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Abstract—Due to the explosive increase of online images,
content-based image retrieval has gained a lot of attention. The
success of deep learning techniques such as convolutional neural
networks have motivated us to explore its applications in our
context. The main contribution of our work is a novel end-
to-end supervised learning framework that learns probability-
based semantic-level similarity and feature-level similarity simul-
taneously. The main advantage of our novel hashing scheme
that it is able to reduce the computational cost of retrieval
significantly at the state-of-the-art efficiency level. We report on
comprehensive experiments using public available datasets such
as Oxford, Holidays and ImageNet 2012 retrieval datasets.

I. INTRODUCTION

The field of content-based image retrieval consists of a lot of
different indexing structures, schemes, and methods aiding the
related retrieval tasks. The goal of the indexing structures is to
take an available dataset, and produce a concise and easier to
handle index which can be used to search for similar content.
In content-based image retrieval, both image representations
and computational cost play an important and unavoidable
role. Binary hashing has attracted a lot of attention due to
computational and storage efficiencies of binary hash codes.
It tries to map high-dimensional image data to compact binary
codes in a Hamming-space while keeping several notion.

Due to the explosive increase of online images, rapid
similarity search is critical for large-scale image retrieval.
Benefiting from the compact binary codes, fast image search
can be measured via Hamming distance and binary pattern
matching, which significantly reduces the computational over-
head and further optimizes the efficiency of the search. The
success of deep learning techniques such as convolutional
neural network (CNN) motivated us to explore its applications
in providing compact binary codes directly. To address this
problem, a deep semantic hashing algorithm is proposed in
this paper, which based on CNN to learn semantic information
and binary representations simultaneously.

The main contributions of our work are as following. An ef-
ficient end-to-end supervised learning framework is presented
for fast image retrieval that learns probability-based semantic-
level similarity and feature-level similarity simultaneously.
Unlike previous methods [10], [11], the semantic from the
last fully-connected layer is derived directly, instead of hash
layer. Different from other supervised methods that learn an
explicit hash function directly to map binary code features

from images, our method learns hashing codes and image
representations in an implicit manner. The main advantage
of our novel hashing scheme that it is able to reduce the
computational cost of retrieval significantly at the state-of-the-
art efficiency level.

The rest of this paper is organized as follows. In Section
II, the related and previous works are reviewed. We describe
the proposed fast image-retrieval architecture in Section III.
Section IV shows experimental results and analysis. We draw
the conclusions in Section V.

II. RELATED WORKS

The existing hash methods can be roughly divided into
two categories: data-independent and data-dependent. In this
section, we will mainly focus on data-dependent hash methods
which are related to our algorithm.

A typical example of data-independent methods is Locality
Sensitive Hashing (LSH) [1] that uses random projection to
construct hash functions. LSH hashes the input items so that
similar items map to the same cluster with high probability.

Havasi et al. [2] proposed the Local Hash-indexing tree
which is similar to M-index [3] where base points are chosen
randomly to reduce the high-dimensional feature vectors.
Unlike M-index, during random point selection a quasi or-
thogonality criteria is forced.

Convolutional neural networks have achieved amazing suc-
cess in modeling large-scale data recently. It have been demon-
strated to be very effective in various computer vision and
image processing tasks including pedestrian detection [4], face
detection [5], image classification [6], image super-resolution
[7], automatic image colorization [8] etc. CNN-based methods
have been applied on the task of image retrieval recently.

The work of Babenko et al. [9] focuses on exploring the
features of different layers, and to improve the retrieval per-
formance with dimensional reduction. Xia et al. [10] presented
an image retrieval method that uses a two-stage framework in
order to accurately preserve the semantic similarities of image
pairs. In the first stage, given the pairwise similarity matrix
over training images a scalable coordinate descent method is
proposed to decompose the similarity matrix. In the second
stage, a feature representation is learned simultaneously for the
input images as well as a set of hash functions. Zhao et al. [11]
proposed a deep semantic ranking based method for learning
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hash functions in order to preserve multilevel semantic simi-
larity between multi-label images. CNNs were incorporated
into hash functions to jointly learn feature representations
and mappings from them to hash codes. A ranking list was
applied to encode the multilevel similarity information. Wang
et al. [12] proposed a fine-grained image similarity learning
method that captures efficiently between-class and within-class
image differences. A ranking loss based CNN architecture
was proposed on triplet sampling to learn image similarity
metric. Developing the convolutional architecture, Gong et
al. [13] integrated into the CNN a warp approximate ranking
algorithm.

