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Abstract—The paper considers a general approach for linear
parameter varying (LPV) control. The approach is based on
polytopic representation of the LPV system. First, a grid point
based control design is applied for a set of linearized models of
the LPV system. The design is based on linear time invariant
(LTI) techniques. Such control design allows a larger flexibility
in the controller structure than the conventional parallel
distributed compensation (PDC) based polytopic control. The
LPV controller is obtained by linear interpolation between the
LTI controllers. The paper proposes linear matrix inequality
(LMI) based convex optimization for robustness analysis of the
resulting controller. The approach requires the plant and the
controller to be defined by a common polytopic structure. It
is proposed to obtain this common structure via unified TP
model transformation. A simple numerical example shows the
efficiency of the proposed control design approach.
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I. INTRODUCTION

A common approach to nonlinear control design is linear
parameter-varying (LPV) control. The paper focuses on the
polytopic LPV representation of nonlinear systems [1], [2].
The other two main LPV representations are linear fractional
transformation (LFT) based LPV systems [3], [4], [5] and
”grid-based” LPV systems [6], [7]. The polytopic represen-
tation of a nonlinear system can be obtained analytically [8]
or numerically [9]. However, analytical derivations are often
tedious or even impossible, particularly for more complex
examples [9]. An efficient and tractable numerical method
for obtaining the polytopic LPV representation is the tensor
product (TP) model transformation as given in Section III-A
[9]. The TP type polytopic form of a nonlinear system is
obtained based on the higher-order singular value decom-
position (HOSVD). The resulting TP model may exactly or
approximately duplicate the original dynamics, depending
on the singular values retained in the process. In turn, the
singular values serve as a measure to trade off between the
accuracy and complexity of the resulting model [9]. Recent
directions in TP model control can be found in [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19].

The control design for TP type polytopic models is

generally based on the parallel distributed compensation
(PDC) framework [2] (Section II). The synthesis is done
via linear matrix inequality (LMI) convex optimization for
the linear time-invariant (LTI) vertex systems. The result-
ing LPV controller inherits the polytopic structure of the
plant [2]. The flexibility of the polytopic control design is
therefore limited by this fixed structure. Additionally, the
flexibility is further limited as the synthesis step takes only
the vertex systems into account.

The aim of the paper is to propose a control design
strategy for LPV systems (Section IV) based on the work
of [20], [21]. The main goal of the proposed design is to
enable higher flexibility than general polytopic approaches.
The flexibility of the control design can be enhanced by
applying gain scheduling-like control design techniques as
proposed in [20], [21]. The LPV system is linearized over
a set of grid points and an LTI controller is designed for
each for linearized model. This approach allows a large
variety of LTI feedback design techniques to be applied.
Additionally, the number of LTI systems can be arbitrarily
high. Therefore, the control performance specifications can
be tuned individually at each LTI system. Finally, the LPV
controller is generated by linear interpolation between the
LTI controllers. The drawback of such approach is that
the resulting LTI controllers guaranty stability only in the
vicinity of the LTI systems. Therefore, the second goal is
to propose stability analysis via LMI feasibility tests or
LMI-based convex optimization [2], [1] for the resulting
LPV controller. The proposed approach requires the LPV
system and the controller to have a common convex, poly-
topic representation. Such representation can be obtained by
applying TP model transformation to the LPV system and
to the controller. The controller designed with the proposed
method however, has a polytopic structure that is in general
different than the structure of the plant. A common polytopic
structure can be obtained by applying the unified TP model
transformation (Section III-B) upon which the LMI-based
analysis can be executed [22].

It is assumed that the LPV model can have parametric
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uncertainties. Additional uncertainty may appear in case the
TP model is only an approximation of the original LPV
system. Therefore, it is proposed to verify robust stability
of the resulting LPV controller based on [2] (Section III-C).
The robust stability analysis is the main improvement over
[20], [21]. The current paper treats state feedback design
case only, but the results can be extended to output feedback
design. A simple numerical example is given in Section
V to demonstrate the effectiveness of the proposed method
followed by the Conclusions.

