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Monocular Image-based Time to Collision and Closest Point of

Approach Estimation*

Peter Bauer1, Antal Hiba1, Balint Vanek1, Akos Zarandy1 and Jozsef Bokor1,3

Abstract— This paper deals with monocular image-based
time-to-collision (TTC) and closest point of approach (CPA)
estimation for aircraft sense and avoid. First, it proposes a
disc-based pinhole camera projection model which can better
represent a real 3D object. Then it proposes simple least
squares optimal line fitting-based techniques for TTC and
CPA estimation based-on measurable image parameters only.
Possible errors in the image are considered through design
nomograms and a collision decision threshold selection tech-
nique is presented. Theoretical results are verified through
software-in-the-loop simulation and real flight test results. To
the best of the author’s knowledge the disc-based projection
model and the line fit-based TTC and CPA estimation are new
contributions in this field.

Index Terms— Sense and avoid, Monocular camera, Time to
collision, Closest point of approach

I. INTRODUCTION

Sense and avoid (S&A) capability is a crucial ability for

the future unmanned aerial vehicles (UAVs). It is vital to

integrate civilian and governmental UAVs into the common

airspace according to [1] and [2]. At the highest level of

integration (called Dynamic Operation in [2]) Airborne Sense

and Avoid (ABSAA) systems are required to guarantee

airspace safety.

In this field the most critical question is the case of non-

cooperative S&A for which usually complicated multi-sensor

systems are developed (see [3] for example). However, in

case of small UAVs the size, weight and power consumption

of the onboard S&A system should be minimal. Monocular

vision based solutions can be cost and weight effective

therefore especially good for small UAVs [4], [5], [6], [7].

These systems basically measure the position (bearing) and

size of intruder aircraft (A/C) camera image without range

and intruder size information. This scale ambiguity makes

the decision about the possibility of mid-air collision (MAC)

or near mid-air collision (NMAC) complicated. Image-based

time-to-collision (TTC) estimation methods are published in

[8], [9], [10]. Here, TTC is defined as the time until the

intruder crosses the plane of camera focal point irrespective

of the side distance. So zero TTC does not trivially means a

MAC. To decide about MAC or NMAC the side distance at
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zero TTC should be somehow estimated. Because of the scale

ambiguity its not possible to estimate the absolute distance

however, the relative distance called closest point of approach

(CPA) and defined in [5] and [11] can be estimated.

The current article targets to derive simple and reliable

estimation methods for TTC and CPA considering the effect

of 3D intruder objects onto camera projection rules and

possible errors in camera image such as pixelization and

threshold dependence of object detection. A NMAC / MAC

(later called simply Collision) detection threshold selection

methodology is also presented and results are demonstrated

through Software-in-the-loop (SIL) simulation of several

flight scenarios. It is assumed that both own aircraft and

intruder fly along straight paths with constant velocity.

The article is divided into five sections. Section II sum-

marizes the basic camera projection formulae, presents the

ideas for simple TTC and CPA estimation and points out the

problems if real 3D objects are projected to camera screen.

Section III modifies the formulae to account for effects

of 3D objects and reformulates TTC and CPA estimation

accordingly. Section IV presents the proposed threshold

selection method for Collision decision. Section V presents

decision results based-on SIL scenario simulations. Finally

section VIII concludes the paper.

II. BASICS OF TTC AND CPA ESTIMATION

The applied basic notations (image parameters) are shown

in Fig. 1.
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Fig. 1. Considered image parameters

In XC , YC , ZC camera frame x, y are the positions of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/83049128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


THIS IS THE AUTHOR VERSION OF ARTICLE PUBLISHED AT IEEE MED’16 CONFERENCE ( c©IEEE) 2

intruder image centroid (IIC) and Sx, Sy are the intruder

image sizes (IIS) (horizontal / vertical). A pinhole camera

model is used which relates image parameters (x, y, Sx, Sy)

to own aircraft camera focal length f , intruder position

(X, Y, Z) in camera frame, intruder size Rx/y (horizontal

/ vertical), intruder relative velocities Vx, Vy, Vz in camera

frame, time to collision tTC (defined to go to zero as the

aircrafts approach each other), miss distances at Z=0 Xa, Ya

and relative miss distances (CPA) CPA = Xa/Rx or Ya/Ry

The basic equations of pinhole camera projection model are:

x = f
X

Z
, y = f

Y

Z

Sx = f
Rx

Z
, Sy = f

Ry

Z

(1)

