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1. INTRODUCTION 
 
Some scientists believe that everything has been solved in 
control, consequently nothing remained to study and/or 
research. The purpose of this paper is to recall some 
interesting philosophical paradigms in the areas of modeling 
and control to prove the contrary. 
 
Only a few questions are discussed here, but there are many. 
Our aim is to encourage scientists to find further unsolved 
problems, blazes and interesting paradigms partly based on 
the modeling and control literature, partly on other 
disciplines. 
 
If we can invite only a few further authors to continue our 
discussions then this effort is worth while. 
 
In the sequel the YOULA parameterization [1], [2], [4], [5] 
will be used to discuss regulator and control system design. 
We found that this is very good basis for  
 
The YOULA parameterization 
 
The YOULA- (Y or Q ) -parameterization is a classical 
method for linear time invariant control system to 
characterize all realizable stabilizing regulators (ARS) by 
 

 
  

C =
Q

1! QP
 (1) 

 
for open-loop stable plant   

� 

P! S , where   

� 

S  is the closed set 
of all stable proper real-rational systems, having all poles 
within the closed unit disc. The "parameter" 
 

 
  
Q =

C

1+ C  P
     ;       Q!S  (2) 

 
ranges over all proper (Q ! = "( )is finite), stable transfer 
functions [1], [5]. Observe that Q  is the transfer function 

from the r  to u  in the closed-loop (see Fig. 1), where 

� 

yn  is 
the output disturbance (or noise) signal in a SISO (Single 
Input Single Output) system. 
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Figure 1. Closed-loop with an ARS regulator 
 
The transfer characteristics of the closed-loop can be easily 
computed 
 

 

� 

y = QP r ! 1!QP( ) yn = yt + yd  (3) 
 
where yt  is the tracking (servo) and yd  is the regulating (or 
disturbance rejection) independent behaviors of the closed-
loop response, respectively. 
 
Because the ARS regulator represented in Fig. 3 was 
formulated for an one-degree of freedom (1DF) control 
system, it is not surprising that the tracking part yt  of the 
transfer characteristics between y  and r  can not be set 
independently of the regulating behavior yd , i.e. 
independently of Q . 
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Figure 2. The modified control system with an ARS 
regulator opening the closed-loop 

 
The Y-parameterization "almost" opens the closed-loop. 
Here "almost" means that 

� 

yt =QP r  is obtained instead of a 
real open-loop case with 

� 

yt = P r . So we need a Q!1 
prefilter shown in Fig. 2, when the ARS regulator really 
"virtually" opens the closed-loop as 
 

 

� 

y = P r ! 1!QP( ) yn = yt + yd  (4) 
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Figure 3. The K-B-parameterized 2DF system with an 
ARS regulator 

 
An important and new observation of the authors was that 
the scheme in Fig. 2 is equivalent to the special control 
system given in Fig. 4 and its parameterization has been 
named as Keviczky-Bányász-(KB)parameterization [1], [2]. 
Since in the case of the special structure presented in Fig. 3 
we have 

� 

yt = P r , i.e., (3) holds, it is easy to introduce a 
new general form of any 2DF control systems providing 
 

 

� 

y = Qr P yr ! 1!QP( ) yn = yt + yd  (5) 
 
if a serial compensator Qr  is applied additionally as the 
Fig. 5 shows. 
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Figure 4. The general form of the K-B-parameterized 2DF 
control system 

 
Here and in the sequel the general notation 

  
y

r
 will be used 

for the reference signal for general 2DF systems. Equation 
(5) shows that the tracking properties 

� 

yt =Qr P yr  can 
independently be designed from the regulating behavior 

� 

yd = 1!QP( ) yn  by Qr .  
 
