
Classification of Scientific Workflows Based on

Reproducibility Analysis

A. Bánáti1, P. Kacsuk2,3 and M. Kozlovszky1,2

1 Óbuda University, John von Neumann Faculty of Informatics, Biotech Lab

Bécsi str. 96/b., H-1034, Budapest, Hungary
2 MTA SZTAKI, LPDS, Kende str. 13-17, H-1111, Budapest, Hungary

3 University of Westminster, 115 New Cavendish Street, London W1W 6UW

{banati.anna, kozlovszky.miklos}@nik.uni-obuda.hu,

kacsuk@sztaki.mta.hu

Abstract - In the scientist’s community one of the most vital

challenges is the reproducibility of a workflow execution. The

necessary parameters of the execution (we call them

descriptors) can be external which depend on for example the

computing infrastructure (grids, clusters and clouds), on

third party resources or it can be internal which belong to the

code of the workflow such as variables. Consequently, during

the process of re-execution these parameters may change or

become unavailable and finally they can prevent to reproduce

the workflow. However in most cases the lack of the original

parameters can be compensated by replacing, evaluating or

simulating the value of the descriptors with some extra cost

in order to make it reproducible. Our goal in this paper is to

classify the scientific workflows based on the method and cost

how they can become reproducible.

I. INTRODUCTION

In large computational challenges scientific workflows
have emerged as a widely accepted solution for performing
in-silico experiments. In general these in-silico experiments
consist of series of particularly data and compute intensive
jobs, and in most cases their executions require parallel and
distributed infrastructure (super/hypercomputers, grids,
clusters, clouds).

The successive steps of an experiment are chained to a
so called workflow, which can be represented by a directed
acyclic graph (DAG). The nodes are so called jobs, which
includes the experimental computations based on the input
data accessed through their input ports. In addition, these
jobs can product output data, which can be forwarded
through their output ports to the input port of the next job.
The edges of a DAG represent the dataflow between the
jobs (Figure 1.).

An essential part of the scientific method is to repeat
and reproduce the experiments of other scientist and test the
outcomes themselves even in a different execution
environment. A scientific workflow is reproducible, if it
can be re-executed without failures and gives the same
result as the first time. In this approach the failures do not
mean the failures of the Scientific Workflow Management
System (SWfMS) but the correctness and the availability of
the inputs, libraries, variables etc. Different users for
different purposes may be interested in reproducing the
workflow, for example the

Figure 1. Workflow example with four jobs (J1, J2, J3, J4)

authors of the workflow(s) in order to prove their results,
readers or other scientists in order to reuse the results or
reviewers in order to verify the correctness of the results
[1]. Additionally, nowadays scientific workflow
repositories are already available and in this way the
scientists can share their results with each other and even
they can reuse the existing workflows to create new ones.

The two most significant obstacles of reproducing a
workflow are the dependencies of workflow execution and
the rich collection of provenance data. The former can be
perceived as the necessary and the latter one as the
satisfactory requirements of the reproducibility. The
dependencies of the execution mean those resources which
require external (out of the scientific workflow
management system, SWfMS) services or resources such
as third party services, special hardwares/softwares or
random value generator [2]. Elimination of these
dependencies in most cases is not possible, so they have to
be handled in some other way: different methods should be
set up to make the workflows reproducible.

To achieve our goal we have defined the descriptor
space and the decay-parameters of the jobs that give us the
possibility to analyze the workflow from a reproducibility
perspective. The descriptor space contains all the
parameters (call descriptors), which are necessary to
reproduce the workflow. There are descriptors, which are
constant and do not change in time. Other descriptors are
continuously changing (for example a database which
continuously get more and more data from sensor
networks). Also descriptors based on external services
(such as third party services) may exist which can be
unavailable after a few years. Finally there are descriptors
which are unknown and its behavior is unpredictable. In

MIPRO 2016/DC VIS 343

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SZTAKI Publication Repository

https://core.ac.uk/display/83049171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

this case the workflow is non-reproducible. The decay-
parameter describes the type and the measure of the change
of the descriptor. With the help of the decay-parameter we
have determined five categories of the workflows:
reproducible, reproducible with extra cost, approximately
reproducible, reproducible with probability P and non-
reproducible.