III. OUR APPROACH

In general, a hash function h: RD → {0, 1} is treated as
a mapping that projects a D-dimensional input onto a binary
code. Let’s assume that we are given a set of images and their
labels I = {(xn,Yn)}, where each image x ∈ RD is associated
with a subset of possible labels Y ⊆ L. In previous works,
the main objective was to learn a similarity function which
mapped low-level image representation to a similarity value.
Unlike previous methods [11], [12], [13], we obtain first the
mid-level features from raw image data, then these mid-level
features are used to estimate the probabilites of the semantic
labels and to compute the hash codes of CNN feature vectors.

As shown in Figure 1, our algorithm consists of two main
steps. In the first step, we obtain the image representations
via a CNN which is supervised pre-trained on the ImageNet
dataset [14] and fine-tuned on target dataset. The CNN
model of Krizhevsky et al. [14] contains five convolutional
layers, two fully-connected layers, and a softmax classifier.
This model incorporates a huge amount of semantic informa-
tion, since it was trained on more than 1 million images.

Unlike [11], the semantic from the last fully-connected layer
is derived directly, instead of hash layer. The output of the last
fully-connected layer is splitted into two branches. One branch
leads to a n-ways softmax classifier where n stands for the
number of categories of the target dataset. The other branch
is a hash-like function to make the CNN features map to hash
codes.

The mid-level features are extracted from the last fully-
connected layer, and softmax classifiers are trained for each
semantic simultaneously. We interpret the output of the clas-
sifiers as probabilites of semantic. The layers FC6 and FC7
are connected to the deep hash layer in order to encode
a wide variety of information of visual appearance. In the
following subsections we will define our feature vector and
the computation of the hash function.

A. Probability-based Semantic-level Similarity

In case of hard assignment of semantic categories, we are
given the semantic labels L = {1, ..., C} and the similarity
between two images a and b are measured how much their
indicator functions match. Let δi(a) ∈ {0, 1} be the indicator
function of image a has semantic i, so the semantic of image
a can be denoted as LC

i (a) = {δi(a)|i = (1, ..., C)}, s.t. there

must be one and only one δi(a) = 1. We define the similarity
between image a and b as ς(a, b) =

∑
(i,j) δi(a)Sijδj(b),

where S ∈ RC×C and Sij is a matching score between
semantic i and j.

As pointed out in [15], natural semantic categories always
overlap and inherently ambiguous, using hard-categories to
recognize objects always leads to failure. On the other hand,
perfect classification of semantic is unrealistic. In order to
solve this problem and improve performance, a probability-
based semantic-level similarity is proposed in this paper.

Lets assume that image a has semantic label i, we can
use probability P (δi(a) = 1|a) to indicate that image a has
semantic i. Obviously, the semantic label of the image will be:
i = maxi(P (δi(a) = 1|a)). As we mentioned L = {1, ..., C}
stands for the set of semantic labels and I denotes the set
of images. For each m ∈ L, a+m denotes the set of images
that are relevant to the semantic i, and a−m stands for the
set of irrelevant. The semantic relevance is defined by the
matrix RIL : I × L → R+, and where RIL(a

+
m,m) > 0 and

RIL(a
−
m,m) = 0 for all m ∈ L. We treated images as being

conditionally independent: P (a, b|m) = P (a|m)P (b|m) for
any given image a, b and semantic m. The joint image-image
probability can be computed as a relevance measure

P (a, b) =
∑
m∈L

P (a, b|m)P (m) =

=
∑
m∈L

P (a|m)P (b|m)P (m). (1)

To improve scalability, we considered two images to be related
if their joint distribution exceeded a cutoff threshold t. In short,
we write:

RII(a, b) = [P (a, b)]t, (2)

where t denotes the cutoff threshold that is [z]t = z if z > t
otherwise 0.