The last scheme was later named as a generic two-degree of 
freedom (G2DF) system [1], [2]. The K-B parameterization 
for closed-loop control is not so widely known as the Youla-
Kucera- (Y-K) parameterization [4] however, it is much 
closer to a control engineering view and its most important 
advantage in 2DF systems is that it virtually opens the 
closed-loop. However, this parameterization can only be 
applied for open-loop stable processes. 
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Figure 5. The generic 2DF (G2DF) control system 
 
A G2DF control system is shown in Fig. 5, where yr , u, y  
and 

� 

yn  are the reference, process input, output and 
disturbance signals, respectively. The optimal discrete-time 
ARS regulator of the G2DF scheme [1], [2] is given by 
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n
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P
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 (6) 

 
where 
 

 

� 

Qo =Qn = RnK n = RnGnP+

!1  (7) 
 
is the associated Y-parameter [1], furthermore 
 

 

� 

Qr = R rKr = R rGrP+

!1   

 

� 

Kn =GnP+

!1     ;     

� 

Kr =G rP+

!1 (8) 
 
assuming that the continuous-time process is factorable as 
 

 
  
P = P

+
P
!
= P

+
P
!
e
!sT

d  (9) 
 
and a discrete-time process is factorable as 
 

 
 
G = G

+
G

!
= G

+
G

!
z
!d  (10) 

 
where 

 
P
+

, 

� 

G+  means the inverse stable (IS) and 

� 

P! , 

� 

G!  the 
inverse unstable (IU) factors, respectively. Here 

� 

Td  is the 
continuous time delay and z! d  corresponds to the discrete 
time delay, which is the integer multiple of the sampling 
time 

� 

Ts. 
 
It was shown [1], [2] that the optimization of the G2DF 
scheme can be performed in 

  
H2  and 

  
H!  norm spaces by 

the proper selection of the serial 

� 

Kr  and embedded 

� 

Kn  
filters (compensators). These optimizations are reduced to 
the optimal computation of the Gr  and 

� 

Gn  embedded 
filters. If Gr  and 

� 

Gn  are optimally selected, then 

  

C
o
 

denotes the optimal ARS regulator in (6). It is interesting to 
see how the transfer characteristics of this system look like: 
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or 
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Here 

� 

Rr  and 

� 

Rn  are stable and proper transfer functions, 
that are partly capable to place desired poles in the servo 
and the regulatory transfer functions, furthermore they are 
usually referred as reference signal and output disturbance 
predictors. They can even be called as reference models, so 
reasonably 

� 

Rr ! = 0( ) = 1  and 

� 

Rn ! = 0( ) = 1  are selected. In 
this case the obtained regulator is always an integrating one. 



 

 

2. PREJUDICE FREE CONTROL 
 
The knowledge of a process is never exact, independent of 
the method how its model is determined, whether 
measurement-based identification (ID) or physico-chemical 
theoretical considerations are used. The uncertainty of the 
plant can be expressed by the absolute model error 
 

  !P = P " P̂  (13) 
 
and the relative model error 
 

 
  

! =
!P

P̂
=

P " P̂

P̂
 (14) 

 

where  P̂  is the available nominal model used for regulator 
design and  P  is the real plant. 
 
The parameters of the plant may change in terms of their 
nominal values in a given range. The closed-loop control 
system needs to be stable under the given uncertainty ranges 
of the parameters.  
 
Suppose that the open loop is stable. The regulator designed 
for the nominal plant ensures the stability of the nominal 
closed-loop control system. Let us analyze whether the 
system remains stable with the parameter uncertainties of 
the open loop. Stability is maintained if the 
NYQUIST diagram of the modified open loop does not 
encircle the 

  
!1+ 0 j  point. 

 
If there is an uncertainty  !P  (or parameter change) in the 
transfer function of the plant, then if we apply the same 
regulator this uncertainty appears in the absolute error 
 !L = C!P  of the loop transfer function, whereas its relative 
model error is 
 

 
   

!
L
=
!L

L̂
=

L " L̂

L̂
=

CP " CP̂

CP̂
=

P " P̂

P̂
= !  (15) 

 

Here  L̂  denotes the nominal and  L  denotes the real loop 
transfer function. 
 