II. PROBLEM FORMULATION
Consider the LPV system Gρ:

ẋ =A(ρ(t))x+B(ρ(t))u

y =C(ρ(t))x+D(ρ(t))u
(1)

The signals are input u(t) ∈ Rnu , output y(t) ∈ Rny and
state variable x(t) ∈ Rnx . Finally, ρ(t) ∈ Rnρ is a mea-
surable exogenous parameter vector, called the scheduling
parameter. ρ is assumed to be a continuously differentiable
function and the admissible trajectories are restricted based
on physical considerations to a known compact subset P ⊂
Rnρ . The rates of the parameter variation ρ̇ are assumed to be
bounded in some applications. The present paper investigates
the unbounded rate case for simplicity. The dependence on
time t is suppressed in the remainder of the paper to shorten
the notation. The system matrix S(ρ) is given as

S(ρ) =

[
A(ρ) B(ρ)
C(ρ) D(ρ)

]
(2)

Note that Gρ is a quasi LPV (qLPV) system, belonging to
the class of nonlinear systems, if the scheduling parameter
ρ contains elements of the state variable x.

A common way of LPV control is based on polytopic
form and the PDC framework [2]. The finite element poly-
topic form of the LPV system Gρ can be given as

S(ρ) =

R∑
r=1

wr(ρ)Sr (3)

where Sr ∈ R(nx+nu)×(nx+ny) are the LTI vertex systems.
The combination is defined by weighting functions wr(ρ) ∈[
0 1

]
.

The controller is designed for the vertex LTI systems Sr
and the resulting LPV controller takes the same polytopic
structure [2], [1], [23]. The control signal of the polytopic
LPV control based on the PDC framework is generated in
the following way

u = −
R∑

r=1

wr(ρ)Frx (4)

where Fr ∈ Rnx×nu are the LTI state feedback gains.
A major limitation of this control approach is that the
structure of the controller is determined by the structure
of the plant. Additionally, the feedback gains are designed
only for the LTI vertex systems. The goal is to propose
an LPV control design method that can handle controllers
with various structure providing additional flexibility in

the control design. The key requirement for the proposed
method is to provide robust stability analysis for the resulting
controllers.

III. TECHNICAL BACKGROUND

This section reviews existing material on TP model trans-
formation, unified TP model transformation and robustness
analysis for polytopic LPV systems.

A. TP Model Transformation
The TP model transformation is a numerical method

capable of transforming LPV systems to convex polytopic
forms [9]. The TP model transformation was proposed as a
methodology for system control design in [1]. The TP type
polytopic form of the LPV system Gρ can be given as

S(ρ) =

I1∑
i1=1

· · ·
Inρ∑

inρ=1

wn,in(ρn)Si1...inρ
= S

nρ

�
n=1

w (ρn) (5)

where the coefficient tensor S ∈
RI1×···×Inρ×(nx+nu)×(nx+ny) has nρ + 2 dimensions.
S is constructed from the LTI vertex systems Si1,...,inρ . The
row vector wn(ρn) contains the one variable and continuous
weighting functions wn,in(ρn) with in = 1 . . . Inρ . The
weighting functions wn(ρn) are determined based on
singular matrices Un [9]. In order to have convex
representation the weighting functions need to satisfy the
following criteria:

∀n, i, ρn : wn,i(ρn) ∈ [0, 1]; ∀n, ρn :

In∑
i=1

wn,i(ρn) = 1 (6)

Various types of convex representations can be constructed
via TP model transformation. The current paper focuses on
CNO type polytopic forms. A TP type convex model is CNO
if the weighting functions satisfy the convexity criteria and
largest value of all weighting functions is 1 or close to 1.

