v ∈ V (G) to be the vertex function
that maps x ∈ {0, 1}∗ to 1 iff hw(x) = 1 and to 0 else.

When considering signature graphs Ω in the following, we will always assume that I(v)
for each v ∈ V (Ω) is ordered in a fixed (usually implicit) way. This way, if v is a vertex
of degree d ∈ N, we can simply view fv as a function fv : {0, 1}d → Q, and we call this
representation a signature.

I Example 9. The following are signatures of arity k ∈ N on inputs x ∈ {0, 1}[k] with
x = (x1, . . . , xk).

EQ : x 7→ [x1 = . . . = xk]
HW=1 : x 7→ [hw(x) = 1]
HW≤1 : x 7→ [hw(x) ≤ 1]
ODD : x 7→ x1 ⊕ . . .⊕ xk

EVEN : x 7→ 1⊕ x1 ⊕ . . .⊕ xk.

We may write, say, EQ4 to denote the arity-4 signature EQ. Note that these signatures are
symmetric, as they depend only upon the Hamming weight on the input.

Similarly as for PerfMatch, we can also express MatchSum as a Holant problem.

I Lemma 10. Let G be a graph with vertex-weights w : V (G)→ Q. Then MatchSum(G) =
Holant(Ω) holds with the signature graph Ω that is derived from G by placing VTXw(v) at
v ∈ V (G) and assigning weight 1 to all edges. Here, VTXw for w ∈ Q is defined as

VTXw : x 7→


w if hw(x) = 0,
1 if hw(x) = 1,
0 otherwise.

We can easily reduce edge-weighted Holant problems to unweighted versions as follows.

ICALP 2016
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I Lemma 11. Let Ω′ be defined as follows from Ω: Subdivide each edge e ∈ E(Ω) into two
edges, assign weight 1 to the obtained subdivision edges, and equip the obtained subdivision
vertices with the signature EDGEw(e), where

EDGEw : x 7→


w if x = 11,
0 if x ∈ {01, 10},
1 if x = 00.

Then Ω′ features only the edge-weight 1, and we have Holant(Ω) = Holant(Ω′).

Finally, a signature is called even if its support contains only bitstrings of even Hamming
weight. The problem #SAT can be rephrased as a Holant problem with even signatures:

I Lemma 12. For n,m, d ∈ N, let ϕ be a d-CNF formula on variables x1, . . . , xn and clauses
c1, . . . , cm. We construct a signature graph Ω as follows:

For each i ∈ [n], let r(i) denote the number of occurrences of xi (as a positive or negative
literal) in ϕ. Create a variable vertex vi in Ω, with signature EQ2r(i).
For each j ∈ [m], let xi1 , . . . , xid be the variables that clause cj depends upon. We create
a clause vertex wj in Ω, and for κ ∈ [d], we add two parallel edges of weight 1 between
wj and viκ as the 2κ− 1-th and 2κ-th edges in the ordering of I(wj).
For each j ∈ [m], consider clause cj as a Boolean function on variables z1, . . . , zd, where zi

for i ∈ [d] represents the i-th variable in cj. Define a function c′j on variables y1, . . . , y2d

that outputs cj(y1, y3, . . . , y2d−1) if y2i = y2i−1 for all i ∈ [d]. On all other inputs, the
value of c′j is defined to be zero. Assign such a signature c′j to the vertex wj.

Then we have #SAT(ϕ) = Holant(Ω). Note that Ω is a signature graph with n + m

vertices and 2dm edges that features only even signatures and the edge-weight 1.

I Remark. The degree of clause vertices above is 2d rather than d to ensure that their
signatures are even. The need for this will become clear in the next subsection.

2.3 Gates and matchgates
Given a signature graph Ω, we can sometimes simulate vertex functions by gadgets or gates,
which are signature graphs with so-called dangling edges that feature only one endpoint.
These notions are borrowed from the F -gates in [7]. Matchgates were first considered in [29].

I Definition 13 (adapted from [7]). For disjoint sets A,B, and for assignments x ∈ {0, 1}A

and y ∈ {0, 1}B, we write xy ∈ {0, 1}A∪B for the assignment that agrees with x on A, and
with y on B. We also say that the assignment xy extends x. A gate is a signature graph Γ
containing a set D ⊆ E(Γ) of dangling edges, all of which have edge-weight 1. The signature
realized by Γ is the function Sig(Γ) : {0, 1}D → Q that maps x to

Sig(Γ, x) =
∑

y∈{0,1}E(Γ)\D

(∏
e∈xy

w(e)
) ∏

v∈V (Γ)

fv(xy|I(v))

 . (5)

A gate Γ is a matchgate if it features only the signature HW=1.

