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ABSTRACT 
 
An improved diagnosis method of technological systems is 
proposed in this paper that is based on their qualitative 
colored Petri-net model (Leitold et al. 2014). The proposed 
diagnosis method can be used when more than one fault 
occur in the system and if the fault evolves during the 
operation of the system. In order to make the diagnosis of 
complex process systems computationally feasible, a 
structural decomposition method is introduced to reduce the 
size of their occurrence graphs and to make the diagnosis 
easier. The proposed methods are illustrated on examples. 
 
INTRODUCTION 
 
The fault diagnosis problem includes the specific sub- 
tasks: fault detection, isolation and identification. 
Occurrence of faults can be determined by fault detection, 
the type or location of faults can be found by fault isolation 
methods while fault identification is used for characterizing 
the occurred faults. 
 
Fault diagnosis of discrete event systems was originally 
studied within the framework of automata theory Sampath 
et al. (1995). Other popular modeling formalisms are Petri 
nets and their different extensions such as labeled, timed or 
coloured Petri nets, state-charts and hierarchical state 
machines. The main advantages of Petri nets are that they 
give both structural and mathematical representation of the 
system. Therefore many different techniques can be used 
for diagnosis with Petri nets, for example the analysis of the 
occurrence graph, marking estimation, linear algebra, 
integer linear programming, diagnoser nets and reverse 
nets.The most frequently used methods are based on the 
idea of unobservable transitions and using labeled Petri net 
models. Besides the observability of transitions, the set of 
places may have observable and unobservable subsets too. 
In Basile et al. (2009) sufficient conditions of diagnosability 
are given and an on-line fault detection algorithm is 
developed based on ILP and checking the fault 
diagnosability conditions. In Cabasino et al. (2010) the 
markings reachable by unobservable transitions are taken 
into account at the construction of the occurrence graph. In 
Lefebvre and Aguayo-Lara (2015) firing times of 

transitions are taken into account and the diagnosis is based 
on generating residuals.  
 
Complex systems can be represented in a compact form by 
using colored Petri nets (CPN). CPN can be used as a 
colored diagnoser Pencole et al. (2015), which has usually 
smaller size than the colored one, or backward reachability 
can be used to find the source of failures Bouali et al. 
(2012).  
 
In case of large systems the computational effort of 
diagnoser algorithms can be extremely large therefore 
making effective algorithms is a very important task. 
Distributed diagnosis is a popular method to solve the 
problem however it raises the question how the global 
diagnosis result can be obtained from the local results. 
Usually some kind of communication protocol between the 
local diagnoser modules is required to get the total 
diagnosis result in Genc and Lafortune (2007).  
 
In our previous paper (Leitold et al., 2014) a novel on-line 
diagnosis method is introduced for hazard identification of 
process systems. The method is a hybrid procedure for on-
line diagnosis that combines the availability and flexibility 
of HAZID information-based diagnosis with the 
computational power and tools available for CP-nets. The 
deviations between the nominal and characteristic traces 
stem from the technological system can be identified on the 
occurrence graph of CP-net model. The occurrence graph of 
the system to be diagnosed can be constructed in advance 
and with the on-line searching on the graph the possible 
fault can be determined. 
 
BASIC CONCEPTS 
 
A brief introduction of the basic concepts used in this paper 
is given here. The detailed description can be found in 
Leitold et al. (2014).  
 
Qualitative Ranges, Events, Traces and Deviations 
 
In many cases it is enough to know whether a measured 
value is in a range specified in advance. For example, for a 
sensor S the following ranges can be defined if the rough 
resolution is enough: 

QS = {e0, 0S, LS, NS, HS, e1} ,          (1) 
where 0S, LS, NS, HS refer to zero, low, normal and high 
value measured by the sensor S, respectively, while e0 and 
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e1 may refer to outlier value caused by a bias failure. The 
qualitative range of binary state actuators is as follows:  

QS = {op, cl} ,                         (2) 
where op refer to the open state while cl to the close state of 
the actuator. 
 
The dynamic evolution of course of a process system can be 
characterized by time dependent variables. Output variables 
are the measured values, while the input variables are the 
actions performed by the operators. An event is an ordered 
list of a time stamp and the values of input and output 
variables belonging to this time value. The event list or 
operational procedure contains the possible events during a 
course of a process system. The set of consecutive events is 
called trace. The traces can be categorized into two main 
groups: to the nominal trace describing the normal or 
faultless work of the system and to the faulty traces 
referring to the different faulty modes. During the course of 
the system the characteristic trace is recorded that 
describes the occurring events. 
 
