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Abstract

Pairwise comparison is an important tool in multi-attribute decision making. Pairwise
comparison matrices (PCM) have been applied for ranking criteria and for scoring alterna-
tives according to a given criterion. Our paper presents a special application of incomplete
PCMs: ranking of professional tennis players based on their results against each other. The
selected 25 players have been on the top of the ATP rankings for a shorter or longer period
in the last 40 years. Some of them have never met on the court. One of the aims of the paper
is to provide ranking of the selected players, however, the analysis of incomplete pairwise
comparison matrices is also in the focus. The eigenvector method and the logarithmic least
squares method were used to calculate weights from incomplete PCMs. In our results the top
three players of four decades were Nadal, Federer and Sampras. Some questions have been
raised on the properties of incomplete PCMs and remains open for further investigation.

Keywords: decision support, incomplete pairwise comparison matrix, ranking

1 Introduction

A well-known application field of pairwise comparison matrices (PCMs) is multi-attribute deci-
sion making (MADM). The values of pairwise comparisons are applied for ranking of criteria or
for scoring alternatives to a given criterion.

This paper will use pairwise comparison values for ranking of tennis players based on their
results against each other. Our aim is to make a ’historical’ comparison of top tennis players of
the last 40 years. The ranking idea is how the players performed against each other in a pairwise
manner in the long run. We have collected the results of 25 players who have been on the top of
the ATP ranking lists for a shorter or a longer period.1
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There could be several reasons why some elements of a PCM are missing. It can happen that
decision makers do not have time to make all comparisons, or they are not able to make some
of the comparisons. Some data could have lost, but it is also possible that the comparison was
not possible. In our case the reason of missing elements is obvious: we are not able to compare
those players directly who have never played against each other.

Professional tennis is very popular around the world. The professional tennis associations
(ATP, WTA) have been collecting data about the tournaments and the players. There is a freely
available database about the results of the top tennis players including data from 1973. That
gave the possibility to construct the pairwise comparison matrices of those players who have been
leading the ATP ranking for a period of any length. Applying one of the estimation methods for
generating a weight vector we can produce an order of the players: a ranking. That approach
might be highly disputable among tennis fans, of course, but we have to note that other ranking
ideas are also based on consensus or tradition, and there is no unique answer to the question
’Who is the best?’.

The existing ATP rankings, for instance, give points to the players for certain periods accord-
ing to the importance of the ATP tournaments (based on the prize money) using simple rules
for correcting the impacts of some biasing conditions.

The media and most of the experts consider #1 of the ATP-ranking as the ’best’ tennis player.
Our approach is also ranking-oriented, but we will not use this term, the emphasis will be put on
the excellence of players with higher positions relative to those who have lower ranking positions.
Ranking of players will be done according to the weights, and the player with the highest weight
can be regarded as the ’best’, however, this term is restricted to our sample of players and varies
as different ranking lists are generated.

In recent years some papers have attempted to rank professional tennis players with the use of
well-founded methods. Radicchi (2011) considered all matches played between 1968 and 2010 to
construct a weighted and directed preference graph. It develops a diffusion algorithm similar to
Google’s PageRank (Brin and Page, 1998) to derive the ranking of nodes representing the tennis
players. It also provides lists for specific playing surfaces and different time periods. On the basis
of the whole dataset, Jimmy Connors was identified as the #1 player. He is also the winner
of the decade 1971-80. For subsequent years, the #1 players are Ivan Lendl (1981-1990), Pete
Sampras (1991-2000) and Roger Federer (2001-2010). The new ranking has a higher predictive
power than the official ATP ranking and does not require arbitrary external criteria, with the
exception of a control parameter.

Dingle et al. (2013) use this method to derive PageRank-based tennis rankings instead of the
official ATP and WTA rankings. For top-ranked players, they are broadly similar, but there is
a wide variation in the tail. The PageRank-based rankings are found to be better predictor of
match outcomes. Spanias and Knottenbelt (2013) present two new algorithms, SortRank and
LadderRank, which make use of a quantitative tennis model to assess the performance of players
and compare them with each other. Dahl (2012) introduce a parametric method based on linear
algebra considering the importance of the matches, too. Motegi and Masuda (2012) propose a
network-based dynamical ranking system, taking into account that the strength of players depend
on time. The method outperforms both the official ranking and Radicchi (2011)’s prestige score
in prediction accuracy.

