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Abstract—Pedestrian detection is a fundamental computer
vision task with many practical applications in robotics, video
surveillance, autonomous driving, and automotive safety. How-
ever, it is still a challenging problem due to the tremendous
variations in illumination, clothing, color, scale, and pose. The
aim of this paper to present our dynamic pedestrian detector. In
this paper, we propose a pedestrian detection approach that uses
convolutional neural network (CNN) to differentiate pedestrian
and non-pedestrian motion patterns. Although the CNN has
good generalization performance, the CNN classifier is time-
consuming. Therefore, we propose a novel architecture to reduce
the time of feature extraction and training. Occlusion handling
is one of the most important problem in pedestrian detection.
For occlusion handling, we propose a method, which consists of
extensive part detectors. The main advantage of our algorithm
is that it can be trained on weakly labeled data, i.e. it does not
require part annotations in the pedestrian bounding boxes.

I. INTRODUCTION

Pedestrian detection has been one of the most extensively
studied problems in computer vision. One reason is that
pedestrian detection is the first step for a number of ap-
plications such as smart video surveillance, people-finding
for military applications, human-robot interaction, intelligent
digital management, and driving assistance system. Pedes-
trian detection is a rapidly evolving area, as it provides
the fundamental information for semantic understanding of
the video footages. Because of the various style of clothing
in appearance, different possible body articulations, different
illumination conditions, the presence of occluding accessories,
frequent occlusion between pedestrians, etc., the pedestrian
detection is still a challenging problem in computer vision.

The goal of this paper is to present our novel pedestrian
detector based on Convolutional Neural Network (CNN) in
surveillance videos. In video surveillance, the cameras are
usually static and look down to the ground. According to the
installing locations, the surveillance scenes can be divided into
indoor and outdoor scenes. A surveillance system may contain
different modalities and it is beneficial, if a pedestrian detector
is able to work both on RGB images and infrared images. In
this paper, we propose a novel, dynamic pedestrian detector
which has several appealing properties. It contains a set of
extensive part detectors that can be trained on weakly labeled
data, i.e. it does not require part annotations in the pedestrian
bounding boxes. We present an effective CNN architecture to
reduce the time of feature extraction and training.

The rest of this paper is organized as follows. In Section II,
the related and previous works are reviewed. We describe the
proposed pedestrian detector in Section III. Section IV shows
experimental results and analysis. We draw the conclusions in
Section V.

II. RELATED WORK

There is extensive literature on pedestrian detection algo-
rithms. A deepgoing review on these algorithms is beyond the
scope of this paper. We refer readers to comprehensive surveys
[1], [2] for more details about existing detectors. We refer to
[3] and [4] for older pedestrian detectors. In this section, we
review only the works related to our method.

Two representative works in pedestrian detection are the VJ
[5] detector and HOG [6] detector. The VJ detector achieved
a very fast detection speed with the help of simple Haar-like
features and cascade of boosted classifiers. In HOG detector,
first, each detection window is decomposed into cells of size
8 × 8 pixels and each group of 2 × 2 cells are integrated
into a block with an overlap of 50%. A 9-bin histogram of
oriented gradients is computed for each cell. Each block is
represented by the concatenated histograms of all its cells. This
concatenated histogram is normalized to an L2 unit length.
Each 128 × 64 detection window is represented by 15 × 7
blocks, giving a 3780 dimensional feature vector per detection
window. These feature vectors are then used to train a linear
SVM classifier. Based on VJ detector, Viola et al. [7] proposed
a pedestrian detection system that integrates image intensity
information with motion information. A detection style algo-
rithm was used that scans a detector over two consecutive
frames of a video sequence. AdaBoost was trained to take
advantage of both motion and appearance information to detect
a walking pedestrian. Based on HOG, Felzenszwalb et al.
proposed the Deformable Part Based Model (DPM) [8] which
made a breakthrough in pedestrian detection. The system relies
heavily on deformable parts. The authors combined a margin-
sensitive approach for data mining hard negative examples
with latent SVM. Latent SVM is semi-convex [9], but the
training problem becomes convex once latent information is
specified for the positive examples.