The proposed fault diagnosis method is based on the 
comparison of a nominal trace and a characteristic trace. If 
there is a deviation between these traces then the system 
works probably in a faulty mode. Assuming that the events 
in a trace are ordered by the time stamps, the most 
important deviation types are the following:  
 never-happened - if the coherent input and output values 

do not occur in the characteristic trace at any time 
stamp; 

 later or earlier - if these values occur but at a later or 
earlier time stamp than in the nominal trace; 

 greater or smaller var_outi - if the value of a output 
variable is greater or smaller in the characteristic trace 
than in the nominal trace at a given time instant . 

 
Colored Petri Nets 
 
According to the formal definition (see details in (Jensen 
1997)) a CP-net model consists of places, transitions, guard 
and arc functions, colors and tokens. For diagnostic 
purposes the following modelling principles are used.  
 The input and output variables, the operational mode 

and the deviation are assigned to places. 
 Color of tokens describes the variables’ value, the type 

of the fault and the emergent deviation from the 
nominal trace. 

 The transitions execute the timing of the system. The 
operation can be divided into user defined time period, 
and the values of variables can change at the end of a 
period.  

 The guard functions assigned to the transitions contain 
the fault generation function (Gerzson et al. 2012). 

 Arcs connect coherent places and transitions.  
 The arc functions describe the change of colors. 
 
The behavioral analysis can be done with the occurrence 
graph (Jensen 1997). The occurrence graph contains all of 
the reachable markings (system states) from the initial one 
in a form of a graph. The nodes of the graph refer to the 

color distribution in a given system state and based on this 
information the diagnosis can be performed. 
 
DIAGNOSIS USING THE CPN MODEL OF THE 
SYSTEM 
 
Having CP-net form model of a complex process system 
the diagnosis of the actual course can be done using the 
occurrence graph. Comparing the token distribution of the 
nodes in the graph with the characteristic trace the fault can 
be identified. 
 
In order to use a CP-net for diagnosis a special CP-net 
model was constructed. In Leitold et al. (2014) the model 
was described in detail here the most important elements 
and some extensions are highlighted based on Fig. 1. The 
values of input and output variables of the system are 
represented as the color of the tokens on the places 
(varinn/outm) in the net. Place fault is devoted to register the 
randomly generated fault. Places dev, never and transition 
t3 are to store and manage the deviations from the nominal 
course and the never occurring events during the course. 

 
Figure 1: Structure of the Generalized CP-net Model 

Transition t1 initializes the values at the beginning with the 
help of special guard functions and it determines the 
occurring fault in the system. Transition t2 schedules the 
work of the system; the changes take place as time evolves.  
 
In a real process system faults can occur at any time and not 
only one fault can influence the course of the system. To 
fulfill these requirements the basic model was modified in 
the following way. 
 
For the management of the effect of two or more faults at 
the same time new fault types were introduced. These new 
types were added to the list of possible faults, so the 
adequate faulty operational mode can be generated at the 
initialization of the system. The traces of these faulty modes 
also generated and added to the set of traces. 
To model the fault occurring at any time it is assumed that 
the system works in normal way until this point of time. At 
the recent stage of our work it is assumed that only one 
fault occurs on the fly and this fault is constant until the end 
of course of the system. Using this assumption the faulty 
operational mode has to be modelled from this point of 



time. For the diagnosis the traces describing the events from 
this step should be generated and added to the model. 
 
Our diagnosis method (Leitold et al. 2014) is based on the 
generation of deviation between the characteristic and 
nominal traces and on the searching the node on the 
occurrence graph which token distribution refers to this 
deviation. Let us assume that all the fault modes of process 
system are known. The first step is to generate the deviation 
list describing the distinction between the nominal and the 
characteristic traces. The next step is the simulation of CP-
net model from the given initial state and the generation of 
the occurrence graph with all considered faulty mode. The 
last step of the diagnosis is to find the node having the 
token distribution which refers to the deviation list on the 
place dev. Based on the token color on the place fault in 
this node the type of fault can be determined. If more than 
one node has the token distribution referring to the 
deviation list, then the set of possible faults can only be 
concluded. If no token distribution refers to the deviation 
list then an unknown faulty mode occurs in the system. 
 
The main disadvantage of the occurrence graph based 
method is that the size of the graph increases together with 
the number of units of the process system or with the 
refinement of qualitative measuring range. The 
computational effort and time also increases in this case and 
it has negative impact of the diagnosis. The method of 
structural decomposition can be a solution for this problem. 
 