It is important to note that not all LPV models belong to
the class of TP models, i.e. they cannot be exactly recon-
structed from finite number of vertex systems. Furthermore,
occasionally the exact representation of LPV systems may
lead to a complex polytopic structure that is not suitable
for control design. In such cases an approximate TP model
is more advantageous. Since HOSVD is the core of TP
model transformation, an approximate model can be ob-
tained by discarding small non-zero singular values. Assume
the HOSVD of the LPV system Gρ is given and the n-mode
rank of S(ρ) is Rn (1 ≤ n ≤ nρ) [9]. Let us define the
approximated model as Ŝ(ρ). Ŝ(ρ) is obtained by discarding
singular values σ(n)

I′n+1, σ
(n)
I′n+2, . . . σ

(n)
Rn

of tensor S for a given
I ′n < Rn. In this case the upper bound for the approximation
can be given as

1

γTP
= ‖S(p(t))− Ŝ(p(t))‖2 ≤

R1∑
i1=I′1+1

(
σ
(1)
i1

)2
+ · · ·+

Rnρ∑
inρ=I′nρ+1

(
σ
(nρ)
inρ

)2 (7)



B. Unified TP Model Transformation
The unified TP model transformation was proposed in [22]

as an extension of the TP model transformation. The unified
TP model transformation is capable of transforming multi-
ple LPV control system elements to a common polytopic
structure. Consider the LPV system Gρ and assume an LPV
state feedback controller F (ρ) is available. The controller
generates the control signal as

u = −F (ρ)x (8)

Assume that the following vertex systems are obtained via
TP model transformation:

S
nρ

�
n=1

US
n , F

nρ

�
n=1

UF
n (9)

where USn and UFn are the singular matrices, representing
the discretized weighting functions (see [9] for more details
about the steps of TP model transformation). Tensor S
contains the LTI vertex systems of Gρ and tensor F contains
the corresponding LTI feedback gains. The goal is to find
a common Un for all components such that the weighting
functions guarantee convex TP models:

S ′
nρ

�
n=1

Un = S
nρ

�
n=1

US
n , F ′

nρ

�
n=1

Un = F
nρ

�
n=1

UF
n (10)

The discretized weighting functions USn and UFn can be
unified in the following way. Matrix H is constructed as
follows:

Hn =
[
US

n UF
n

]
(11)

In the next step, SVD is executed on H with all the nonzero
singular values kept. The discretized weighting functions are
transformed to CNO form as

Hn = UCNO
n DnV

T
n (12)

The product DnV
T
n is partitioned into matrices as

DnV
T
n =

[
TS
n TF

n

]
(13)

according to the dimension of USn and UFn obtaining[
US

n UF
n

]
= UCNO

n

[
TS
n TF

n

]
(14)

The common discretized weighting function can then be
obtained in the following way

S
nρ

�
n=1

US
n = S

nρ

�
n=1

(
UCNO

n TS
n

)
=(

S
nρ

�
n=1

TS
n

)
nρ

�
n=1

UCNO
n = S ′

nρ

�
n=1

UCNO
n

F
nρ

�
n=1

UF
n = F

nρ

�
n=1

(
UCNO

n TF
n

)
=(

F
nρ

�
n=1

TF
n

)
nρ

�
n=1

UCNO
n = F ′

nρ

�
n=1

UCNO
n

(15)

C. LMI-based Robustness Analysis
Consider the uncertain LPV system Ĝρ based on [2] with

the following uncertainty structure

ẋ = (A(ρ)+Da(ρ)∆aEa(ρ))x+(B(ρ)+Db(ρ)∆bEb(ρ))u (16)

where the uncertainty blocks satisfy

‖∆a‖ ≤
1

γa
, ∆a = ∆T

a

‖∆b‖ ≤
1

γb
, ∆b = ∆T

b

(17)

The parameter dependent matrices Da(ρ), Db(ρ), Ea(ρ) and
Eb(ρ) define the structure of the uncertainty. Assume that
a common polytopic structure of the uncertain LPV model
(16) and a corresponding LPV state-feedback controller of
the form (8) is obtained. Then the following theorem holds
for the state feedback control of Ĝρ with controller F (ρ)
[2].