 
 

Figure 6. Change in the NYQUIST diagram of an uncertain 
system 

Robust stability means that the closed-loop control system 
should not display unstable behavior even in the “worst 
case” parameter changes. The bound for  !L  can be 
formulated based in Fig. 6 by taking the simple geometrical 
considerations into account: the NYQUIST diagram will not 
encircle the 

  
!1+ 0 j  point, if the following relationship is 

satisfied for all frequencies: 
 

 
   
!L j"( ) = ! j"( ) L̂ j"( ) < 1+ L̂ j"( )      !"  (16) 

 
With further straightforward manipulations the necessary 
and sufficient condition for robust stability is obtained as 
 

 

   

! j!( ) <
1+ L̂ j!( )

L̂ j!( )
=

1

T̂ j!( )
     !"  (17) 

 
or 
 

 
   
T̂ j!( ) ! j!( ) < 1      !"  (18) 

 

where 
  
T̂ = L̂ 1+ L̂( )  is the nominal complementary 

sensitivity function. 
 
This form is also called the dialectic relationship of robust 
stability. In the design the first factor 

 
T̂ j!( )  is calculated 

for the supposed (known) nominal parameters of the plant, 
and thus it depends on the designer. The second factor 

 
!  

does not (or only partly) depends on the designer, as it 
contains the uncertainties in the knowledge of the plant or 
its unexpected parameter changes. In those frequency ranges 
where the uncertainty is large, unfortunately only small 
transfer gain can be designed for the closed-loop. Where 

 
T̂ j!( )  is high, very accurate information is needed to 

reach a small error. The higher the absolute value of the 
complementary sensitivity function, the smaller the 
permissible parameter uncertainty. 
 

 
 

Figure 7. The !  in the function of  !  



 

 

The robust stability condition (4), (5) and (6) can be 
rearrange in the form of 
 

 

   

C ! " P̂
#1

=
1

1# !
P̂
#1  (19) 

 

where the 
 

! !( )  function is plotted in Fig. 7. The 

interpretation of this function is very interesting. For small 

 
!  modeling error a model based controller design is 

suggested, which usually based on the inverse of the 
nominal model  P̂

!1 . For very large errors no regulator 
design is advised. However, in the midrange domain, where 
the error is around 100 %, the regulator design practically 
does not depend on our knowledge of the process. This area 
can be called “prejudice free” domain 
 
Prejudice free control for YOULA parameterized systems 
 
The condition of robust stability for the YP control loops 
can be further simplified so the expression (18) becomes 
 

 

   

Q̂P̂! = R
n
G

n
P̂
+

!1
P̂! = R

n
G

n
P̂
!
e
!sT̂

d ! =

= R
n
G

n
P̂
!
! = R

n
G

n
P̂
!
! < 1

     !"  (20) 

 

where 
  
T̂

d
 is the dead time of the model and 

  

e
!sT̂

d = 1 . The 

inequality (17), limiting the relative error, is now 
 

 

   

! j!( ) <
1

R
n

G
n
P̂
"

     !"  (21) 

 
If the process is IS, i.e., 

  
P̂
!
= 1 , then 

  
G

n
= 1  can be chosen 

and the condition of robust stability can be further 
simplified as 
 

 
   

! j!( ) <
1

R
n

     !"  (22) 

 

i.e., it does not depend on the model  P̂  but only on the 
reference model or the design goal. 
 
The reference model is an important parameter of the 
general YOULA design, by means of which the condition of 
robust stability (22) can be guaranteed. Let 
 

 
  

R
n
=

1

1+sT
n

 (23) 

 
then the constraining condition of the right side of (22) can 
be seen in Fig. 8. Given the latter condition and choosing 

first-order reference model
  
R

n
, we see that robust stability 

can be ensured even in the case of 100 % relative model 
error. Furthermore for the high frequency domain a real 
prejudice free case is obtained, 
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Figure 8. Condition constraining the relative model error 
in the case of the first-order reference model 

 

If the process is IU, even the factor 
  
G

n
P̂
!

 appears in (21), 

can significantly modify (22). Fig. 9 shows the case when 
two unstable zeros seriously decrease the prejudice free 
character of the stability. The worst case is when this factor 
has a large value in the region of the cut-off frequency. 
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Figure 9. Conditions constraining the relative model error 
in the case of two unstable zeros 

 
KALMAN was who tried to investigate the possibility of a 
prejudice free identification/modeling methodology [6]. He 
could not find any general applicable results, however many 
interesting, almost philosophical statements were developed. 
 