The structural decomposition is based on the decomposition 
of the process system. In a process system, the structure and 
the connections of components are usually known. The 
system can be partitioned into smaller subsystems or 
technological units along the connection points. Having the 
decomposed units of the system, the diagnosis can be 
performed on them separately. In case of complex systems 
it should be considered that the fault occurred in one unit 
may affect the operation of other units connected to it. 
Knowing the technological sequence of the units the 
diagnosis should be started with the first unit and its result 
has to be taken into account when diagnosing the following 
units. For the diagnosis method described above the full 
trace of the system should be decomposed, too. To do this, 
first the time step should be selected when the unit begins to 
work. Then all the variables belonging to the operation of 
this unit should be picked out from the full trace. The time 
steps are shifted back such that the operation of each unit 
starts at step 1 so each unit has its own relative time. The 
time steps and the values of variables compose new traces 
which describes the operation of the units. The following 
step is the generation of the deviation list with the 
comparison of the nominal and characteristic traces of the 
subsystem. If this deviation list matches the token 
distribution of exactly one terminal node on the occurrence 
graph then the possible fault can be concluded from the 
color of the fault place. If more than one terminal node has 
the same token distribution as the deviation list then the set 
of possible fault can be determined. If no terminal node has 

the same token distribution then an unknown fault is 
detected.  
 
If a fault is detected in a unit and this fault has an effect on 
the operation of the next unit then this fault should be taken 
into account during the diagnosis of the subsequent unit. To 
do this at the generation of the occurrence graph of this unit 
the fault of previous unit should be taken into account as an 
initial condition. If more than one fault is diagnosed in the 
previous unit then all of them should be treated separately. 
If more units have effect on the examined unit then all of 
the faults detected in them should be taken into account as 
initial conditions. For example if two units have effect on 
the actual unit then the initial condition contains two 
previously detected faults. As a result the occurrence graph 
contains those states of this unit that happen when the 
previous unit has the given fault. Then the diagnosis is 
performed using this occurrence graph and the deviation list 
belonging to the actual component. The result of the 
diagnosis of the entire system is the union of diagnosed 
faults of the units. 
 
SIMPLE CASE STUDIES 
 
In the following our diagnosis method is illustrated using a 
simple process system in case of multiple faults and of a 
fault occurring during the course of the system. A second 
more complex example is used for the introduction of the 
structural decomposition. 
 
Example 1: Multiple Faults and Fault on the Fly 
 
Let us assume the following simple process system. A tank 
having one input and one output pipe is filled up with liquid 
until a certain level when the output valve is opened and the 
unit works in continuous mode. The filling process is a time 
driven event it takes two time periods. The tank has an 
input and output valve and a level sensor. The data 
measured by the level sensor is used only for monitoring 
the work of the unit. 

For the diagnosis of the effect of multiple faults it is 
assumed that the following faults or their combination can 
occur in the system: 
 The bias fault of the level sensor. The measured value is 

less or greater than the actual value with one qualitative 
unit as the effect of bad operational mode. 

 The leak of the tank. The level of the liquid remains 
zero in the tank. 

 The combination of either of bias errors and the leak. 
It is assumed the fault or faults had evolved before the 
process starts and remain constant during the operation. 
Let the states of valves be the input variables and the 
measured level value be the output variable. Valves are 
binary actuators, and their qualitative range space is in Eq. 
(2), while the qualitative range space of the measured level 
is in Eq. (1). The structure of an event is as follows: 

event = (, state of input valve, state of output valve, 
measured value of level sensor),  



where  is the time stamp. The trace for the normal 
operational course contains the following events: 

T = event0, event1, event2, event3; 
where event0 meets the initialization, event1 refers to the 
start of filling up process, event2 is intermediate state and 
event3 means that the filling up is ready and then the tank 
works in continuous mode. The value of variables can be 
found in the first column of Tab. 1. The other columns of 
Tab. 1 contain the traces for faults tank leakage, negative 
bias error of level sensor and for the case when these two 
faults occur at the same time in the system as illustration. 

Table 1: Traces for different operational modes 

normal leak negbias leak_negbias 
(0,cl,cl,0) (0,cl,cl,0) (0,cl,cl,e0) (0,cl,cl,e0) 
(1,op,cl,0) (1,op,cl,0) (1,op,cl,e0) (1,op,cl,e0) 
(2,op,cl,L) (2,op,cl,0) (2,op,cl,0) (2,op,cl,e0) 
(3,op,op,N) (3,op,op,0) (3,op,op,L) (3,op,op,e0) 

The software package CPNTools was used for modelling 
the different courses of the system, for the generation of the 
occurrence graph and for implementing the proposed fault 
diagnosis method. The CP-net model of the simple tank can 
be seen in Fig 2. The structure of the tank model refers to 
the general model in Fig. 1. The operation of the CPN 
model is the same as described earlier in Section Colored 
Petri Nets. 