Theorem 1: The uncertain LPV system of (16) is sta-
bilized via controller (8) if there exist a common positive
definite matrix P satisfying

[
(Ar −BrFr)TP
+P (Ar −BrFr)

]
PDar PDbr ET

ar −FT
r E

T
br

DT
arP −I 0 0 0

DT
brP 0 −I 0 0
Ear 0 0 −γ2

aI 0
−EbrFr 0 0 0 −γ2

b I

 ≤ 0


Srs Trs ET

ar −FT
s E

T
br ET

as −FT
r E

T
bs

TT
rs −I 0 0 0 0

Ear 0 −γ2
aI 0 0 0

−EbrFr 0 0 −γ2
b I 0 0

Eas 0 0 0 −γ2
aI 0

−EbsFr 0 0 0 0 −γ2
b I

 ≤ 0

where the vertex feedback gains are given by Fr (r = 1 . . . R
and R is the number of LTI vertex systems) for r < s ≤ R,
except the pairs (r, s) such that ∀ρ ∈ P : wr(ρ)ws(ρ) = 0.
Matrices Srs and Trs are defined as

Srs =

[
(Ar −BrFs)TP + P (Ar −BrFs)+
+(As −BsFr)TP + P (As −BsFr)

]
(18)

Trs =
[
PDar PDbr PDas PDbs

]
(19)

The proof of Theorem 1 is given in [2].

IV. PROPOSED METHOD

The aim of this section is to give the technical details of
the proposed control design strategy for LPV systems. The
specific goals of the proposed methodology are

1) possibility to apply a large variety of LTI feedback
design techniques;

2) flexible polytopic structure of the controller;
3) ability to tune the control performance based on the

scheduling parameter ρ;
4) robustness analysis for the resulting LPV controller.
The proposed design is based on the idea given in [21],

[20]. The key improvement is that the current method
provides robustness analysis in addition to the control de-
sign. The proposed method has two main steps; the first
is the grid point based control synthesis and the second
is the robustness analysis of the resulting closed loop state
feedback control.



1) Grid Point-based Control Design: The main idea of
the grid point-based control design is to synthesize LTI
feedback controllers for a set of linearized models of the
nominal LPV system Gρ [21], [20]. The first step is to obtain
a set of linearized models of Gρ over a grid defined in P .
The linearized LTI systems are stored in tensor SGrid. The
density of the grid should provide enough resolution and
accuracy for the given problem. This also allows to tune the
control performance specification based on the scheduling
parameter ρ. Additionally, since LTI feedback gains are
designed individually for each LTI system over the grid,
the polytopic structure of the controller is not tied to the
structure of the plant. The resulting LTI feedback gains are
stored in tensor FGrid. Finally, the LPV controller F (ρ) is
generated by linear interpolation between the LTI feedback
gains. The stability of the LTI controllers is guaranteed in the
vicinity of the LTI systems. However, there is no guaranty
that the LPV controller F (ρ) is also stable.

2) Robustness Analysis: The second step is to verify
the robust stability of the closed loop system of the LPV
plant and the resulting LPV controller F (ρ). The aim is
to apply LMI-based convex optimization techniques for
the stability analysis. Such approach can be applied for
the TP type convex representation of the plant and the
controller. It is assumed that the LPV system Gρ can have
parametric uncertainty in the form of (16). An additional
uncertainty is introduced in case an approximating TP model
is used. Therefore, the stability of the resulting controller is
verified for the uncertain LPV system Ĝρ in addition to the
nominal LPV system. The uncertainty blocks of Ĝρ have
the following structure

∆a = ∆TP + ∆aModel , ∆b = ∆TP + ∆bModel (20)

where ∆TP captures the approximation error of the TP
model. ∆aModel and ∆bModel capture parametric uncertain-
ties or unmodeled dynamics of the nominal LPV system Gρ.
An upper bound for ∆TP can be given based on (7) as

‖∆TP ‖ =
1

γTP
(21)

The robustness analysis can be done in the following steps:
Step 1: The TP type polytopic forms of the LTI systems

of SGrid and the corresponding LTI controllers FGrid are
obtained via TP model transformation. The controller in
general has a polytopic structure that is different than the
structure of the plant. The TP model transformation results
in the LTI vertex systems and gains with the discretized
weighting functions as

SGrid = S
nρ

�
n=1

US
n , FGrid = F

nρ

�
n=1

UF
n (22)

An upper bound on γTP is also obtained in this step based
on the discarded singular values for SGrid.