Several authors build statistical models with the aim of a good prediction power. Clarke
and Dyte (2000) argue that since the rankings are derived from a points rating, an estimate of
each player’s chance in a head to head contest can be made from the difference in the players’
rating points. Using a year’s tournament results, a logistic regression model can be fitted to
the ATP ratings to estimate that chance. McHale and Morton (2011) apply a Bradley-Terry
type model (Bradley and Terry, 1952) to obtain forecasts, and they show that these forecasts
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are more accurate according to several criteria than the forecasts obtained from standard models
employed in the literature. They compare the model to two logit models, one using official
rankings and another using the official ranking points of the two competing players. Irons et al.
(2014) refine that model to be more transparent, fair and insensitive to bias. As they say, even
the simplest model improves significantly over the current system, despite having three of the
same constraints: no surface information is used, only match results count, and a 12 month
rolling window is used to weight games.

Ruiz et al. (2013) apply Data Envelopment Analysis. According to their model, the ’effi-
cient’ players can be used for the ’inefficient’ ones as benchmark in order to improve certain
characteristics of their play. The ranking is based on cross-efficiency ratios.

Our paper discusses some theoretical results and applications of the incomplete pairwise com-
parison matrices. This section describes the aim of our research and reviews sport applications
with a focus on tennis rankings. The ranking approach implies the use of pairwise comparisons
in a natural way. Section 2 provides an overview of the results in the area of incomplete pairwise
comparison matrices – some of them have been published previously by the authors of this paper.
The applied model for top professional tennis players is introduced in the first part of Section
3 together with the description of the database and methodology. The second part of Section 3
describes the derived rankings – the Eigenvector Method and the Logarithmic Least Squares
Method are applied –, and analyzes some properties of these results. Section 4 includes further
analysis and draws conclusions with some remaining open questions.

2 Theory and methods

Our paper applies the method of pairwise comparisons.

Definition 2.1. Pairwise comparison matrix: Let Rn×n
+ denote the class of n× n matrices with

positive real elements. The matrix

A =


1 a12 a13 . . . a1n

1/a12 1 a23 . . . a2n
1/a13 1/a23 1 . . . a3n

...
...

...
. . .

...
1/a1n 1/a2n 1/a3n . . . 1

 ∈ Rn×n
+

is called a pairwise comparison matrix, if

aii = 1 and aij =
1

aji

for all indices i, j = 1, . . . , n.

In our case the alternatives are tennis players. Choosing any two of them (Pi and Pj), we
have the results of all matches have been played between them. Let the number of winning
matches of Pi over Pj be x, and the number of lost matches y. We can construct the ratio xi/yi:
if it is greater than 1, we can say that Pi is a ’better’ player than Pj . In case of xi/yi is equal
to 1 we are not able to decide who is the better. Let the aij element of the matrix A be xi/yi,
and the aji element be yi/xi for all i, j = 1, . . . , n, i 6= j. Choose the diagonal elements aii = 1
for all i = 1, 2, . . . , n, thus A becomes a pairwise comparison matrix according to Definition 2.1.

The PCM matrix A is used to determine a weight vector w = (w1, w2, . . . , wn), wi > 0, (i =
1, . . . , n), where the elements aij are estimated by wi/wj . Since the estimated values are ratios,
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it is a usual normalization condition that the sum of the weights is equal to 1:
∑n

i=1 wi = 1.
That estimation problem can be formulated in several ways. Saaty (Saaty, 1980) formulated
an eigenvalue problem in the Analytic Hierarchy Process (AHP ), where the components of the
right eigenvector belonging to the maximal eigenvalue (λmax) of matrix A will give the weights.
We will refer to that procedure as the Eigenvector Method (EM).