 The goal of our investigation to find different methods
to make reproducible the workflow in the different
categories even if it requires extra costs or compromises. In
certain cases this goal is implementable but often the result
of the workflow is only evaluable with the help of
simulations. If there is no method to make the workflows
reproducible, our goal is to provide the scientists with
useful information about the conditions and probability of
the reproducibility of his workflows.

The rest of the paper is organized as follows: In the next
section we provide a short background and overview about
works related to our research. Section 3 presents the
mathematical model of our reproducibility analysis. In
section 4 we give the classification of the scientific
workflows based on our analysis. In section 5 based on our
model we define the general measures of the
reproducibility analysis. Finally we summarize our
conclusions and reveal the potential future research
directions.

II. STATE OF THE ART

Currently the reproducibility of scientific workflows is
a burning question which the scientist community has to
face with and has to solve. Accordingly in the latter one-
two years many researchers investigate this issue. One part
of the literature analyzes the requirements of
reproducibility and the other part deals with the
implementation of such tools or frameworks.

The first group agree on the importance of the careful
design [3], [4], [5], [6], [7] which on one hand means the
increased robustness of the scientific code, for example
with a modular design and detailed description of the
workflow, and of the input and output data examples, and
consequent annotations [8]. On the other the careful design
includes the careful usage of volatile third party or special
local services. In these cases two solutions exist, but
reproducibility is uninsurable: 1. taking a digital copy of the
entire environment using a system virtual
machine/hardware virtualization approach capturing and
storing metadata about the code and environment that
allows it to be recreated later [8].

Zhao et al. [9] in their paper investigate the cause of the
so called workflow decay, which means that year by year
the ability and success of the re-execution of any workflow
significantly reduces. They examined 92 Taverna
workflows submitted in the period from 2007 to 2012 and
found four major causes: 1. Missing volatile third party
resources 2. Missing example data 3. Missing execution
environment (requirement of special local services) and 4.
Insufficient descriptions about workflows. Hettne et al. [10]
in their paper list ten best practice to prevent the workflow
decay. Grothe et al. [11] analyze the characteristic of
applications used by workflows and list the requirements in
order to enable the reproducibility of results and

determination of provenance. To the former mentioned
requirements they assumed the deterministic feature of
applications in order to perform appropriate provenance
collection.

There exist available tools, VisTrail, ReproZip or
PROB [12], [13], [14], which allow the researcher and
scientist to create reproducible workflow. With help of
VisTrail [12], [15] reproducible paper can be created,
which includes not only the description of scientific
experiment, but all the links for input data, applications and
visualized output which always harmonizes with the
actually applied input data, filter or other parameters.
ReproZip [13] is another tool, which stitches together the
detailed provenance information and the environmental
parameters into a self-contained reproducible package.

The Research Object (RO) approach [16], [17] is a new
direction in this research field. RO defines an extendable
model, which aggregates a number of resources in a core or
unit. Namely a workflow template; workflow runs obtained
by enacting the workflow template; other artifacts which
can be of different kinds; annotations describing the
aforementioned elements and their relationships.
Accordingly to the RO, the authors in [18] also investigate
the requirements of the reproducibility and the required
information necessary to achieve it. They created
ontologies, which help to uniform these data. These
ontologies can help our work and give us a basis to perform
our reproducibility analysis and make the workflows
reproducible despite their dependencies.

Piccolo et al [19] collected the tools and techniques and
proposed six strategies which can help the scientist to create
reproducible scientific workflows.

Santana-Perez et al [20] proposed an alternative
approach to reproduce scientific workflows which focused
on the equipment of a computational experiment. They
have developed an infrastructure-aware approach for
computational execution environment conservation and
reproducibility based on documenting the components of
the infrastructure.

To sum up the results mentioned above, we can
conclude that the general approach is that the scientist has
to create reproducible workflows with careful design,
appropriate tools and strategies. But none of them intended
to solve the problem related to the dependencies rather they
suggested to bypass them. Moreover, they did not deal with
the following question: How an existing workflow can be
made reproducible?