In the following, we consider the dangling edges D of gates Γ to be labelled as 1, . . . , |D|.
This way, we can view Sig(Γ) as a function of type {0, 1}|D| → Q instead of {0, 1}D → Q.
We will use gates to realize required signatures as “gadgets” consisting of other (usually
simpler) signatures. Consider the following example, which appeared in [29].
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I Example 14. It can be verified that EVEN3 and ODD3 are realized by the matchgates Γ0
and Γ1 below, where all vertices are assigned HW=1 and all edges have weight 1.

10

Using this, we can realize the signatures ODDk and EVENk for any arity k ≥ 3 as matchgates,
noted also in [29, Theorem 3.3]. This will be required in Section 3.

I Example 15. For all k ≥ 3, there exists a gate ΓEVEN with Sig(ΓEVEN) = EVENk. It consists
of vertices v1, . . . , vk−2 equipped with EVEN3, edges e1, . . . , ek−3 of weight 1, and dangling
edges [k].

We can likewise realize ODDk by a gate ΓODD that is constructed as above, but with ODD3
rather than EVEN3 at vk−2.

In the following, we formalize the operation of inserting a gate Γ into a signature graph so
as to simulate a desired signature. A more detailed version of this operation can be found in
Definition 2.10 and Lemma 2.11 of [11].

I Lemma 16. Let Ω be a signature graph, let v ∈ V (Ω) with D = I(v) and let Γ be a gate
with dangling edges D. We can insert Γ at v by deleting v and keeping D as dangling edges,
and then placing Γ into Ω and identifying each dangling edge e ∈ D across Γ and Ω. If Ω′ is
derived from Ω by inserting a gate Γ with Sig(Γ) = fv at v, then Holant(Ω) = Holant(Ω′).

By an argument presented in the author’s PhD thesis [11], also used in [12], we can realize
every even signature f by some matchgate Γ = Γ(f). If the image of f is W , then Γ contains
W ∪ {±1, 1/2} as edge-weights. For sake of completeness, we include a self-contained proof in
the full version.

I Lemma 17 ([11, 12]). Let Ω be a signature graph on n vertices and m edges, with even
vertex functions {fv}v∈V (Ω) that map into W ⊆ Q. Let s = maxv∈V (Ω) |supp(fv)|. Then
we can construct, in linear time, a graph G on O (n+ sm) vertices and edges such that
Holant(Ω) = PerfMatch(G). The edge-weights of G are W ∪ {±1, 1/2}.

3 The parity separation technique

We are ready to prove Lemma 1, our main result. The proof proceeds by establishing, with
several intermediate steps, the reduction chain

PerfMatch−1,0,1 ≤p MatchSum−1,0,1 ≤T
p PerfMatch0,1. (6)

For the first reduction in (6), we apply a gadget Γ realizing the signature EDGE−1 from
Lemma 11 to all edges of weight −1.

I Lemma 18. We have EDGE−1 = Sig(Γ), where Γ is the gate below. In Γ, each vertex
features the signature VTXw for the number w ∈ {−1, 0, 1} it is annotated with in the drawing.
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This allows us to transform an instance for PerfMatch−1,0,1 to one for MatchSum−1,0,1.

I Lemma 19. Let G be a graph with n vertices and m edges, all of weight ±1. Then we
can compute a graph G′ on O(n + m) edges, with vertices of weight {−1, 0, 1}, such that
PerfMatch(G) = MatchSum(G′).

Proof. We assume that |V (G)| is even, as otherwise PerfMatch(G) = 0. First, let Ω be the
signature graph constructed by assigning HW=1 to all vertices of G, and then applying the
signature EDGE−1 as in Lemma 11. We obtain PerfMatch(G) = Holant(Ω).

Then realize each occurrence of EDGE−1 by the gate Γ from Lemma 18. Note that
Γ features no edge-weights, and only VTXw for w ∈ {−1, 0, 1}. We obtain a signature
graph Ω′ whose signatures are all of the type VTXw for w ∈ {−1, 0, 1}, and which satisfies
Holant(Ω) = Holant(Ω′). Note that HW=1 = VTX0, so this indeed covers all vertices of Ω′.