 
Figure 2: The CP-net Model of the Tank 

The course of the diagnosis was performed using CPN 
model of the system (see earlier and in Leitold, 2014). It 
can be seen that the introduction of the occurrence two or 
more faults at same time does not cause any change in the 
diagnosis. 

Let the next case be when the fault occurs during the 
course of the system. Assume that only one fault takes place 
and the system works in normal way until then. Based on 
these constraints it is enough to model the behavior of the 
system from this time. For the diagnosis the traces referring 
the system states from that time should be defined and 
added to the model. The course of diagnosis is the same as 
in case of described above. The occurrence graph will be 
smaller and the search needs less computational effort.  
 

Example 2: Structural Decomposition 
 
A composite system (see Fig 3.) is used here that consists of 
three tanks, two smaller and a larger one. First the two 
smaller tanks are filled up then their output valves are 
opened and the larger tank is filled up. Thereafter the 
system works in continuous mode. The set-up, the 
operation and the possible faults of these tanks are the same 
as it was described in the previous single tank example. Let 
us assume that only one fault can happen at one tank but the 
fault can occur anytime during the course.  

 
Figure 3: The Parallel Tank System 

The CP-net model of the two smaller tanks is the same as in 
Fig. 2. In case of the third larger tank this model is extended 
with an extra input variable place because of the two input 
valves and this extra input variable is added also to the 
events. The nominal trace of the complex process system 
can be seen in Tab. 2. The cells belonging to time steps 1, 2 
and 3 and VA, VB and lev_1 compose the trace of tank T1 
(framed with dashed line). Similarly the cells framed with 
dash-dot lines belong to the trace of tank T2 and with dash-
double-dot line to the trace of tank T3. 

Table 2: Structural Decomposition of the Nominal Trace 

 
Let us assume that the characteristic trace of the actual 
course is the one in Tab. 3. The trace is decomposed the 
same way as the nominal trace. The initial time is shifted to 
1 in case of the third unit. The resulted event list of the three 
tanks can be seen in Tab. 4. 

Table 3: Structural Decomposition of the Characteristic 
Trace 

 



Table 4: Characteristic Traces after Structural 
Decomposition 

T1 T2 T3 
(1,op,cl,e0) (1,op,cl,0) (1,op,op,cl,0) 
(2,op,cl,0) (2,op,cl,L) (2,op,op,cl,L) 
(3,op,op,L) (3,op,op,N) (3,op,op,op,0) 

The diagnostic process is started with the first tank. The 
deviation list is generated as a first step by comparing the 
nominal and the characteristic traces belonging to this unit. 
Then this list is searched among the terminal nodes of the 
occurrence graph (see in Fig. 4.). It can be stated that the 
node No. 16 contains the same deviation list and based on 
the token of the place fault the type of fault can be 
determined: the level sensor has negative bias error. 

 
Figure 4: The occurrence graph of tanks T1 and T2 

Because of the parallel connection of tanks T1 and T2, the 
diagnosis of tank T2 can be performed irrespectively of the 
fault of tank T1. On the other hand this tank has the same 
model and the same occurrence graph so its diagnosis can 
be done in the same way as at tank T1. The result of the 
diagnosis is: this tank works in normal way (see node No. 
10 in Fig 4.) 

Before the diagnosis of tank T3 the diagnosed faults of 
tanks T1 and T2 are added to the model of tank T3 as initial 
conditions of place fault. Then the occurrence graph is 
generated.  Comparing the trace piece describing the course 
of third tank and the trace piece referring to the normal 
course it can be stated that there is no deviation until time 
step 2. But in time step 3 a deviation appears, and it can be 
concluded that the fault occurred at time step 3. The 
occurrence graph on Fig. 5 contains the token distributions 
if the negative bias fault in tank T1, no fault in tank T2 and a 
fault occurring in tank T3 at time step 3 are the initial 
conditions for the simulation.  

 
Figure 5: The occurrence graph of tank T3 

The token distribution at terminal node No. 8 refers to the 
determined deviation list and based on the token on the 
place fault the tank leakage can be concluded. 

 
CONCLUSION 
 
A novel diagnosis method was introduced in our 
contribution, which is based on the qualitative CP-net 
model of the system. The proposed diagnosis method can 
also be used if more than one fault occur in the system and 
if the fault evolves during the course of the system. A 
structural decomposition method is also proposed that 
reduces the size of occurrence graphs and so the diagnosis 
needs less computational effort. The proposed method was 
illustrated on simple case studies. 
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