III. THE MODEL

In our approach a scientific workflow consisted of N
jobs can be written as a function of its job:

𝑆𝑊𝑓(𝐽1, 𝐽2, … , 𝐽𝑁) = 𝐑 (1)

where R is the vector of results.

In our investigation we assume, that a given workflow
is executed at least one time and the provenance database
of the workflow execution is available. In this case we can
assign a so called descriptor space to every job of the given
workflow.

344 MIPRO 2016/DC VIS

𝐷𝐽𝑖 = {𝑑𝑖1, 𝑑𝑖2, … , 𝑑𝑖𝐾𝑖} (2)

The elements of this descriptor space are called
descriptors and they give all the necessary parameters to
reproduce the job. These parameters can be for example
variables of the infrastructure, variables of the code,
parameters of system calls, inputs, outputs and partial data
or access paths of external resources etc [21]. Every
descriptor has a name and a value. In addition we also
assign them a so called decay-parameter which describes
the type and the measure of the change of the given value.
The decay-parameter can be zero, which means that the
value of this descriptor is not changing in time, in other
word the availability of this descriptor (and its value) can
be insured in one, two, ten or any years. In this case this
descriptor does not cause dependency and the
reproducibility of the job does not depend on this
descriptor. The decay parameter can be infinite, if the
descriptor’s value is unknown. For example in case of
random generated values. The value of the decay-parameter
can be a distribution function F(t) if the availability of the
given resource varies in time according to this F(t). The
fourth option is that the value of the decay parameter is a
function – vary(t, x) – depending on time, which determines
the variation of the descriptor’s value.

Formally:

𝑑𝑒𝑐𝑎𝑦(𝑣𝑖) =

{

𝟎, if the value of the descriptor is
not changing in time

∞, if the value of the descriptor
is unknown

𝑭𝒊(𝒕), distribution function of the
 availability of the given value

𝑽𝒂𝒓𝒚𝒊(𝒕, 𝒗𝒊), if the value of the
 descriptor is changing

 in time

(3)

The descriptors and its decay parameters can originate
from three different sources: from the users, from the
provenance database and it can be automatically generated
by the SWfMS. [21]

With the help of these expressions we can define the
reproducibility in the following way:

Definition: The Ji job is reproducible, if

𝐽𝑂𝐵𝑖 (𝑡0, 𝑣𝑖1(𝑑𝑖1), 𝑣𝑖2(𝑑𝑖2), … , 𝑣𝑖𝐾𝑖(𝑑𝑖𝐾𝑖)) =

=𝐽𝑂𝐵𝑖(𝑡0 + ∆𝑡, 𝑣𝑖1(𝑑𝑖1), 𝑣𝑖2(𝑑𝑖2), … , 𝑣𝑖𝐾𝑖(𝑑𝑖𝐾𝑖)) = 𝑹𝒊

(4)

for every ∆t.
In addition if a scientific workflow contains N jobs and

the jobs are reproducible, the scientific workflow is also
reproducible:

𝑆𝑊𝐹(𝑡0, 𝐽1, 𝐽2, … , 𝐽𝑁) = 𝑆𝑊𝐹(𝑡0 + ∆𝑡, 𝐽1, 𝐽2, … , 𝐽𝑁) = 𝐑

(5)

for every ∆t.

Also we can assign a cost to the descriptors. This gives
the measurement of the “work” or cost which is necessary

to make the job reproducible. For example, when the value
of the descriptor is a large amount of data which cannot be
stored even on extra storage. We can assign a cost to this
extra storage. Or another example if the descriptor is
changing in time and its decay-parameter is a so called
“vary function”. In this case to reproduce this workflow we
can apply simulation tools based on the sample set which
also result an extra cost (see section IV.A).

IV. THE CLASSIFICATION

Analyzing the decay parameters of the descriptors we
can classify the scientific workflows. First, we can separate
the workflows which decay-parameters for all the jobs are
zero. These workflows are reproducible at any time and any
circumstance since they do not have dependencies. Than
we can determine those ones which can influence the
reproducibility of the workflow in other words which also
have non-zero decay parameter(s). Four groups have been
created:

1. At least one decay-parameter of the descriptor is
infinite, but with the help of additional resources or
tools this dependency of execution can be
eliminated. In this case the cost of this descriptor
indicates that there are possibility to reproduce the
job with some extra cost.