 

3. WHAT ARE THE REAL CONSTRAINTS IN 
CONTROL SYSTEMS 

 
Process behaviors constraining the control 
 
It was always an important question in the control theory 
papers what are the real constraints strongly effecting the 
result of the controller design. 



 

 

We will discuss here the invariant process factors and the 
actuator operating signal domain here below. These factors 
are independent of the designer and of the available methods 
being either theoretically or experimentally founded. 
 
One class of the constraints, which appear in the controller 
design is that the invariant factors of the real process, i.e., 
the unstable zeros and the time delay can not be eliminated 
with any control algorithm. So the best reachable closed–
loop performance partly depends only on the process itself. 
If someone wants to change these elements only the 
redesign and rebuilt of the technology helps. 
 
The ideal design goals formulated by the reference models 

  
R

r
 and 

  
R

n
 can be reached only for stable and inverse stable 

delay free processes. In case of inverse unstable processes 

only the approximate 
  
R

r
G

r
P
!

e
!sT

d  and 
  
R

n
G

n
P
!

e
!sT

d  goals 
can be reached [1]. For discrete time systems these goals are 

  
R

r
G

r
G

!
z
!d  and 

  
R

n
G

n
G

!
z
!d , respectively. 

 
The influence of the unstable zeros can be somewhat 
attenuated using the 

  
G

r
 and 

  
G

n
 embedded filters. So only 

in case of stable process zeros we can obtain optimal 
controller independent of invariant process factor(s). 
 
So before designing a control systems it is better to clarify 
what the process will allow us to reach and the final result 
will not depend on our skill or on the applied theoretical 
approach and/or methodology. 
 
Actuator behaviors constraining the control 
 
There is another class of constraints which is independent 
on the applied regulator design and/or control systems 
applied. These are the always existing amplitude limits in 
the real actuators. Sometimes the theoretical control people 
forget about these constraints, because in their platforms, 
which is almost always computer technology, their life is 
limited only by the very big floating point number 
representations available at different software environments. 
Unfortunately the real actuators do not know these internal 
representation in spite of the fact that the modern control 
algorithms are based on discrete time computer control 
nowadays. The amplitude limit for a real actuator is always 
finite and we must not forget this reality. If we want to 
speed up a slow process by modern control, the result does 
not depends on the theoretical strength of the applied 
algorithm, it depend primarily on the available amplitude 
limit which can be applied at the output of the actuator. 
 
The regulators always invoke zeros to accelerate the 
process. To demonstrate this let us investigate the case 
shown in Fig. 10, where a phase-lead element is connected 
in serial before the first-order lag element. In the first 
moment, a signal value of 10 appears at the output of the 
phase-lead element and at the input of the first-order lag 
element for the effect of a unit step signal. The first-order 

lag starts with a high gradient in order to reach this value as 
soon as possible with its time constant and by the time the 
input signal is settling down the output has almost reached 
its steady-state value. The cost of the acceleration is the so-
called over-excitation, i.e., the ratio of the initial and final 
signal values at the input of the lag. The acceleration can be 
reached only by over-excitation greater than one. In many 
cases, it is worth applying pole cancellation, when zeros are 
invoked to cancel the undesirable poles which cause slow 
operation, and instead a pole ensuring more favorable 
behavior is inserted. 
 

 
 

Figure 10. Insertion of a zero may accelerate the system at 
the cost of over-excitation 

 
Thus it is obvious that the over-excitation means the control 
equipments will have an initial peak at their output as a 
response to unit step commands or disturbances. The 
problem is that the output of the regulators in the closed-
loop control, or the output of the actuators gaining the signal 
for the proper level are always amplitude-restricted. 
 

 
  
u t( ) !U

max
 (24) 

 
The sensitivity function of the real closed-loop can be 
written in the following decomposed form: 
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Here 
  
S

des
= 1! R

n( )  is the design loss, 
  
S

real
= R

n
! T̂( ) is 

the realizability loss, 
  
S

mod
= ! T ! T̂( ) = T̂ ! T  refers to the 

modeling loss in the sensitivity function. In its other form 

  
S

contr
= 1! T̂( )  means the decomposed term referring to the 

control loss, 
  
S

perf
= R

n
! T( ) to the performance loss. Each 

term can be interpreted and explained very easily. 
 