B. Feature-level Similarity

Given an image a, we first extract the output of the fully-
connected layers as image representation which is denoted
by a D-dimensional feature vector g(a), where g(·) is the
convolution transformation over all of the previous layers.
Then a q-bit binary code is obtained by a hashing function
h(·). For each bit i = 1, ..., q, the output of the binary hash
codes will be:

Hi =

{
1 if σ(xi)−Mean(σ(xi)) > 0

0 if σ(xi)−Mean(σ(xi)) ≤ 0,
(3)

Hi ∈ {0, 1}q stands for the binary codes of each image I ,
Mean(v) is the average value of vector v. Given a query
image x, we use its binary codes to identify the image from
the images set I . We used the Euclidean distance to define
feature-level similarity. The smaller the Euclidean distance is,
the higher the similarity of the two images is, and top k ranked
images are identified.



Fig. 1. The architecture of our proposed image retrieval algorithm.

TABLE II
THE DETAILED MEAN AVERAGE PRESCISION (MAP) RESULTS OF EACH CATEGORIES ON OXFORD DATASET. THE BEST RESULT OF EACH CATEGORIES IS
TYPED BY BOLD, THE SECOND BEST IS TYPED BY italic. OUR ALGORITHM ACHIEVED BEST RESULT IN FOUR CATEGORIES AND SECOND BEST RESULT IN

TWO CATEGORIES.

Method souls ashm ball bodle christ corn hert keble magd pitt red Average
Neural Codes [9] 0.566 0.486 0.439 0.802 0.597 0.385 0.936 0.434 0.285 0.68 0.958 0.605
Compressed Fisher [19] 0.581 0.513 0.424 0.813 0.604 0.938 0.503 0.234 0.79 0.597 0.98 0.634
Compressed BoW [20] 0.667 0.621 0.225 0.506 0.537 0.084 0.704 0.143 0.617 0.112 0.713 0.448
CVLAD [21] 0.536 0.425 0.120 0.587 0.544 0.231 0.621 0.109 0.474 0.310 0.754 0.428
OASIS [22] 0.286 0.686 0.615 0.178 0.598 0.292 0.135 0.713 0.761 0.677 0.818 0.523
MCML [23] 0.321 0.756 0.685 0.143 0.563 0.327 0.096 0.748 0.831 0.642 0.853 0.542
LEGO [24] 0.697 0.321 0.338 0.463 0.217 0.267 0.287 0.579 0.734 0.112 0.180 0.381
LMNN [15] 0.845 0.7 0.324 0.727 0.832 0.450 0.631 0.503 0.811 0.206 0.351 0.58
Spatial Pooling [25] 1.0 0.945 0.483 0.956 0.923 0.246 0.99 0.425 1.0 0.295 1.0 0.751
CNNaug-ss [26] 0.905 0.794 0.375 0.959 0.913 0.245 0.99 0.476 0.843 0.679 0.99 0.742
MOP-CNN [27] 0.963 0.917 0.521 0.802 0.833 0.29 1.0 0.44 0.739 0.28 1.0 0.707
Ours (t=0.2) 0.968 0.939 0.496 0.907 0.936 0.277 1.0 0.439 0.913 0.287 1.0 0.744

TABLE III
COMPARISON OF RETRIEVAL TIMES (MS) ON THREE RETRIEVAL DATASETS. THE BEST RESULT IS TYPED BY BOLD, THE SECOND BEST IS TYPED BY italic.

Method Holidays Oxford ImageNet 2012
Number of Categories 500 12 1000
Neural Codes [9] 0.16 67.8 230.45
Compressed Fisher [19] 0.21 73.4 242.1
Compressed BoW [20] 0.2 69.3 232.7
CVLAD [21] 0.15 64.32 214.5
OASIS [22] 0.16 24.2 68.8
MCML [23] 0.15 30.1 75.5
LEGO [24] 0.19 27.45 89.5
LMNN [15] 0.15 27.9 55.2
Spatial Pooling [25] 2.1 145.1 390.6
CNNaug-ss [26] 1.3 122.2 370.6
MOP-CNN [27] 1.8 165.4 387.3
Ours (t=0.2) 0.15 27.64 53.92

C. Fusion of Semantic-level and Feature-level Similarity
After defining the semantic-level and feature-level similar-

ity, we define hierarchical similarity between image a and b
by:

ς(a, b) = (p(a), Ha)
T S(p(b), Hb) =

= RII(a, b)× (1− d(q, i)), (4)

where 1− d(q, i) is the feature-level similarity and RII(a, b)
was defined by Eq. 1 and 2. First, the semantic relevance
RII(a, b) is determined between the target and the query
image, if it equals to zero the target image will be disregarded.
After the semantic relevance checking, we obtain a set of can-
didate images. The feature-level similarity will be computed
over this set.