2. At least one decay-parameter of the descriptor is
infinite and the cost of this descriptor is also
infinite. In this case the dependency of the
workflow can not be eliminated and the workflow
is non-reproducible.

3. At least one decay-parameter of the descriptor is a
probability distribution function and the other ones
are zero.

4. At least one decay-parameter of the descriptor is a
vary function and the other ones are zero. (Table
2.)

A. Reproducible workflows

The first group represents the reproducible workflows.
In this case all the decay-parameters of all the jobs belonged
to a workflow are zero. These workflows are reproducible
and they can be executed and re-executed at any time and
any circumstance since they are not influenced by
dependencies.

B. Reproducible workflow with extra cost

There are workflows, which have dependencies and
infinite decay-parameters, but the appropriate cost is not
infinite. In this case with the help of additional resources or
tools these dependencies can be eliminated. For example, if

TABLE 1. THE DESCRIPTOR SPACE OF A JOB AND ITS

MEASURES

Descriptor’s

name

Descriptor’s

value
Decay-parameter Cost

d1 v1(d1) decay(v1) c1

d2 v2(d2) decay(v2) c2

… … … …

dK vK(dK) decay(vK) cK

MIPRO 2016/DC VIS 345

a computation is based on random generated value, this
descriptor’s value is unknown (infinite). In this case with
the help of an extra, operation system level tool we can
capture the return value of the system call and we can save
it in the provenance database [22]. The third example is
when a virtualization tool, such as a virtual machine have
to be applied to reproduce the workflow.

C. Approximetly reproducible workflows

In certain cases the workflow execution may depend on
some continuously changing resource. For example there
are continuously growing databases which get the data
from sensor networks without intermission. If the
computation of a workflow use some statistical parameters
of this database, the statistical values never will be the
same. In this case the appropriate descriptor’s value of the
given job may change on occasion of every re-execution,
consequently the reproducibility of this workflow could be
failed.

If the workflow was executed S times and the
provenance database is available, we can create a sample
set which contains the S different values of the changing
descriptors and the S results of the workflow. In this case
we can analyze the change of the descriptor’s value, we can
write its function and even, we can determine a general
evaluating method of the result. On occasion of a later re-
execution, if reproducing is not possible, this evaluating
method can be applied and an evaluated result can be done
with a given probability [22].

D. Reproducible workflows with a given probability

Many investigations revealed the problem caused by
volatile third party resources […], when the reproducibility
of workflows became uncertain. The third party services or
any external resources can be unavailable during the years.
If we know this decay of the resources and if we can
determine its probability distribution function we can
predict the behavior of the workflow on occasion of a re-
execution at a later time. Sometime the users may have to
know the chance of the reproducibility of their workflow.
Assuming that the probability distribution of the third party
service is known or assumable we can inform the users
about the expected probability of the reproducibility.

To formalize the problem, first, we have separated the
Mi descriptors of a given job Ji which depend on external or
third party resources and its decay-parameter, which is a
probability distribution function given as follows:
𝐹𝑖1(𝑡), 𝐹𝑖2(𝑡), … , 𝐹𝑖𝑀𝑖(𝑡). The rest of the descriptors have

zero decay-parameter. In this case, at time t0, a given
descriptor’s value 𝑣𝑖𝑗(𝑑𝑖𝑗) is available with a given

probability (for the sake of the easier comprehensibility
hereafter we omitted the i index referred to the ith job of a
given scientific workflow):

𝐹1(𝑡0) = 𝑝1
(𝑡0), 𝐹2(𝑡0) = 𝑝2

(𝑡0), … , 𝐹𝑀(𝑡0) = 𝑝𝑀
(𝑡0) (6)

Let us assign to the job Ji a state vector 𝐲𝒊 =
(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑀𝑖) ∈ {0,1}

𝑀𝑖 , in which the 𝑦𝑖𝑗 = 1 , if the

jth descriptor of the job Ji is unavailable. In this way the
probability of a given yi state vector can be computed as
follows:

𝑝(𝑦) = ∏ 𝑝
𝑗

𝑦𝑗
(1 − 𝑝𝑗)

1−𝑦𝑗𝑀
𝑗=1 (7)

In addition a time interval can be given during which the

descriptor is available with a given probability P.