The above triple decomposition of the sensitivity functions 
gives a good insight into the limit-optimality (limits of the 



 

 

optimality) of closed-loop control systems, i.e., the 
characterization of the best control achievable. As regards 
this distinction optimality criteria need to be created for 
each term, i.e., 
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both for the tracking and disturbance rejection behaviors. 
Here the notation 

 
…  is used to express the optimality 

criterion. In strict mathematical analysis this notation is used 
to refer to the chosen norm of the transfer function. It is not 
an easy task to optimize all three terms simultaneously. In 
practice iterative techniques are used, whereby the 
optimization problem is solved step-by-step. 
 
The optimization of the first term in the decomposition of 
the sensitivity function (25) means the determination of the 
best (fastest) reachable reference models 
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opt  and 
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opt , i.e., the solution of the task under the constraints  
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where the chosen criteria 
  
J

des

r
= 1! R

r
 and 

  
J

des

n
= 1! R

n
 

state that each reference model should approach the ideal 
unity. This task must be solved under the constraints for the 
regulator output   u !U . Here  U  means the allowable region 
for  u , i.e., 

   
U : u ! 1  (see (24)). 

 
Redesign of the reference model 
 
The optimization task (27) is very difficult because the 
solution is always on the border of the limited region. There 
is no analytical solution except for some low-order simple 
cases. The optimal reference models are usually determined 
by simulation (CAD tools). Note that under the given 
constraints faster reference models cannot be used to solve 
the task (27). Vice versa, if under the constraints and design 
goal there is no solution for the reference models then the 
only option is to prescribe a less demanding (usually slower) 
model. Thus the best (fastest) reachable response of the 
closed system basically depends on the constraints of the 
control output. Of course, equation (27) contains the applied 
regulator and also the process in a complex way; thus it is a 
closed-loop. Therefore the optimality of the regulator 
depends on the process, the model and the invariant factors. 
 
Even in the case of a very careful design it can happen that 
the over-actuated output of the obtained regulator is beyond 

the acceptable signal domain. Then the original design goals 
need to be reduced. The advantage of the 
KB parameterization of generic 2DF control loops is that 
only the problematic (over-demanding) reference models 

  
R

r
 and 

  
R

n
 need to be changed to accommodate less 

demanding design conditions. Usually this can be performed 
only step by step via an iterative procedure. The steps can 
contain model simulation and also experiments on the real 
process. Therefore the optimization is often termed the 
redesign of the reference model. In the case of low-order 
reference models the time constant of the model (i.e., the 
bandwidth) can be determined by explicit design expression 
if the process model and the amplitude constraint 

  
U

max
 are 

known. 
 
Let the process be given by the pulse transfer function 
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Apply a combined iterative identification and control test 
[12]. The following reference models of unity gain are used 
for the design 
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At the start of the iteration the model 
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is assumed. A square signal with periodic time of 40 
samples is applied as reference signal. In the simulation it is 
assumed that the additive noise y

n
 is white noise, whose 

variance is 
  
!

y
n

= 0.01 . The number of the processed 

samples is   N = 100 . Because of the small output noise the 
identification is performed by a simple off-line LS method. 
The regulator is designed by the YP method, assuming an IU 
process.  
 
The output of the regulator is presented in Fig. 11, where it 
is seen that the over-excitation is very high at 900 %, i.e., 

  
u

t
= 9 . Assume that the actuator can realize only 

  
u

t
= 5 . 

This requires the redesign of the reference model 
  
R

r
. 