Considering

X = Xa − VxtTC , Z = −VztTC (2)

the above expressions can be reformulated. From now,

formulae are presented only for the x horizontal direction

because the y direction formulae are structurally the same

that’s why the x indices are also neglected.

x = −f

(

R

Vz

CPA

tTC

−

Vx

Vz

)

, S = −f
R

Vz

1

tTC

(3)

In [5] the ratio of dx/dt and dS/dt was used to estimate

CPA. [11] pointed out that this ratio can be very uncertain

in case of pixelization and other errors in x and S and

their numerical differentiation. That’s why it examined dx/dt
and dS/dt separately and proposed thresholding of these

values to decide about Collision. Large values of dx/dt
mean no threat of Collision meanwhile large values of dS/dt
mean that the intruder is very close to us. This led to

a strategy which waits until dx/dt violates the threshold

and then decides about no threat of Collision. However,

if dS/dt violates the threshold earlier then an avoidance

maneuver is done because intruder is close and there is a

threat of Collision. However, this method can also magnify

uncertainties in x and S because the calculation of time

derivatives. So it would be better to decide about collision

without applying time derivatives.

A. Simple TTC and CPA estimation

Taking a closer look at S shows that its reciprocal is

linearly proportional with tTC :

1

S
= −

Vz

fR
tTC (4)

Here, R, f and Vz are constant in a given situation so

(4) gives a simple linear relation between 1/S and tTC .

However, on the right hand side both Vz

fR and tTC are

unknown. By substituting tTC = tC − t where t is actual

time onboard the own aircraft and tC is the future time when

tTC = 0 one gets a linear relation with known independent

(t) and dependent (1/Sx) variables:

1

S
=

Vz

fR
︸︷︷︸

a

t−
Vz

fR
tC

︸ ︷︷ ︸

b

Fitting a least squares optimal line to the registered t(i) and

1/S(i) (i = 1 : N ) values its easy to estimate tC and so

actual tTC(N):

tC = −
b

a
tTC(N) = tC − t(N) (5)

Examining now x (see (3)) S can be easily identified in it and

this gives again a linear relation where one of the unknown

parameters is CPA:

x = S · CPA+ f
Vx

Vz
︸︷︷︸

c

(6)

So, the estimation of TTC and CPA only requires simple

recursive LS optimal linear fits considering only the image

centroid position (x), size (S) and time t. Similar method can

be used in the vertical (y) direction also. However, formulae

in (1) are only valid for a line segment (length R) parallelly

approaching the image plane. Resulting possible inaccuracies

are discussed in the next subsection.

B. Possible problems with 3D objects

Fig. 2 shows the possible problems of the projection

models in (3) considering only a line parallelly approaching

the image plane. With real 3D objects two problems can

arise. One is the rotation of the object, the other is the depth

information.
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Fig. 2. Problems with parallel line formulae

In the figure r denotes the half of the ’object’ size (r =
R/2), P is the image plane and (X, Z) is the position of the

center point of the line in the XC , ZC camera coordinate

system. The same projection formulae as in (1) are derived

considering the rotation of the object with angle α:

x = f
X · Z + r2 sin(α) cos(α)

Z2 − r2 sin2(α)

Sx = f
2Z · r cos(α) + 2X · r sin(α)

Z2 − r2 sin2(α)

(7)

Substituting α = 0 and considering 2r = R gives exactly (1).

However, for nonzero α values the size and centroid position

of the projected object will be different from (1) as (7) and
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the figure show (compare projected size of line 1 and 2). This

means that rotation of a linear object (such as aircraft wing)

will cause a change in its projection. α = 90◦ is again a

special case where the line is parallel with the Z axis (see line

3). If the X position of this line is zero, then its projected size

is zero. However, if its X position is nonzero (line 4) then the

projected size becomes nonzero. This means that the depth

information gives a change in the size of the projected object.

The effects of the change of the orientation and the depth

information can be approximately described by a horizontal

disc model instead of a simple line. Considering data about

several aircraft from [12] the length/wingspan ratio gives a

mean value of 0.93 which is not very far from 1. This means

that a disc can well approximate the horizontal contour of an

aircraft. Detailed disc-based projection formulae and TTC /

CPA estimation based-on these formulae are presented in the

next section.