For solving the estimation problem it could be obvious to apply methods based on distance
minimization, too. That approach will estimate the elements of the A matrix with the elements
of a matrix W, where the element wij of W is wi/wj , wi and wj > 0, (i, j = 1, . . . , n), and the
objective function to be minimized is the distance of the two matrices. Choo and Wedley (2004)
categorized the estimation methods and found 12 different distance minimization methods of
deriving w from A based on minimizing the absolute deviation |aij − wi/wj | or |wjaij − wi|,
or minimizing the square (aij − wi/wj)

2 or (wjaij − wi)
2. The effectiveness of some methods

has been studied by Lin (2007). We will use the Logarithmic Least Squares Method (LLSM)
(Crawford and Williams, 1985; De Graan, 1980; Rabinowitz, 1976).

Several authors deal with the problem of inconsistency in AHP (see e.g. Bana e Costa and
Vansnick (2008)). In our tennis application intransitivity may occur, therefore inconsistency is
a natural phenomenon. However, the data set is given, consistency correction of the matrix
elements could not be done.

PCMs may be incomplete, that is, they have missing entries denoted by ∗:

A =


1 a12 ∗ . . . a1n

1/a12 1 a23 . . . ∗
∗ 1/a23 1 . . . a3n
...

...
...

. . .
...

1/a1n ∗ 1/a3n . . . 1

 . (1)

Main results have been discussed by Harker (Harker, 1987), Carmone, Kara and Zanakis
(Carmone et al., 1997), Kwiesielewicz and van Uden (Kwiesielewicz, 1996; Kwiesielewicz and
van Uden, 2003), Shiraishi, Obata and Daigo (Shiraishi et al., 1998; Shiraishi and Obata, 2002),
Takeda and Yu (Takeda and Yu, 1995), Fedrizzi and Giove (Fedrizzi and Giove, 2007).

Definition 2.2. Graph representation of a PCM: Undirected graph G := (V,E) represents the
incomplete pairwise comparison matrix A of size n × n such that V = {1, 2, . . . , n} the vertices
correspond to the objects to compare and E = {e(i, j) | aij is given and i 6= j}, that is, the edges
correspond to the known matrix elements.

There are no edges corresponding to the missing elements in the matrix.
Kwiesielewicz (Kwiesielewicz, 1996) have considered the Logarithmic Least Squares Method

(LLSM) for incomplete matrices as

min
∑

(i, j) : aij is given

[
log aij − log

(
wi

wj

)]2
(2)

n∑
i=1

wi = 1, (3)

wi > 0, i = 1, 2, . . . , n. (4)

Theorem 2.1. (Bozóki et al., 2010, Theorem 4) Optimization problem (2)-(4) has a unique
solution if and only if G is connected. Furthermore, the optimal solution is calculated by solving
a system of linear equations.
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Note that the incomplete LLSM problem asks for the weights, however, missing elements
can be calculated as the ratio of the corresponding optimal weights. We will focus only on the
weights.

The generalization of the eigenvector method to the incomplete case requires two steps. First,
positive variables x1, x2, . . . , xd are written instead of missing elements as follows:

A(x) = A(x1, x2, . . . , xd) =


1 a12 x1 . . . a1n

1/a12 1 a23 . . . xd
1/x1 1/a23 1 . . . a3n

...
...

...
. . .

...
1/a1n 1/xd 1/a3n . . . 1

 , (5)

Let x = (x1, x2, . . . , xd)T ∈ Rd
+.

Saaty (Saaty, 1980) defined inconsistency index CR as a positive linear transformation of
λmax(A) such that CR(A) ≥ 0 and CR(A) = 0 if and only if A is consistent. The idea that
larger λmax indicates higher CR inconsistency led Shiraishi, Obata and Daigo (Shiraishi et al.,
1998; Shiraishi and Obata, 2002) to consider the eigenvalue optimization problem

min
x>0

λmax(A(x)). (6)

in order to find a completion that minimizes the maximal eigenvalue, or, equivalently, CR. As
in case of incomplete LLSM , uniqueness is closely related to the connectedness of G.

Theorem 2.2. (Bozóki et al., 2010, Theorem 2, Corollary 2 and Section 5) Optimization problem
(6) has a unique solution if and only if G is connected. Furthermore, (6) can be transformed to
a convex optimization problem that can be solved efficiently.