Since the feature extraction pipelines in above mentioned
methods are designed manually, the literature categorizes them
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as hand-craft features. In recent years, deep learning tech-
niques have achieved amazing success in modeling large-scale
data. ConvNet [10] uses a mix of unsupervised and supervised
training to create a deep convolutional neural network trained
on INRIA pedestrian dataset. Chen et al. [11] proposed to
cascade simple Aggregated Channel Features (ACF) and rich
Deep Convolutional Neural Network features in order to detect
pedestrians in complex scenes. The ACF based detector was
used to rapidly generate candidate pedestrian windows and
the rich DCNN features with a SVM was used for fine
classification.

Another line of work focuses on using deep architectures
to jointly model parts and occlusions. Ouyang et al. [12]
conducted Restricted Boltzmann Machine (RBM) in modeling
mutual visibility relationship for occlusion handling. In [13],
the authors proposed a joint deep learning framework and
a new deep network architecture that jointly learns feature
extraction, deformation handling, occlusion handling, and clas-
sification.

Motivated by these previous works, in the rest of the paper,
we propose a novel, dynamic pedestrian detector based on
CNN with occlusion handling.

III. OUR SYSTEM ARCHITECTURE

Figure 1 presents the overview of our dynamic pedestrian
detector. In order to integrate image intensity information with
motion information, the absolute difference of two consequtive
video frames is computed. The pattern of human motion is
well known to be readily distinguishable from other sorts of
motion. A detection window scans the absolute difference of
the two frames and a pre-trained CNN classifier determines
for each detection window independently whether it contains
a pedestrian or not. In many applications such as video surveil-
lance, detection speed is as important as accuracy. Although
the CNN has good generalization power, training and applying
of CNN classifier is time-consuming.

The main advantage of CNN that it integrates feature extrac-
tion and classification into one single structure, however both
process with training can be very time consuming. In order to
reduce the time of feature extraction and classification process
of the CNN, we present a not fully connected arhitecture.
However, the rarefication of the connections can degrade the
generalization power of the CNN, we load motion patterns to
the input of CNN, which is well known to be readily distin-
guishable from other sorts of motion and in that way support
the training process. To figure out an optimal connection, it is
important to reduce the training time. In Subsection III-B, we
describe our training method that results in significant fall-of
of the training time compared to [14]. Finally, we propose a
occlusion handling method which appealing property is that it
can be trained on weakly labeled data.

A. Architecture of CNN

A CNN contains usually three types of layers: convolutional
layers, sub-sampling layers, and a neuron layer. These types

Fig. 1. Architecture of our pedestrian detection system.

of layers are arranged in a feed-forward structure. A convolu-
tional layer is followed by a sub-sampling layer, and the last
convolutional layer is followed by the neuron layer.

The output of convolutional layer l is calculated as [15]

yln = σl(
∑

m∈Vl
n

yl−1m ⊗ wl
m,n + bln), (1)

where ⊗ denotes the 2-D convolution operator, yl−1m are the
input feature maps, wl

m,n stands for the convolution mask from
feature map m in layer l−1 to feature map n in layer l, bln is
the bias term associated with feature map n, Vl

n stands for the
list of all planes in layer l − 1 that are connected to feature
map n, σ() is the activation function, and yln is the output
feature map. If the size of the input feature maps is H ×W
and the size of the convolution mask is h × w, then the size
of the output feature map will be (H−h+ 1)× (W −w+ 1).

A sub-sampling layer follows through a form of non-linear
down-sampling. The sub-sampling layer partitions the input
feature map into a set of non-overlapping rectangles and, for
each sub-region, outputs the maximum, the minimum, or the
average. If the sub-sampling layer divides an input feature map
size of H×W into non-overlapping blocks of size 2×2 pixels,
then the size of the output feature map will be (H/2)×(W/2).

Lets consider that the neuron layer l contains N neurons.
The output of neuron n in the layer is computed as [15]

yln = σl(
N∑

m=1

yl−1m wl
m,n + bln), (2)

where bln denotes the bias term of neuron n in layer l, wl
m,n

stands for the weight from feature map m to feature map n
in layer l, and σ() is the activation function.

Table I defines exactly the applied CNN architecture. It
consists of three convolutional layer, two sub-sampling layers,
and a neuron layer. We define the connections between the
layer with the help of a list that contains all feature maps
in layer l − 1 that are connected to feature map n in layer
l. For instance, V5

2 = {2, 3, 4} represents that feature maps
2, 3, 4 in layer 4 are connected to feature map 2 in layer 5.
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The size of the filter in conv1 is 9×7, in sub-sampling1
is 3 × 3, in conv2 is 7 × 7, in sub-sampling2 is 3 × 3,
and in conv3 is 10 × 7, respectively. In the sub-sampling
layers, we applied min pooling. The activation functions are
linear for convolutional layers and sigmoidal for sub-sampling
layers and neuron layer.