III. DISC PROJECTION MODEL-BASED TTC AND CPA

ESTIMATION

This section summarizes the disc-based projection model

and the TTC and CPA estimation method modified accord-

ingly.
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Fig. 3. Disc projection model

Fig. 3 shows the arrangement and notations used for the

derivation of projection formulae ((X,Z) disc center position,

P image plane, r disc radius). The detailed derivation can

be found in the appendix. The final properly approximated

result is:

S(cos(β1) + cos(β2)) = f
2R

VztTC

x

(

1−
S2 (cos(β1) + cos(β2))

2

16f2

)

=

= S(cos(β1) + cos(β2))
CPA

2
+ f

Vx

Vz

(8)

Note that all S, x, β1 andβ2 are features known from the

image. So considering S = S(cos(β1) + cos(β2)) and

x = x
(

1− S2(cos(β1)+cos(β2))
2

16f2

)

as corrected measured

parameters leads to the same equations as (4) and (6). This

means that the disc representation of the intruder object

leads to measurable correction terms and does not affect

the applicability of the TTC and CPA estimation method

proposed in section II. The next section deals with possible

errors and proposes a threshold selection methodology.

IV. POSSIBLE ERRORS AND THRESHOLD SELECTION

The basic equations for TTC and CPA estimation from (8)

are:

S = f
2R

VztTC
, x = S

CPA

2
+ f

Vx

Vz
(9)

As Fig. 3 and 7 shows there can be an error in the estimation

of x1 and x2 points because of thresholding in camera object

detection and pixelization. This error was experienced to be

maximum 2 pixels in our system. We have modelled this

error by a normally distributed random variable with variance

σ = 0.7 (this means a 3σ bound of 2.1). The question is the

effect of this error on the estimation of TTC and CPA.

Considering the image size, the error of S is simply

∆x1 + ∆x2 meanwhile the error of cos(β1) + cos(β2)
is more complicated. That’s why it is considered that the

error of S is also ∆x1 + ∆x2. If equal absolute maximum

errors are considered (−∆x1 = ∆x2 = ∆x = 3σ > 0)

then the maximum error of S is 2∆x and the minimum is

−2∆x. Considering x its error is zero if the error of S is

symmetrical. Its largest error results if ∆x1 = ∆x2 = ∆x =
3σ > 0. Considering x = (x1 + ∆x1 + x2 + ∆x2)/2 the

largest x error is ∆x. However, x is different from x and

this should be considered by substituting the errors for x
and S. After some manipulations considering the worst case

values for every parameter the upper bound for x results as:

∆x =
28

16
∆x+

12

16f
(∆x)2 +

4

16f2
(∆x)3

Finally, the lower (L) and upper (U) 3σ bounds for the

measured S and x curves can be derived as:

SL =
VztTC

2fR + 2∆xVztTC

, SU =
VztTC

2fR − 2∆xVztTC

xL = S
CPA

2
− f

V x

V z
− 2∆x

CPA

2
−∆x

xU = S
CPA

2
− f

V x

V z
+ 2∆x

CPA

2
+ ∆x

(10)

The proposed method for threshold selection is to calculate

these bounds and the nominal curves for a set of intruder

aircrafts covering a wide range of size and velocity. Scenarios

with fixed own aircraft velocity and camera parameters

and with parallel A/C paths are considered. Additionally,

100 randomly disturbed curves can be generated from the

nominal data applying the camera noise (with σ variance) on

x1 and x2 coordinates and deriving other parameters from

them. TTC and CPA estimation through line fit is done for all

curves considering a tTC range from about 10 to 1 second.

TTC and CPA estimation errors are calculated in % relative

to the true values.
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From these calculations design nomograms can be plotted.

One for the estimated TTC against real tTC and one for the

CPA estimation error against real tTC again. The method

of threshold selection is to first determine the estimated

TTC threshold (tETC). Intersecting the curves of the TTC

nomogram with this value gives the minimum and maximum

real tTC values when the estimated one can be tETC . By

considering the resulted minimum and maximum tTC values

the maximum CPA estimation error can be obtained from the

other nomogram. After deciding about the minimum CPA

below which avoidance should be done it should be increased

by the maximum estimation error and that will be the CPA

threshold.