Since we assume the independency of the descriptors the

cumulative distribution function of the job Ji can be written

as follows:

𝐅𝑖(𝑡) = ∏ 𝐹𝑖𝑗(𝑡)
𝑀
𝑗=1 (8)

E. Non-reproducible workflows

There is no method to make the workflow reproducible.

In this case the scientific workflow probably contains

non-deterministic job or jobs.

V. REPRODUCIBILITY ANALYSIS

It may be important to inform the user about the
reproducibility of his workflow or even the cost of the
reproducibility. Based on our mathematical model we can
determine two measures according to the expected cost: the
average cost and the reproducibility probability.

1. Average Cost (AC) expressed as

𝐸(𝑔(𝐲)) = ∑ 𝑔(𝐲)𝑝(𝐲)𝑦∈𝑌 (9)

where 𝑔(𝐲) = ∑ 𝑐𝑖
𝐾
𝑖=1 .

2. Reproducibility Probability (RP)

𝑃(𝑔(𝐲) > 𝐶) = ∑ 𝑝(𝐲)𝑌:𝑔(𝐲)>𝐶 (10)

where C is a given level of the reproducibility cost.

VI. CONLUSION

In this paper we investigated the possible types of the
scientific workflows from a reproducibility perspective.
The basis of our analysis is the decay-parameter which
describes the type and the measure of the change of the
descriptor’s values. According to this parameter we
determined a cost function which means the “work”
required to reproduce the given job or workflow. In this
way we could classify the scientific workflows, how they
can be reproduced at a later time. In the different categories
we set up methods to make the workflows reproducible or
we gave the probability and the extra cost of the
reproducibility. Finally we gave two general measure to
evaluate the expected cost of the reproducibility.

 The goal of our research is to support the scientists with
methods to make their experiment reproducible and to
provide information about the possibility to reproduce their
workflows.

TABLE 2. CLASSIFICATION OF SCIENTIFIC WORKFLOWS

decay-parameter cost category

decay(v)=0 cost = 0 reproducible

decay(v) = ∞ cost = ∞ non-reproducible

decay(v) = ∞ cost = C1
reproducible with extra

cost

decay(v) = F(t) cost = C2
reproducible with

probability P

decay(v) = vary(t,v) cost = C3
approximately
reproducible

346 MIPRO 2016/DC VIS

REFERENCES

[1] D. Koop, E. Santos, P. Mates, T.Vo Huy, P Bonnet, B. Bauer,

M.Troyer, D.N. Williams, J.E. Tohline, J. Freire, C.T. Silva, „A
Provenance-Based Infrastructure to Support the Life Cycle of
Executable Papers”, Internatioonal Conference on Computational
Science, ICCS 2011. [Online]. Available:
http://www.sciencedirect.com.

[2] A. Banati, P. Kacsuk, M. Kozlovszky, M. Four level provenance
support to achieve portable reproducibility of scientific workflows.
In Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2015 38th International Convention on
(pp. 241-244). IEEE.

[3] P. Missier, S. Woodman, H. Hiden, és P. Watson, „Provenance and
data differencing for workflow reproducibility analysis”,
Concurrency and Computation: Practice and Experience, 2013

[4] R. D. Peng, „Reproducible Research in Computational Science”,
Science, köt. 334, sz. 6060, o. 1226–1227, dec. 2011

[5] J. P. Mesirov, „Accessible Reproducible Research”, Science, köt.
327, sz. 5964, o. 415–416, jan. 2010.

[6] D. De Roure, K. Belhajjame, P. Missier, J. M. Gómez-Pérez, R.
Palma, J. E. Ruiz, K. Hettne, M. Roos, G. Klyne, C. Goble, és
others, „Towards the preservation of scientific workflows”, in
Procs. of the 8th International Conference on Preservation of
Digital Objects (iPRES 2011). ACM, 2011.