Step 2: The LTI vertex systems of S and the correspond-
ing feedback gains of F are transformed to a common poly-
topic form based on the unified TP model transformation
(Section III-B). The unified polytopic structure is given as

S ′
nρ

�
n=1

Un = S
nρ

�
n=1

US
n , F ′

nρ

�
n=1

Un = F
nρ

�
n=1

UF
n (23)

where tensor S ′ contains the LTI vertex systems, tensor
F ′ contains the corresponding state feedback gains and Un
contains the discrete unified weighting functions for the
common polytopic representation. The continuous weighting
functions w(ρn) are finally obtained from Un. The resulting
state feedback interconnection therefore takes the following
structure [

ẋ
y

]
= S ′

nρ

�
n=1

w(ρn)

[
x
u

]
(24)

where the control signal u is generated as

u = −F ′
nρ

�
n=1

w(ρn)x (25)

Step 3: The robustness analysis for the interconnection
given by (24) and (25) can be done via convex optimization
based on Theorem 1. The resulting γa and γb give an upper
bound for ‖∆a‖ and ‖∆b‖. The upper bound on ‖∆TP ‖ is
given by γTP . γaModel and γbModel can then be calculated
based on the following inequality

‖∆a‖ ≤ ‖∆TP ‖+ ‖∆aModel‖
‖∆b‖ ≤ ‖∆TP ‖+ ‖∆bModel‖

(26)

It has to be noted, that in some cases it might not be
possible to represent the controller F (ρ) by finite element
polytopic form, or the exact polytopic form can have unde-
sirably high complexity. In such cases the TP approximation
of the controller can be implemented for which the robust
stability holds. The approximating capabilities of the TP
model transformation ensure that the performance of the
approximate controller remains close to the original perfor-
mance criteria specified by the LTI feedback design.

V. NUMERICAL EXAMPLE
A simple numerical example is presented in order to

show the efficiency of the proposed control design method.
Consider a nonlinear mass-spring damper given in Figure 1
[8]. It is assumed that the nominal stiffness coefficient of
the spring and the damping coefficient of the damper have
nonlinearity as

Mẍ+ g(x, ẋ) + f(x) = u (27)

where M is the mass and u is the force. f(x) is the nonlinear
term of the spring and g(x, ẋ) is the nonlinear term of the
damper.

Figure 1. Mass-spring damper system

Assume that g(x, ẋ) = D(c1x+ c2ẋ
3) and f(x) = c3x+

c4x
3. The parameters are set as follows: M = 1, D = 1,



c1 = c3 = 0.01, c2 = 0.1 and c4 = 0.67. The nominal
mass-spring damper system can be given as[

ẋ
ẍ

]
=

[
0 1

−(0.02 + 0.67x2) −0.1ẋ2

] [
x
ẋ

]
+

[
0
1

]
u (28)

The region of interest is defined as x ∈
[
−1.5 1.5

]
and

ẋ ∈
[
−1.5 1.5

]
. The uncertain mass-spring damper system

is defined based on the assumption that parameters c1 =
c3 = 0.01, c2 = 0.1 and c4 = 0.67 can be uncertain.

A. Grid Point-based Control Design
First, the linearized models at a set of grid points within

the region of interest are obtained. Consider the set of N ×
M grid points as

[
x1 x2 · · ·xN

]
×
[
ẋ1 ẋ2 · · · ẋM

]
, with

x1 = −1.5, xN = 1.5, ẋ1 = −1.5 and ẋM = 1.5. For
values of x and ẋ close to xi and ẋj , the nonlinear plant
can be approximated by the linear model[

ẋ
ẍ

]
=

[
0 1

−(0.02 + 0.67x2i ) −0.1ẋ2j

] [
x
ẋ

]
+

[
0
1

]
u

= A(xi, ẋj)

[
x
ẋ

]
+Bu

(29)

The overall plant can then be approximated by a linear
interpolation of the grid point models. The linearized models
are stored in tensor SGrid and the scheduling parameter can
be defined as ρ =

[
x ẋ

]T
.