By Lemma 10, we may equivalently consider Holant(Ω′) = MatchSum(G′), where G′ is a
vertex-weighted graph obtained from Ω′ as follows: Keep all vertices and edges of Ω′ intact,
and if v ∈ V (Ω′) features the signature VTXw, for w ∈ {−1, 0, 1}, then assign the vertex
weight w to v in G′. J

For the second reduction in (6), we perform the actual act of parity separation: We will split
the vertex-weighted graph G′ into an even part G0 and an odd part G1, both unweighted,
such that the perfect matchings of the even (resp. odd) part correspond bijectively to the
matchings of G′ with an even (resp. odd) number of unmatched vertices of weight −1.3 Since
(−1)even = 1 and (−1)odd = −1, this clearly implies that MatchSum(G) is the difference of
PerfMatch(G0) and PerfMatch(G1).

To proceed, we first use the signatures EVEN and ODD from Example 9 to obtain an
alternative reformulation of MatchSum−1,0,1 as the difference of two Holants.

I Lemma 20. Let G′ be a graph with vertex-weights {−1, 0, 1}. For a, b ∈ {0, 1}, let
Φab = Φab(G′) be the signature graph obtained as follows:
1. Assign the signature HW=1 to all vertices of G′.
2. For x ∈ {−1, 0, 1}, let Vx ⊆ V (G′) denote the set of vertices of weight x in G′. For

x ∈ {−1, 1}, add a vertex ux connected to Vx.
Assign to u−1 the signature EVEN if a = 0, and assign ODD if a = 1.
Assign to u1 the signature EVEN if b = 0, and assign ODD if b = 1.

Then we have MatchSum(G′) = Holant(Φ00)−Holant(Φ11).

The second reduction in (6) follows by realizing the signatures ODD and EVEN appearing in
Φ00 and Φ11 via matchgates that feature neither edge- nor vertex-weights. Note that the
only other appearing signature HW=1 is trivially realized by such a matchgate.

Proof of Lemma 1. Follows from Lemma 19 (to reduce PerfMatch−1,0,1 to MatchSum−1,0,1)
with Lemma 20 (to reformulate MatchSum−1,0,1 as a Holant problem) and Example 15 (to
realize the ODD and EVEN signatures in the Holant problem by unweighted matchgates). J

3 This step is inspired by a reduction [29, Theorem 3.3] from certain instances of MatchSum on planar
graphs to PerfMatch on planar graphs.
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4 Parity separation in action

In the final section of this paper, we cover the three applications of parity separation that we
discussed in the introduction.

4.1 Completeness for #P
We can easily show the #P-completeness of PerfMatch0,1 via parity separation. To this end,
we first express #SAT as a Holant problem on even signature graphs, as seen in Lemma 12.
Together with Lemma 17, this yields #SAT ≤p PerfMatchB with B = {−1, 0, 1/2, 1}. We
use Lemma 7 to remove the edge-weight 1/2, and finally remove the weight −1 by parity
separation as in Lemma 1. Altogether, we obtain the following lemma.

I Lemma 21. Let ϕ be a 3-CNF formula with n variables and m clauses. Then we can
compute a number T ∈ N and construct two unweighted graphs G1 and G2 on O(n+m) vertices
and edges, all in time O(n+m), such that 2T ·#SAT(ϕ) = PerfMatch(G1)−PerfMatch(G2).

This readily implies Theorem 2, the desired #P-completeness result.

4.2 Completeness for C=P
For our next application, we apply the parity separation technique to prove Theorem 3. That
is, we prove C=P-completeness of the problem PerfMatch0,1

= that asks, given two unweighted
graphs G1 and G2, whether their numbers of perfect matchings agree. We call graphs
satisfying this property equipollent graphs and will likewise speak of equipollent formulas if
their numbers of satisfying assignments agree.

Proof of Theorem 3. The problem PerfMatch0,1
= is clearly contained in C=P. For the hard-

ness part, we reduce from the C=P-complete problem #SAT= that asks, given 3-CNF formulas
ϕ and ϕ′, to determine whether they are equipollent. To this end, we construct unweighted
graphs G and G′ that are equipollent if and only if ϕ and ϕ′ are.