 
The condition 

  
u

t
! u

t
= 5  needs to be prescribed for the 

reference model redesign iteration. It can be seen in Fig. 12 
that the control output is according to the prescribed over 
actuation by the end of the iteration. The obtained 
redesigned reference model is 



 

 

 
  

R
r
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0.5022z
!1

1! 0.4978z
!1

 (31) 

 
Fig. 13 shows the time function of the output of the 
reference model (continuous line) and the closed system 
(dashed line). Fig. 14 presents the BODE diagram of the 
original (continuous line) and the redesigned (dashed line) 
reference model. The prescribed over-excitation could be 
reached only by substantially slowing down the closed 
system. 
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Figure 11. Response of the YP regulator 
before the iteration 
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Figure 12. Response of the YP regulator after 
the iteration 
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Figure 13. Output of the reference model and 
the process 
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Figure 14. BODE diagram of the original and the new 
reference model 

 
The final conclusion is that the control quality can never be 
prejudice free, more exactly never process independent and 
never the installed actuator independent property of the final 
control system. 
 

 
 

Figure 15. Illustration of the inequality of (9.5.1)  
 
 

4. THE HEISENBERG UNCERTAINTY OF CONTROL 
 
The condition of robust stability (18) already contains a 
product inequality. Here 

 
T̂ j!( )  (although it is usually 

called a design factor) can be considered as the quality 
factor of the control. The other factor, however, can be 
considered as the relative correctness of the applied model. 
In the light of practical experience control engineers favor 
applying a mostly heuristic expression 
 
(quality of the control) ! (robustness of the control) ! limit 
 
This product inequality can be simply demonstrated by the 
integral criteria of classical control engineering. Let 

  
I

2
 be a 

square integral criterion (Integral Square of Error: ISE) 
whose optimum is 

  
I

2

*  when the regulator is properly set, 
and the NYQUIST stability limit (i.e., robustness measure) is 

 
!

m
. The well-known empirical, heuristics formula is 
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The inequality is illustrated in Fig. 15. The fact that the 
quality of the identification (which is the inverse of the 
model correctness) can have a certain relationship with the 
robustness of the control, is not very trivial. This can be 
observed only in a special case, namely in the identification 
technique based on KB parameterization [1] [2] when 

   
!

ID
= " !e . Introduce a new relationship for the 

characterization of the quality of the control 
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Notice that !  is the absolute value of the sensitivity 
function. Obviously, 

 
!" = 1  for all frequencies (here 

   
! = 1+ !L ). Of course, the same equalities are valid for the 
minimum and maximum values, i.e., 
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Denote the worst value of these measures by 
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The above three basic relationships can be summarized in 
the inequalities below 
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where the following simple calculations prove the existence 
of (34) and (35) 
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Given (34), (35) and (36) further basic, almost trivial, 
inequalities can also be simply formulated 
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The above results are not surprising. The fact, that they are 
valid even for the modeling error in the case of KB-
parameterized identification methods makes them special. 
So it can be clearly seen that when the modeling error 
decreases, the robustness of the control increases. Namely, 
if the minimum of the modeling error 
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 is decreased, then 

the maximum of the minimum robustness measure 
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increased, since 
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Similar relationships can be obtained if the 

  
H

2
 norm of the 

“joint” modeling and control error is used instead of the 
absolute values. Introduce the following relative fidelity 
measure 
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The upper limit for this measure can be formulated as 
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so it is very easy to find similar equations for ! . Let 
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Using these definitions and the former equations we obtain 
the following interesting relationship 
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for the relative quadratic identification error. 
 

Use the first-order reference model 
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for the design of the noise rejection in the IS process. Here 
the maximum of the robustness measure is 

   

!
!

m

o
=
!
!

m,IS

o
= 0.9  

according to 
 

 
   

!
!

m,IS

o
=
!
!

m,IS
" = 0( ) =

1

1" R
n #

= min
$

1

1" R
n

 (44) 

 

and 
 

 
   

!
!

m,IS

o
=

a
n1
"1

2
 (45) 
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parameters 
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Figure 16. Illustration of uncertainty relationships (41) 

Considering the data of (46) and applying again the relative 
sampling time 

  
x = T

s
T

n
, the different measures in (42) are 

illustrated in Fig. 16. Here 
  
T

n
 is the time constant of the 

continuous time (CT) first-order reference model. 
 