TABLE I
MEAN AVERAGE PRECISION (MAP) COMPARISON WITH

STATE-OF-THE-ART METHODS ON IMAGENET 2012 DATASET MEASURED
ON 100 CATEGORIES. THE BEST RESULT IS TYPED BY BOLD, THE SECOND

BEST IS TYPED BY italic.

Method MAP on ImageNet 2012
Neural Codes [9] 0.247
Compressed Fisher [19] 0.324
Compressed BoW [20] 0.305
CVLAD [21] 0.273
OASIS [22] 0.342
MCML [23] 0.315
LEGO [24] 0.142
LMNN [15] 0.183
Spatial Pooling [25] 0.605
CNNaug-ss [26] 0.563
MOP-CNN [27] 0.493
Ours (t=0.2) 0.580

IV. EXPERIMENTAL RESULTS

We used the Oxford [16] and Holidays datasets [17] to
compare with other state-of-the-art algorithms and ImageNet
2012 [18] was used for large-scale experiments. The Oxford
retrieval dataset contains 5062 images which were collected
from Flickr by searching for particular Oxford landmarks. The
collection was manually annotated to generate a comprehen-
sive ground truth for 12 different landmarks (souls, ashm,
ball, bodle, christ, corn, hert, keble, magd, pitt, red), each
represented by 5 possible labels (Good, Ok, Bad, Junk).

Fig. 2. Images retrieved by the proposed architecture.

We have used 1670 images as our validation dataset and the
other 3392 images as training dataset. The amount of training
images is very important for training a CNN. That is why we
were forced to extend the number of images of each category
to 1000 using among others horizontal flipping, rotation, and
brightness transformations.

Figure 2 and Figure 3 illustrate some query results. In these
figures, the query image can be seen on the left and we give the
top 5 retrieved images to each query image on the right. In the

Fig. 3. Images retrieved by the proposed architecture.

following, we give qualitative results in order to prove that our
architecture is good for preserving the semantics which makes
the target images similar to the query image.

Fig. 4. Combining Probability-based Semantic-level Similarity with different
thresholds. Measured on Oxford dataset.

Figure 4 shows the mean average precision curves on
Oxford dataset with different threshold t. As we described
above, higher thresholds will filter out more semantic dissim-
ilarities, but it may exclude similar categories, especially for
complex scenes. The published curve shows that t = 0.2 is
a good choice. That is why we used everywhere t = 0.2
threshold during the evaluation of our algorithm.

Table II summarizes the comparison with other state-of-
the-art methods with respect to Mean Average Prescision
measured on Oxford dataset. It can be seen that our method
produces competitive results in comparison to other CNN-
based approaches (Spatial Pooling, CNNaug-ss, MOP-CNN)
and significantly outperforms most of the SIFT-based ap-
proaches (Compressed Fisher, Compressed BoW, CVLAD,
OASIS, LEGO). Due to the proposed architecture and special
localization of hash function, we outperform in retrieval times
the other state-of-the-art algorithms (Table III).

Finally, we measured the presision on ImageNet 2012



dataset in order to demonstrate the efficiency and scalability
of our algorithm. Table I summarizes the obtained results.
It can be seen that our method gives competitive results in
comparison to other CNN-based approaches (Spatial Pooling,
CNNaug-ss, MOP-CNN).

V. CONCLUSION

We have introduced a novel end-to-end supervised learning
framework that learns probability-based semantic-level simi-
larity and feature-level similarity simultaneously. We reported
on competitive results using public available datasets includ-
ing Oxford, Holidays and ImageNet 2012 retrieval
datasets. Semantic-level similarity and feature-level similarity
were combined combined in the retrieval process and this
layout provided strong priors to determine similarity distance
effectively. We showed if efficieny and speed considered
together our method outperforms the state-of-the-art results.
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