TABLE I
THE STRUCTURE OF THE APPLIED CONVOLUTIONAL NEURAL NETWORK.

Vl
n STANDS FOR THE LIST OF ALL PLANES IN LAYER l − 1 THAT ARE

CONNECTED TO FEATURE MAP n IN LAYER l. THE SIZE OF THE INPUT
PATTERNS ARE 80× 60.

Type Output map size Connection
conv1 4@72× 54 V1

1 = {1}, V1
2 = {1},

V1
3 = {1}, V1

4 = {1}
sub-sampling1 4@24× 18 V2

1 = {1}, V2
2 = {2},

V2
3 = {3}, V2

4 = {4}
conv2 6@18× 12 V3

1 = {1}, V3
2 = {2},

V3
3 = {1, 3}, V3

4 = {2, 4},
V3
5 = {3}, V3

6 = {4}
sub-sampling2 6@6× 4 V4

1 = {1}, V4
2 = {2},

V4
3 = {3}, V4

4 = {4},
V4
5 = {5}, V4

6 = {6}
conv3 5@1× 1 V5

1 = {1, 2}, V5
2 = {2, 3, 4},

V5
3 = {3, 4}, V5

4 = {4, 5},
V5
5 = {5, 6}

neuron layer 2@1× 1 V6
1 = {1, 2, 3, 4, 5},

V6
2 = {1, 2, 3, 4, 5}

B. Training of CNN

We created a set of video sequences of street and indoor
scenes with all pedestrians marked with a bounding box. We
have six such sequences, each containing around 2500 frames.
We used these sequences to create a training set from which
we learned our dynamic pedestrian detector. The detector
was trained on consecutive pedestrian image pairs. We have
collected 6,000 consecutive pedestrian image pairs and we also
collected 10,000 negative examples. All positive and negative
examples have been aligned and scaled to the dimensions
80× 60.

The model parameters of the CNN are initialized ran-
domly with Gaussian distribution. Given a dataset of M
input examples X = (x1, x2, ..., xM ), the CNN is trained
to give target outputs (d1,d2, ...,dM ), where di is set to
(+0.9, 0) if xi a pedestrian motion pattern; otherwise di is
set to (0,−0.9). We divided our X training set into smaller
subsets X = X1

⋃
X2

⋃
...
⋃

XN , and compute the error
gradient for each separate subset: g1(w), g2(w), ..., gN (w),
where w = (w1,w2, ...,wL) stands for all weights and biases
of the network. Training is done in each subset iteratively to
minimize the mean-square-error function:

Lj(w) =
1

Mj

Mj∑
i=1

(yi − di)
2, j = 1, 2, ..., N, (3)

where yi is the output of the CNN. The error gradient of each
subset can be computed as gj(w) = 5Lj(w). The overall

error gradient vector can be computed as

g(w) =
N∑
j=1

gj(w). (4)

After the error gradient vector is computed, Levenberg-
Marquardt [14] back-propagation algorithm is applied in order
to train the network. The Levenberg-Marquardt algorithm is
a trust-region method that uses the Gauss-Newton approxima-
tion of the Hessian matrix. From second-order Taylor expan-
sion and Gauss-Newton approximation of Hessian matrix:

∆w(t) = −[JT J + µI]−1OE, (5)

J is the Jacobian matrix, OE is determined through the
Jacobian matrix J, and µ represents an adaptive parameter
controlling the size of the trust region. The details of the
algorithm can be found in the given reference.

We have trained 45 network structure with different connec-
tions and activation functions using the presented technique of
this subsection. After training, all the networks were evaluated
on a validation video, and we selected the best network.
The parameters and the connections of the best one was
described in the previous subsection. The training time for
each network structure was about 12 hours of training on one
personal computer. Using the classical Levenberg-Marquardt,
the training process took about 48 hours on the same computer.

C. Occlusion Handling

In our occlusion handling method, we determine first
whether the score of the holistic classifier is ambiguous. When
the output is ambiguous, an occlusion inference process is
applied (Fig. 2).