Assume that ϕ and ϕ′ are defined on the same set of variables x1, . . . , xn and feature
the same number m of clauses. This can be achieved by renaming variables, and by adding
dummy variables and clauses. If, say, ϕ has less variables than ϕ′, then we can add dummy
variables to ϕ′, together with clauses that ensure that every dummy variable has the same
assignment as x1. We can also duplicate clauses.

Let C1, . . . , Cm and C ′1, . . . , C ′m denote the clauses in ϕ and ϕ′, respectively. We introduce
a selector variable x∗ and define a formula ψ on the variable set X = {x∗, x1, . . . , xn}, which
has clauses D1, . . . , Dm and D′1, . . . , D′m, where Di := (x∗ ∨ Ci) and D′i := (¬x∗ ∨ C ′i) for
i ∈ [m]. If a(x∗) = 0 holds in an assignment a ∈ {0, 1}X , then all clauses D′1, . . . , D′m are
satisfied by ¬x∗, but in order for a to satisfy ψ, the clauses D1, . . . , Dm have to be satisfied
by x1, . . . , xn. In other words, if a satisfies ψ and a(x∗) = 0, then the restriction of a to
x1, . . . , xn satisfies ϕ. Likewise, if a satisfies ψ and a(x∗) = 1, then the restriction of a to
x1, . . . , xn satisfies ϕ′. Hence, we can define the following quantity

S :=
∑

a∈{0,1}X
(−1)a(x∗) · [ψ satisfied by a]

and we observe that S = #SAT(ϕ)−#SAT(ϕ′). It is clear that S = 0 if and only if ϕ and
ϕ′ are equipollent. As in Lemma 12, we then express S = Holant(Ω) for a signature graph
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Ω = Ω(ψ), with one modification: At the vertex v∗ corresponding to the variable x∗, we do
not use the signature EQ, but rather a modified signature

EQ− : y 7→


−1 if y = 1 . . . 1,
1 if y = 0 . . . 0,
0 otherwise.

We realize Ω via Lemma 17 to obtain a graph G on edge-weights 1/2,±1, simulate the
edge-weight 1/2 via Lemma 7, and obtain an edge-weighted graph H with weights ±1 together
with a number T ∈ N such that

S = Holant(Ω) = 2−T · PerfMatch(H). (7)

Using Lemma 1, we then obtain unweighted graphs G and G′ such that

PerfMatch(H) = PerfMatch(G)− PerfMatch(G′). (8)

Then G and G′ are equipollent iff S = 0, which in turn holds iff ϕ and ϕ′ are equipollent. J

4.3 Tight lower bounds under #ETH
By the exponential-time hypothesis #ETH, there is no 2o(n) time algorithm for counting
satisfying assignments to 3-CNF formulas ϕ with n variables. Applying the counting version
of the so-called sparsification lemma, shown in [13], we may additionally assume that ϕ
features m = O(n) clauses. Then Lemma 21 clearly implies the lower bound for PerfMatch0,1

claimed in Theorem 4.
Concerning PerfMatch0,1

= , it is even easier to prove lower bounds under ETH than to prove
its C=P-completeness, as we may (i) reduce from SAT rather than SAT=, and (ii) use the more
permissive notion of Turing (rather than many-one) reductions: With Lemma 21, we can
construct unweighted graphs G1 and G2 on O(m) vertices and edges that are equipollent iff ϕ
is unsatisfiable, thus a 2o(m) time algorithm would contradict ETH. This proves Theorem 4.

5 Conclusion and future work

We have added a new method to the known techniques (modular arithmetic and polynomial
interpolation) for removing the edge-weight −1 from PerfMatch−1,0,1. This method is based
on matchgates and the simple observation that (−1)even = 1 and (−1)odd = −1. We obtained
non-trivial applications that could not be obtained via the previously known techniques.

Our work leaves some interesting questions open for further investigations. For instance,
we could not find a way to show #P-completeness of PerfMatch0,1 on bipartite graphs by
parity separation. Is there a complexity-theoretic explanation for this? On another note, can
we prove C=P-completeness for other “equality-testing” versions of counting problems?

Acknowledgments. The author wishes to thank Markus Bläser, Mingji Xia, Meena Mahajan
and Jin-Yi Cai for interesting discussions. Furthermore, thanks to Patrick Scharpfenecker
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