Second step is to apply the eigenvector method to the completed pairwise comparison matrix.
Parallel with publishing the first theoretical results on incomplete PCMs our research team

have been seeking for applications. The world of sports provided us a prosperous experimental
field. Csató (2013) has analysed the chess olympiad. A research paper was published later as
a chapter in a book in Hungarian (Temesi et al., 2012) on ranking tennis players. Some early
results have been published and some research questions have been formulated there. The recent
article expands the scope of the research and reports new results.

3 Calculation and results

Our aim is to demonstrate that it is possible to compare players from a long period of time.
There are several options how to choose from the list of professional players included in the ATP
database. All choices have pros and cons. There is no ideal set of players and comparative time
periods, because experts have disputes on controversial issues: Who can represent a certain era?
May we compare results from different periods of the carrier path of an individual player? May
we set up a unified ranking or it is better to have separate rankings for different surfaces?

We have chosen those 25 players who have been #1 on the ATP ranking for any period of time
from 1973. Figure 1 shows them together with their active period in the world of professional
tennis.

In our calculations the initial data are as follows:

• zij (i, j = 1, . . . , n, i 6= j): the number of matches have been played between players
Pi and Pj (zij = zji);
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Figure 1: Length of professional tennis career for the chosen players
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• xij (i > j): the number of matches between players Pi and Pj , where Pi was the
winner;

• yij = zij − xij (i > j): the number of matches between players Pi and Pj , where Pi

lost against Pj .

Definition 3.1. Pairwise comparison matrix of top tennis players: pij elements of
matrix P are calculated from the initial data as

• pij = xij/yij if i, j = 1, . . . , n, i > j and xij 6= 0, yij 6= 0;

• pji = yij/xij = 1/pij if i, j = 1, . . . , n, i < j and xij 6= 0, zij 6= 0;

• pii = 1 for all i = 1, . . . , n;

• pij and pji elements are missing otherwise.

A consequence of the definition is that in case of zij = 0 for at least one pair of the players,
the pairwise comparison matrix is incomplete. The interpretation of pij > 0 is that the ith player
is pij times better than the jth player.

We have to note that Definition 3.1 is strict in the sense that pij is also missing in the case
when zij 6= 0, but one of its component is 0 (either xij = 0 or yij = 0). However, it can happen
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that Pi won several times over Pj , and he has never been defeated. According to the definition
we can eliminate all pairs where that phenomenon occurs, but it would be unfair for the winner
player in the given pair. Therefore we decided to use artificial pij values for these cases. For
instance pij = 5 was used if zij was less than 5 and yij = 0, pij = 10 if the number of matches
was between 6 and 10, and yij = 0, and so on. In our calculations we will use this correction
method and we will refer to it with a subscript 1. Another correction method for pij could be
that the value of pij = xij + 2 if yij = 0. In our calculations we will refer to that correction
method with a subscript 2 (see Table 2 and 3 later).

One can naturally argue that the choice of pij is crucial to get different results. We have
made a series of calculations for various numbers of players with several correction values (Temesi
et al., 2012) and we have found that the results did not alter significantly.

Table 1 contains the results of the matches played between players Pi and Pj (sum of the
symmetric elements of the matrix is zij for all players). We can see that there are cases when
two other players have played more than 30 times with each other, and it was also possible that
two players met less than 5 times. There is a need for balancing the impact of extremely differing
match numbers resulted in a wide range of ratios. In order to handle that problem we introduced
a transformation for the elements of pij :

tij = p
zij/max zij
ij (7)

where the transforming factor is the ratio of the number of matches between each other divided
by the maximum number of matches of all pairs.

Note that if all players have the same number of matches, transformation (7) results in
tij = pij . It approximates 1 when the two players have played a small number of matches
against each other, therefore the outcome seems to be ’unreliable’. For instance, the original pij
value for the pair Agassi -Becker was 10/4 = 2.5, the transformed tij value is (10/4)14/39 = 1.3895
where 14 is the number of matches between Agassi and Becker, and 39 is the maximum of zij
values (Djokovic vs. Nadal).