In this work considered intruder aircraft sizes range from

1.2m to 80m, and velocities range from 10m/s to 262m/s

based-on the characterization of possible intruders published

in [11]. Own A/C speed is selected to be 20m/s (small UAV)

and camera focal length to be f = 850. Nomograms were

plotted from the bounds (bound-based =BB selection) and

from the minimum / maximum (real-based = RB selection)

and mean (mean real-based MRB selection) differences of

the 100 random patterns. They showed that an 1.2m intruder

can not be handled with such camera focal length (first

detection time is too close to tETC for the estimates to

converge) that’s why results for 3.5m intruder and above are

plotted only.

In our case tETC = 2sec was selected as decision time

and CPA = 10 was decided as a limit for avoidance. Note

this means that every intruder is avoided which is closer to

us then its wingspan times 10. This makes the activation of

avoidance self scaling.
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Fig. 4. Nomogram for TTC limit selection (blue +: bound-based, red cross:
real-based, cyan circle: mean real-based)

Figs. 4 and 5 show the selection of thresholds. The hori-

zontal line in Fig. 4 is the 2 sec limit for the estimated TTC,

the vertical lines are the projection lines from the intersection

with different nomograms to the real tTC (continuous line

from the bound-based, dashed lines from the mean real-based

nomograms). In Fig. 5 the dashed lines are the projection

lines from the tTC values selected in Fig. 4 to the CPA

error nomogram. Their intersection with the upper curve of

cyan circles should be considered as the maximum CPA

error at that time. The results are summarized in Table

I. ∞ means that there is no intersection of tETC with the

curve of lowest estimated TTC values (see Fig. 4). Note

that MIN(tTC is the worst case time to collision when

the decision about avoidance will be done. This should be

compared to the meanuvering capabilities of the own A/C

and if avoidance is impossible during this time, tETC should

be increased. CPALIM is the finally selected limit CPA

value from the given nomogram. This shows that the bounds

are the most conservative. Considering randomly generated

data gives lower limits for the CPA error and of course results

from the mean random data are the most optimistic. In the

next section all three selected bounds will be extensively

tested in SIL simulation scenarios.
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Fig. 5. Nomogram for CPA limit selection (blue +: bound-based, red cross:
real-based, cyan circle: mean real-based)

TABLE I

THRESHOLD SELECTION RESULTS

Nomogram TTC CPA error CPALIM

Bound- MIN(tTC ) 1.525 30%
based MAX(tTC ) ∞ 360% (for 4.8s) 36
Real- MIN(tTC ) 1.6 11%
based MAX(tTC ) ∞ 90% (for 4s) 19

Mean real- MIN(tTC ) 1.8 4%
based MAX(tTC ) 2.3 7% 11

V. SIL SIMULATION TEST CAMPAIGN

The same SIL simulation environment is applied as in

[11] by having ascending / descending straight intruder paths

from left and right of own aircraft. The camera fps is set

to 8 and random noises are generated on the ’measured’ S
and x values. No avoidance maneuver was executed, only

the decisions were tested. The simulation campaign is run

for five different intruder aircraft sizes (wingspan) (3.5m,

10m, 20m, 40m and 60m) ranging from small UAV through

general aviation Cessna to large transport / airliner. Three

different velocity cases (minimum, mean and maximum) are

run for each A/C based-on the characterization of possible
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intruders published in [11]. In every simulation case (given

intruder size and velocity) 35 different scenarios (intruder

directions) are tested. The test CPA values are 0, 10, 20

and 40. The goal of the design was to have no missed

detection (MD) for CPA=10 and below. If the estimated

TTC is below the 2 sec threshold collision decision is done

based-on the BB, RB and MRB CPA thresholds also. Results

are summarized in Table II by calculating the percentage of

MDs and false alarms (FAs) for the overall 525 simulated

scenarios.

TABLE II

SIL SIMULATION RESULTS

Nom. CPA 0 CPA 10 CPA 20 CPA 40
MD FA MD FA MD FA MD FA

BB 0 0 0 0 0 100 0 7.4
RB 0 0 0 0 0 15.6 0 0

MRB 0 0 45 0 0 0.8 0 0

The table shows that the real random curves-based thresh-

old selection is the best because, the mean real-based has

45% MD for CPA=10 which is unacceptable, and the bound-

based has 7.4% FA also for CPA=40. The RB threshold gives

a 15.6% FA for CPA=20 which can be acceptable and is not

surprising considering the CPALIM = 19 threshold which

is very close to 20.
Another issue is the real tTC when the decisions are

done. This ranges from 0.8 seconds to 5-6 seconds which

shows that late and early decisions are also possible. For

CPA=0 the minimum value is 1.5 seconds which is about the

selected minimum value from the nomogram. The possibly

problematic cases are the 0.8 sec for CPA=10 and above but

in these cases the intruder is farther from own A/C and so,

the avoidance can be also possible.
The next section briefly introduces the vision system and

methods applied onboard our UAV in S& A flight test

experiences (for details of the UAV see [13]).