Let the approach for control design in the present case be
state feedback design with variable pole placement as given
in [20]. The closed loop poles at the (i, j)th grid point are
set be equal to

(
−2− 0.1

√
x2i + ẋ2j ,−2− 0.1

√
x2i + ẋ2j

)
,

i.e., a faster rate of decay is required if the states are further
away from x = 0 and ẋ = 0. Therefore, the control law
for each of the linearized model at the (i, j)th grid point is
given as u = −Fij

[
x ẋ

]T
. The LTI feedback gains are

stored in tensor FGrid. The overall control for given values
of x and ẋ is generated by linear interpolation.

B. Robustness Analysis

The goal is to verify the robust stability of the designed
controller for the uncertain mass-spring damper system
based on the proposed method.

Step 1: First, the TP type polytopic forms with the
discrete weighting functions USn and UFn of the nominal
plant and controller are obtained. This is achieved by apply-
ing TP model transformation to tensors SGrid and FGrid
individually. For the linearized models the nonzero singular
values are: 208.6, 58.2 in the first dimension and 216.4 and
9.3 in the second dimension. Therefore, by keeping the 4
singular values the exact TP type polytopic representation
of SGrid is retained. The weighting functions for the plant
are given in Figure 2.

The singular values for the controller in the first dimension
are: 785.8, 38.6, 1.9, 0.22, 0.04, 0.01,... and in the second di-
mension: 786.6, 13. 9, 1.45, 0.2, 0.04, 0.01,... The controller
therefore cannot be described exactly by finite number of
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0.4

0.6

0.8

1
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−1 0 1
0

0.2

0.4
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0.8

1

ẋ

Figure 2. CNO type weighting functions for SGrid

elements. Keeping the first two nonzero singular values in
each dimension ensures a good TP type approximation of
the original controllers stored in FGrid. This ensures that
the approximating controller has low complexity while the
control performance remains similar to the performance of
FGrid. The weighting functions are given in Figure 3.
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0

0.2

0.4

0.6

0.8

x
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0
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0.6

0.8

ẋ

Figure 3. CNO type weighting functions for FGrid

Step 2: The next step is apply the unified TP model
transformation to obtain a unified weighting structure for
the LPV system and the controller. The resulting weighting
functions are given in Figure 4.

−1 0 1
0

0.2

0.4

0.6

0.8

x

−1 0 1
0

0.2

0.4

0.6

0.8

ẋ

Figure 4. Unified CNO type weighting functions for S′ and F ′

Step 3: The final step is the robustness analysis, which
can be done via LMI convex optimization for the unified TP
structure. First, the structure of the uncertainty needs to be
defined. Recall, that in this case the TP form of the plant is
an exact representation, since there were no nonzero singular
values discarded. Therefore, ∆TP = 0. The structure of the
uncertainties in parameters c1 = c3 = 0.01, c2 = 0.1 and
c4 = 0.67 are captured by

Da =

[
0 0

−1/M −1/M

]
, Ea =

[
1 0
0 1

]
The proposed robustness analysis for this uncertain LPV
model results in γa = 0.445. Therefore, it is shown that the
approximate TP type polytopic form for the designed con-
troller robustly stabilizes the uncertain qLPV mass-spring
damper system in addition to the nominal model. γa = 0.445
gives an upper bound for the allowable uncertainty.



VI. CONCLUSIONS

The paper proposed an approach for LPV control design
based on grid point feedback design. The grid point approach
allows high flexibility in the design, but guaranties stability
only in the vicinity of the LTI systems. LMI based robust
stability analysis is proposed to verify the robust stability
of the resulting state feedback interconnection. The stability
is verified based on convex polytopic representation of the
LPV system and the designed controller. The paper proposed
unified TP model transformation to obtain the common
polytopic form of the controller and the plant. The robust
stability analysis can be evaluated for the resulting common
polytopic form. The benefits of the proposed method are
shown by a simple numerical example. The future plan is
to extend the proposed control design to output feedback.
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