Fig. 2. Occlusion handling scheme.

We consider pedestrian’s motion pattern as a rigid object
and define a grid of M1 ×M2, where M1 and M2 indicate
the numbers of cells in horizontal and vertical direction,
respectively. Each cell is a square and has equal size. We
ensure each part to be a rectangle. The possible sizes of the
parts can be defined as

S = {(w, h) |Wmin ≤ w ≤M1, Hmin ≤ h ≤M2, w, h ∈ N+},
(6)

where w and h stand for the width and height of a part in
terms of the number of cells they contain. Wmin and Hmin
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Fig. 3. Part prototype example, (x, y, w, h, i) is defined in Eq. 7. The head-
shoulder part with 2 grids in height and 2 grids in width.

are used to avoid subtle parts. Then, for each (w, h) ∈ S, we
slide a w×h window over the grid to generate parts at different
positions. The entire part pool can be defined as follows

P = {(x, y, w, h, i) | x, y ∈ N+, (w, h) ∈ S, i ∈ I}, (7)

where x and y stand for the coordinates of the top-left cell in
the part and i is a unique id. For instance, the part representing
the full motion pattern is defined as (1, 1,M1,M2, I1), for an-
other example see Figure 3. Because of our training examples
are in size of 80 × 60, we have used in our implementation
the following parameters M1 = 3, M2 = 4, Wmin = 2,
Hmin = 2, and the step size is one.

For each part, a similar CNN was trained. If the output of
the holistic detector is ambiguous, we run the part detectors.
We take only into account the results of the part detectors with
the four highest scores.

IV. EXPERIMENTAL RESULTS

We perform the experiments on CAVIAR sequences
(http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1),
which is captured in a corridor with resolution 384 × 288
pixels. In this paper, we use per-image performance, plotting
detection rate versus false positives per-image (FPPI). Figure
4 shows some sample detections on the CAVIAR sequences.
Figure 5 shows the detection rate versus false positive per-
image (FPPI) for the presented detector and six other systems.
The six other systems we compare include Dalal and Triggs
HOG+SVM system [6], Lie et al. HOG+AdaBoost system
[16], Papageorgiou et al. Haar+SVM system [17], Monteiro et
al. Haar+AdaBoost system [18], a PHOG+HIKSVM system
[19], and a system based on Aggregated Channel Features
[20]. Table II summarizes the speed comparison, we remark
that our source code is still not optimized while the source
code of the others are mainly optimized.

In order to prove the generalization performance of our
system, we applied our algorithm to the video frames of an
infrared surveillance camera. Our presented system mainly
captures the pedestrian’s motion pattern, that is why shows
high invariance to illumination and clothing, and performs well
in infrared images too. Figure 6 shows some sample detections
in infrared images.

Fig. 4. Some detections on CAVIAR sequences.
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Fig. 5. Detection rate versus false positive per-image (FPPI) curves for
pedestrian detectors. 2 × 2 is the step size and 1.09 is the scale factor of
the sliding-window detection.

Fig. 6. Some detections on infrared images.

V. CONCLUSION

In this paper, we presented a novel, dynamic pedestrian
detection system and reported on experimental results. We
have presented our dynamic pedestrian detector based on
CNN. We have also shown that the system is able to detect
pedestrians in real-time in surveillance videos. All the modules
of the algorithm were introduced with its details about design
and implementation. We have compared the system to other
algorithms and presented results on RGB images and thermal
images. We have proved that our detector is highly invariant to
clothing and illumination. Our experiments also demonstrated
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TABLE II
SPEED COMPARISON.

Method Speed
Haar+AdaBoost [18] 15.63 fps
Haar+SVM [17] 13.56 fps
HOG+AdaBoost [16] 9.48 fps
HOG+SVM [6] 4.27 fps
PHOG+HIKSVM [19] 6.19 fps
ACF [20] 14.03 fps
Ours 5.48 fps

that the pedestrian detector is able to provide a robust input for
a surveillance system and it can work on different modalities.

There are many directions for further research. It is worth
studying how to extract a more distinguishable pedestrian
motion pattern in order to improve the performance of the
classifier. Another further direction of research is improving
the searching strategy of the detection window. To make our
system faster, we would like to apply parallel architectures.
However, our detector cannot handle the articulated deforma-
tion of pedestrians, which is the next problem to be attacked.
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