The vertices of the graph in Figure 2 represent the players. The edges show that the two
players played at least one match against each other. The bold lines connected to the node
labelled Agassi illustrate that he played against 20 of our players during his carrier: the degree
of the vertex is 20 (which is also the maximum degree). Edges from Agassi to other players (e.g.
to Connors) mean that Agassi has more wins than losses against them (indicated also in the
neighbouring table). Similarly, edges to Agassi from other players (e.g. from Rios) mean that
Agassi has more losses than wins against them, while dashed lines represent an equal number of
wins and losses (e.g. to Safin). We have plotted the graphs belonging to all players in an Online
Appendix, available at http://www.sztaki.mta.hu/~bozoki/tennis/appendix.pdf.

Having the incomplete pairwise comparison matrices for the 25 top tennis players from Table 1
we can calculate the weight vectors if the corresponding matrix T is connected. It can be checked
that this condition is met: the 20 edges adjacent to the node Agassi together with the edges
Nadal -Djokovic, Newcombe-Nastase, Nastase-Connors and Connors-Borg form a spanning tree
(see Figure 2).
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Table 1: Pairwise comparisons: number of wins/total number of matches
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Total

Agassi 10/14 2/2 5/12 6/9 3/11 2/5 4/8 8/12 7/11 2/8 2/4 3/4 5/9 0/2 10/15 1/3 5/6 3/6 14/34 5/7 97/182

Becker 4/14 6/6 6/7 25/35 1/1 4/6 10/21 8/10 2/4 2/3 1/1 2/3 3/5 0/1 7/19 7/10 88/146

Borg 15/23 6/8 7/14 10/15 1/4 1/1 40/65

Connors 0/2 0/6 8/23 0/3 6/12 13/34 14/34 12/27 2/4 0/2 0/5 55/152

Courier 7/12 1/7 3/3 6/10 1/6 1/1 0/4 2/3 2/3 7/12 0/1 0/3 0/3 1/2 4/20 35/90

Djokovic 15/31 2/3 6/7 2/4 17/39 4/9 0/2 46/95

Edberg 3/9 10/35 6/12 4/10 1/3 14/27 6/13 1/1 10/10 3/3 1/1 6/14 9/20 74/158

Federer 8/11 16/31 10/13 18/26 2/6 1/3 7/7 10/32 0/3 2/2 21/24 10/12 1/1 106/171

Ferrero 3/5 1/3 3/13 4/10 1/3 3/5 8/14 2/9 2/3 3/4 0/5 6/12 36/86

Hewitt 4/8 0/1 1/7 8/26 6/10 7/8 3/4 7/12 4/10 3/4 3/5 7/14 7/14 5/9 65/132

Kafelnikov 4/12 2/6 5/6 2/3 4/6 2/3 1/8 5/12 3/6 1/5 3/5 6/8 2/4 2/13 1/2 43/99

Kuerten 4/11 0/1 2/3 2/5 1/4 7/12 4/7 3/3 4/8 2/4 1/2 4/7 1/3 35/70

Lendl 6/8 11/21 2/8 21/34 4/4 13/27 21/36 4/5 1/1 0/1 3/8 15/22 101/175

McEnroe 2/4 2/10 7/14 20/34 1/3 7/13 15/36 6/9 1/2 0/3 7/13 68/141

Moya 1/4 2/4 1/3 2/4 0/1 0/7 6/14 5/12 3/6 3/7 4/8 2/8 3/4 2/7 1/5 4/7 1/4 40/105

Muster 4/9 1/3 5/12 0/10 4/5 0/3 1/5 4/8 0/3 3/4 0/1 2/11 0/2 24/76

Nadal 2/2 22/39 22/32 7/9 6/10 6/8 7/10 2/2 74/112

Nastase 0/1 5/15 15/27 1/1 0/1 3/9 4/5 0/1 28/60

Newcombe 3/4 2/4 1/2 1/5 7/15

Rafter 5/15 1/3 3/3 0/3 3/3 1/3 1/4 2/5 4/8 1/1 1/4 3/3 2/3 1/1 4/16 1/3 33/78

Rios 2/3 2/5 3/3 0/1 0/2 1/4 2/5 2/8 2/4 5/7 1/4 1/3 0/2 1/4 0/2 22/57

Roddick 1/6 5/9 3/24 5/5 7/14 1/2 4/5 3/10 2/2 4/7 2/3 37/87

Safin 3/6 1/1 1/2 2/2 2/12 6/12 7/14 2/4 3/7 3/7 1/1 0/2 0/1 3/4 3/7 4/7 41/89

Sampras 20/34 12/19 2/2 16/20 8/14 0/1 4/9 11/13 2/3 5/8 3/3 3/4 9/11 12/16 2/2 1/3 3/7 2/3 115/172