Introduce the following coefficient for the excitation caused 

by the reference signal 
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which represents a signal/noise ratio. Investigate the product 
!"  (which is called the uncertainty product) in an iterative 

procedure where the relative error  !  of the model is 

improved gradually. For simplicity, let us assume an IS 

process. It can be simply derived that 
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This equation gives a new uncertainty relationship, 
according to which 
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The product of the modeling accuracy and the robustness 
measure of the control must not be greater than one, when 
the optimality condition   ! = 0  is reached. The obtained 
uncertainty relation can be written in another form, since 
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The earlier results of control engineering referred only for 
the statement that the quality of the control cannot be 
improved, only at the expense of the robustness, so this 
result, which connects the quality of the identification and 
the robustness of the control, can be considered, by all 
mean, novel. 
 
This phenomenon can arguably be considered as the 
HEISENBERG type uncertainty relationship of control 
engineering, according to which 
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Here  !z  and 

 
!p  are the alterations of the canonical 

coordinate and the impulse variables, respectively, and thus 
their inverse corresponds to the generalized accuracy and 
“rigidity” which are known as performance and robustness 
in control engineering. 
 
The consequence of the new uncertainty relation is very 
simple: KB-parameterized identification is the only method 
where the improvement of the modeling error also increases 
the robustness of the control. With other methods, and other 
identification topology, modeling and control errors are 
interrelated in a very complex way, and in many cases this 
relation cannot be given in an explicit form. This is the main 
reason why it is difficult to elaborate a method which 
guarantees, or at least forces, similar behavior by the two 
errors, though some results can be found in the literature [3]. 
 
There is a myth in the literature concerning the antagonistic 
conflict between control and identification. A “good” 
regulator minimizes the internal signal changes in the closed 
loop and therefore most of the identification methods, which 
use these inner signals provide worse modeling error, if the 
regulator is better. The exciting signal of KB-parameterized 
identification is an outer signal and therefore the 
phenomenon does not exist. The relevant feature of this 
relationship is shown in Figs. 17 and 18 for a general 
identification method and a KB-parameterized technique. 
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Figure 17. Relationship between the control and 
identification error in the general case  

!

!

1

11

1

x

  

! 
" m
o

  
"0

  

# 
# M
o

#M

"m   

! 
" m
# 
# M = 1

x

#

#

   
$e = $

ID

   

# =
$e j%( )

y
n

j%( )
=

1

1+ $L

"
m

= min
%

1+ $L

   

#
ID

=
$

ID

y
n

= # =
$e

y
n

!
ID

=
var $

ID{ }
var y

n
{ }

=
$

ID 2

y
n 2

= ! =
$e

2

y
n 2

  
"

&
' 0

 
 

Figure 18. Relationship between the control and 
identification error in the case of the KB-parameterized 

identification method  
 
 

5. IRREGULARITIES IN CLASSICAL CONTROL 
METHODS 

 
A further myth in the control literature is that everything is 
right and errorless in the classical works of theory. This is 
unfortunately (or fortunately ?) is not right. T. Keviczky 
recognized that the solution of the classical LQR paradigm 
does not provide full pole placement and some areas can be 
considered as irregularities of this classical theory. 



 

 

Keviczky and Bányász [9], [10] gave a detailed analysis 
proving that there are some poles, it is interesting that the 
slower poles, which can not be allocated by the classical 
methodology. Finally Bokor and Keviczky [11], [12] 
presented a possible method, which solves the irregularity of 
this paradigm. Let us see this formerly unknown 
irregularity. 
 
The LQR (Linear system - Quadratic criterion - Regulator) 
problem 
 
This optimization paradigm was formulated by the general, 
quadratic criterion [7], [8] 
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where 
  
x t( )  is the state vector, 

 
u t( )  is the input of the 

process, respectively. The positive definite 
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x
 stands for 

penalizing the variations in the state space, 
  
w

u
 is for 

penalizing the energy of the control action. The classical 
solution, minimizing (55) is a negative state feedback (SF) 
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The symmetric positive semi definite matrix  P  can be 
obtained from the solution of the algebraic RICCATI 
equation [4] 
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Analytic solution is not possible, because this equation is 
nonlinear in  P , therefore only numeric solution can be 
obtained by MATLAB and other CACSD programs. 
Introducing the orthogonal factorization 
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the closed-loop system is stable if the auxiliary process 
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is observable. 
 