[7] S. Woodman, H. Hiden, P. Watson, és P. Missier, „Achieving
reproducibility by combining provenance with service and
workflow versioning”, in Proceedings of the 6th workshop on
Workflows in support of large-scale science, 2011, o. 127–136.

[8] A. Davison, „Automated Capture of Experiment Context for Easier
Reproducibility in Computational Research”, Computing in
Science & Engineering, köt. 14, sz. 4, o. 48–56, júl. 2012.

[9] J. Zhao, J. M. Gomez-Perez, K. Belhajjame, G. Klyne, E. Garcia-
Cuesta, A. Garrido, K. Hettne, M. Roos, D. De Roure, és C. Goble,
„Why workflows break—Understanding and combating decay in
Taverna workflows”, in E-Science (e-Science), 2012 IEEE 8th
International Conference on, 2012, o. 1–9.

[10] K. M. Hettne, K. Wolstencroft, K. Belhajjame, C. A. Goble, E.
Mina, H. Dharuri, D. De Roure, L. Verdes-Montenegro, J. Garrido,
és M. Roos, „Best Practices for Workflow Design: How to Prevent
Workflow Decay.”, in SWAT4LS, 2012

[11] P. Groth, E. Deelman, G. Juve, G. Mehta, és B. Berriman,
„Pipeline-centric provenance model”, in Proceedings of the 4th

Workshop on Workflows in Support of Large-Scale Science, 2009,
o. 4.

[12] J. Freire, D. Koop, F. S. Chirigati, és C. T. Silva, „Reproducibility
Using VisTrails”, 2014. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download doi:10.1.1.369.9566

[13] F. S. Chirigati, D. Shasha, és J. Freire, „ReproZip: Using
Provenance to Support Computational Reproducibility.”, in TaPP,
2013.

[14] V. Korolev, A. Joshi, V. Korolev, M. A. Grasso, A. Joshi, M. A.
Grasso, D. Dalvi, S. Das, V. Korolev, Y. Yesha, és others, „PROB:
A tool for Tracking Provenance and Reproducibility of Big Data
Experiments.”, Reproduce’14. HPCA 2014, köt. 11, o. 264–286,
2014.

[15] D. Koop, J. Freire, és C. T. Silva, „Enabling Reproducible Science
with VisTrails”, arXiv preprint arXiv:1309.1784, 2013.

[16] O. Belhajjame, K. Corcho, D. Garijo, J. Zhao, P. Missier, D. R.
Newman, R. Palma, S. Bechhofer, G. C. Esteban, J. M. Gomez-
Perez, G. Klyne, K. Page, M. Roos, J. E. Ruiz, S. Soiland-Reyes, L.
Verdes-Montenegro, D. De Roure, and C. Goble. Workflow-centric
research objects: First class citizens in scholarly discourse. In
Proceedings of the ESWC2012 Workshop on the Future of
Scholarly Communication in the Semantic Web, 2012

[17] Bechhofer S., De Roure D., Gamble M., Goble C., Buchan I.:
Research objects: Towards exchange and reuse of digital
knowledge. In: he Future of the Web for Collaborative Science,
2010.

[18] Belhajjame K., Zhao J., Garijo D., Gamble M., Hettne K., Palma
R., Goble C.: Using a suite of ontologies for preserving work
ow-centric research objects. In: Web Semantics: Science, Services
and Agents on the World Wide Web, 2015.

[19] Piccolo S.R., Lee A.B., Frampton M.B.: Tools and techniques for
computational reproducibility. In: bioRxiv, vol. 022707, 2015.

[20] Santana-Perez I., Prez-Hernndez M.S.: Towards Reproducibility in
Scientific Workflows: An Infrastructure-Based Approach. In:
Scientific Programming, vol. 2015, p. 11, 2015.

[21] Banati A., Kacsuk P., Kozlovszky M.: Minimal sufficient
information about the scientific workflows to create reproducible
experiment. In: IEEE 19th International Conference on Intelligent
Engineering systems (INES), Slovakia, 2015.

[22] Banati A., Kacsuk P., Kozlovszky M.: Reproducibility analysis of
scientific workflows; Acta Politechnica Hungarica, unpublished

MIPRO 2016/DC VIS 347

	dcvis_30_3982