Wilander 2/7 3/10 0/1 5/5 11/20 1/2 7/22 6/13 2/2 1/1 2/3 1/3 41/89

8



Figure 2: Graph representation of matrix T
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Becker 10 4
Connors 2 0
Courier 5 7
Edberg 6 3
Federer 3 8
Ferrero 2 3
Hewitt 4 4
Kafelnikov 8 4
Kuerten 7 4
Lendl 2 6
McEnroe 2 2
Moya 3 1
Muster 5 4
Nadal 0 2
Rafter 10 5
Rios 1 2
Roddick 5 1
Safin 3 3
Sampras 14 20
Wilander 5 2

Sum 97 85



Table 2: Rankings

EM2 LLSM2 EMW2 LLSMW2 W / L

Nadal 1 1 1 1 2
Federer 2 2 2 2 3
Sampras 3 3 3 3 1
Lendl 11 8 4 4 6
Borg 13 11 6 5 4
Becker 4 4 5 6 5
Djokovic 5 5 7 7 10
Agassi 9 9 8 8 7
Hewitt 6 7 9 9 9
Kuerten 16 15 10 10 8
Safin 12 10 11 11 15
McEnroe 20 18 12 12 11
Nastase 22 20 14 13 13
Ferrero 17 16 16 14 20
Roddick 8 6 13 15 18
Wilander 15 14 17 16 16
Rios 21 22 18 17 22
Rafter 7 13 15 18 19
Newcombe 23 21 21 19 14
Kafelnikov 14 17 19 20 17
Moya 19 19 22 21 23
Edberg 10 12 20 22 12
Courier 18 23 23 23 21
Muster 24 24 24 24 25
Connors 25 25 25 25 24

Weight vectors have been computed with the Logarithmic Least Squares Method (LLSM
in Table 2) and with the Eigenvector Method (EM) as it was described in Section 2. On the
basis of the weight vectors, eight rankings have been calculated without and with transformation
(in the latter case we used the subscript W for identification), and different correction methods
have also been applied (subscripts 1 and 2 as it was introduced earlier). Selected results are
demonstrated in Table 2. The fourth column, LLSMW2, for example, is a ranking given by
Logarithmic Least Squares Method with the second correction procedure and transformed data.
Note that the players are listed in Table 2 according to this ranking. The fifth column includes
the ranking according to the win to loss ratio, indicated by W / L.

Rankings were practically the same with both estimation methods, as it can be seen from
Table 2. The impact of the correction method is not significant either. (That was the reason why
Table 2 does not contains calculations with the first type correction.) The values of the Spearman
rank correlation coefficients in Table 3 support these propositions: the elements of the top-left
and bottom-right 4× 4 submatrices are close to the identity matrix. The correlation coefficients
– comparing rankings with the same estimation method – suggest that filtering the impact of
differences in the total match numbers eliminated the minor impact of the correction methods,
too. Analysing the impact of the estimation methods and various forms of data correction the
authors had similar experience with 34 top players (Temesi et al., 2012).