The frequency domain solution of the LQR problem 
 
The LQR approach is widely used for control problems in 

all over the world, however, in a practical problem it is not 
an easy task to find the best 
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x
 and 
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u
 weights, which are 

usually obtained by trial and error iterative methods. The 
LQR problem has an almost forgotten frequency domain 
solution, too, which will give us a deterministic design 
process to find useful relationships between the classical 
pole placement SF solution and the LQR paradigm. It can be 
shown that the simpler dyadic factorization [7] 
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can also be used. The frequency domain condition of the 
minimum of (55) is called the KALMAN equation [7], [8] or 
sometimes it is named frequency domain identity 
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Assuming unity weight 
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Using the well known relationship of complex functions 
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the equation (63) can be rearranged into a new form 
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which provides the quadratic polynomial solution of the 
KALMAN equation. Thus the final quadratic equation, 
ensuring relationship between the process 

  
A s( ) , design 

  
R s( )  and weighting 

  
G s( )  polynomials, is 
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or in the general form 
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Observe that the solution tends to 
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Some anomalies in the LQR problem 
 
The solution of the polynomial equation can be a direct 
coefficient comparison or a spectral factorization approach 
[8]. Consider some examples in the sequel. 
 
Example 1 
Consider a first order example with 
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If we want to ensure (place) a required pole then the 
necessary weight in the LQR problem is 
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It is easy to see that only such 
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for stable design polynomial 
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So this example shows that only a faster pole can be placed 
by the LQR optimization comparing to the original process 
pole. 
 
Example 2 
Consider a second order example with 

 

   

A s( ) = s
2
+ a

1
s + a

2
; R s( ) = s

2
+ r

1
s + r

2

thus G s( ) = g
1
s + g

2

 (75) 

 
The two sides of (67) are now 
 

 

  

s
2
+ r

1
s + r

2( ) s
2
! r

1
s + r

2( ) = s
2
+ a

1
s + a

2( )
s

2
! a

1
s + a

2( ) + g
1
s + g

2( ) !g
1
s + g

2( )
 (76) 

 
and the solutions are 
 

 
  
r
2
= a

2

2
+ g

2

2
> a

2
 (77) 

 

 

  

r
1
= 2 a

2

2
+ g

2

2 ! a
2

"
#

$
% + a

1

2
+ g

1

2( ) =

= 2 r
2
! a

2( ) + a
1

2
+ g

1

2( ) > a
1
> 0

 (78) 

 
The SF to be applied is given by 
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For pole placement the necessary LQR weights are 
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It is easy to see that there are such 
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Figure 19. Unreachable design parameter domains 
 
These conditions are graphically demonstrated on Fig.19, 
where the shaded area shows the unreachable design 
parameters for the case of open-loop process parameters 
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2
= 0.8  and 
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= 0.5 . 

 
One can check these results either via the solution of the 
RICCATI equation (very time consuming method) or by the 
spectral factorization approach 
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as the solution of (67), i.e., by 
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Solutions for LQR-pole placement 
 
A new criterion 
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was proposed by Bokor and Keviczky, which solves the 
problem and offers a possible way to overcome this 
anomaly of the standard method. 
 
The full pole-placement solution can be obtained only if the 
criterion (86) is used, which penalizes interaction of the 
state vector and the control action by the 

   
x

T
t( )w

xu
u t( )  

cross-term. The optimal state feedback can be provided by 
 
 

   
k = !w

u

!1
w

xu
+ P b( )    or   

   

k
T

= !w
u

!1
w

ux
+ b

T
P( )  (89) 

 
introduced in [11] and [12]. 
 
 

6. CONCLUSIONS 
 
The purpose of this paper is to highlight some interesting, 
may be philosophical, paradigm of modeling and control. 
 
Such problems are discussed here, which are worth further 
study and investigation. 
 
“I believe that the progress of science should be rather 
measured by the raised and not by the solved problems !” as 
Eddington stated !!! 
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