However, data transformation (7) may change the rankings significantly, as it can be seen in

10



Table 3: Spearman rank correlation coefficients

EM1 EM2 LLSM1 LLSM2 EMW1 EMW2 LLSMW1 LLSMW2

EM1 1 0.9715 0.9269 0.9154 0.7546 0.7423 0.6869 0.6631
EM2 0.9715 1 0.9677 0.9569 0.8015 0.7908 0.7385 0.7177
LLSM1 0.9269 0.9677 1 0.9915 0.8638 0.8469 0.8085 0.7946
LLSM2 0.9154 0.9569 0.9915 1 0.8931 0.8831 0.8446 0.8338
EMW1 0.7546 0.8015 0.8638 0.8931 1 0.9962 0.9908 0.9854
EMW2 0.7423 0.7908 0.8469 0.8831 0.9962 1 0.9900 0.9877
LLSMW1 0.6869 0.7385 0.8085 0.8446 0.9908 0.9900 1 0.9969
LLSMW2 0.6631 0.7177 0.7946 0.8338 0.9854 0.9877 0.9969 1

Table 3, too. The corresponding rank correlation coefficients in the top-right and bottom-left
4× 4 submatrices confirm this statement. According to our interpretation the value judgement
of the ranking expert determines the choice between these rankings. Therefore if the expert’s
opinion is that a ratio of 2 has to be represented in different ways if it was resulted from 6
matches (4 : 2) or from 30 matches (20 : 10) than the recommended normalization has to be
implemented and the corresponding ranking can be chosen.

Turning back to Table 2, the first three players (Nadal, Federer, Sampras) and the last three
players (Courier, Muster, Connors) are the same in both rankings. Some differences in the rank
numbers can be found in other parts of the list. Tennis fans can debate the final ranking, of
course. One can compare these rankings to the win /loss ratio of the players, given in the ninth
column of Table 2. However, the most important fact is that the Top 12 includes big names
from the recent championships and from the good old times, as well. The conclusion is that it is
possible to produce rankings based on pairwise comparisons and overarching four decades with
players who have never met on the court.

4 Conclusions and open questions

In case of having historical data incomplete pairwise comparison matrices can be applied in order
to answer the question: what is the ranking of the players for a long time period? Who is the
#1 player? With this methodology it is possible to use face to face match results. Various types
of transformations can modify the original data set with the intention of correcting either data
problems or biasing factors. However, we did not take into account the impact of the carrier
path of a player. Every match had identical weight without considering its position on the time
line. Different surfaces did not play specific role, either.

Having had a great number of calculations with tennis results we have been interested in
finding answer for the question ’What are those properties of matrix T which have an impact
on the ranking?’

Ranking can depend on the number and the distribution of the comparisons. The number of
comparisons can be characterized by the density (sparsity) of the PCM. For a fully completed
PCM the density of the matrix is 1. Lower values mean that the matrix is incomplete. In our
case the density of T is 341/625 ≈ 0.5456 since 341 elements are known in the 25× 25 matrix.

Another indicator of the structure of matrix T is the distribution of elements, which can be
characterized by the degree of vertices in the graph representation of the PCM. We have designed
a tool for exploring the connectedness of the incomplete pairwise comparison matrices visually.
Figure 3 shows the distribution of degrees in our case, which can be checked in the Online
Appendix (http://www.sztaki.mta.hu/~bozoki/tennis/appendix.pdf), where clicking on a
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node shows the edges adjacent to it. The maximum degree is 20 in the case of Agassi.

Figure 3: Degree of vertices in the graph representation of matrix T
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Moreover, increasing the number of matches played between those who have been played
with each other leaves the value of density and the degree of vertices unchanged but the ranking
can change as a result of the estimation method. An interesting question is ’How an additional
match with a given result affects the ranking?’ The impact of lower and higher values of sparsity
(degrees of vertices) can also be analysed. A challenging question could be ’Which player can be
cancelled without changing the ranking?’

The inconsistency of pairwise comparison matrices plays an important role both in theory
and practice (Kéri, 2011). Further research includes the analysis of inconsistency of incomplete
pairwise comparison matrices of large size. In our case we cannot speak of the inconsistency of
a decision maker since the matrix elements originate from tennis matches, we might also say:
from life. Intransitive triads (A beats B, B beats C, and C beats A) occur often in sports.
We have found 50 intransitive triads in our example, they are plotted in the Online Appendix,
available at http://www.sztaki.mta.hu/~bozoki/tennis/appendix.pdf. We hope to return
to the problem of analysing intransitive triads in a(n incomplete) pairwise comparison matrix,
or, equivalently, in the directed graph associated.
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