Fig. 6. Camera system mounted on Sindy aircraft.

VI. CAMERA SYSTEM

Real-time object detection, classification and tracking are

essencial in an SAA system. Our experimental setup for

image processing is based on the nVidia Jetson TK1 de-

velopment board which consists of the TK1 SoC with the

necessary peripherals (SATA, GigE, HDMI, USB, GPIO)

and can handle two HD cameras (Fig. 6). This is a low

power system with a quad-core (”4-Plus-1”) ARM Cortex

A15 and a Kepler GPU with 192 CUDA cores. The power

consumption is 5-10 W which is suitable for a small UAV.

The object detection algorithm is the improved version

of the small dense object detector presented in [14]. After

a trigger signal, the aircraft control provides the Euler

angles (Yaw, Pitch, Roll) of the UAV body system and the

two HD cameras aquire the visual information. The GPU

starts to compute the necessary convolution and morpholigic

operations on the two HD images, while the quad-core ARM

computes large object masks on subsampled small sized

images. Horizon estimation and threshold updates are also

computed by the ARM part of the processor. The horizon

estimates are corrected based on the images, which makes it

possible to create a better ground mask. The current visual

system can detect UAVs only on the sky.

Fig. 7. Object detection exapmples. Optical transmission in real environ-
ment has large disturbance (air, non-ideal optics) which increases object
size estimation error above 1 pixel even with a good object detector.

The result of the preprocessing phase is a binary image

which contains only sky objects. Sky objects are not always

aircrafts. A classification is required which eliminates false

objects for instance cloud edges. After classification, the

remaining objects are tracked and their projected trajectories

are analysed. In Fig (??) the trajectory of a small UAV is

pesented with its projected trajectory. The covering rectangle

of the tracked object is projected to a virtual camera which

depth axis is identical to the desired moving direction of the

UAV. Projection is necessary because the cameras are placed

on the aircraft in different orientations. Furthermore, the real

orientation of the UAV body can be different from the desired

direction because of wind or periodical path control errors,

while the UAV moves to its desired direction in general.

In the later, we use this unified virtual camera for size and

position measurement.

When we examine the error of TTC and CPA esimates

we need the deviation of measured position and size values
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assuming the mean is the accurate value. In Fig. (7) two objet

detection examples ae shown where the scale of detection

errors can be seen. Theoretically only the pixelization error

disturbes the size and position calculation, however, the air

and non-ideal optics increase the detection error in real

situations. Even a small mist can cause heavy blur effect on

the captured image which makes the accurate size estimation

impossible. Cloud shadows and other artifacts can cause

further size and position errors in detection, which affect

the TTC and CPA estimations.

The next section presents the first application of the

developed TTC and CPA estimation method in real flight

tests.

VII. REAL FLIGHT TEST RESULTS

Flight tests with the above described camera system and

with an 1.2m wingspan intruder were conducted prescribing

parallel straight paths in 20m and 50m distance. This means

test of the method with CPA ≈ 17 and CPA ≈ 42. The

1.2m intruder wingspan means a critical case as was pointed

out in Section IV. Another problem is the loose tracking

of paths by the aircrafts which violates the assumption of

straight flight paths. Despite these critical circumstances the

results are promising as shown in Fig. 8. The estimated CPA

values of close and far intruders are clearly distinguishable

in the range of 2 to 0 sec. estimated TTC. What is more the

estimated CPA values are close to the prescribed ones (15-20

for CPA=17 and 40-50 for CPA=42).
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Fig. 8. TTC-CPA diagram from real flight test estimates (red continuous
line for CPA=17 scenarios, blue dashed line for CPA=42 ones)

VIII. CONCLUSION

APPENDIX

DERIVATION OF DISC-BASED PROJECTION FORMULAE

During the image processing, the contour of the intruder

image is identified and size (in X and Y directions) is cal-

culated based-on minimum / maximum contour coordinates

in each direction. The position is calculated as the centroid

of the contour. Considering the disc model in the X-Z plane

of camera frame the projected contour points are x1 and x2

and so S = x2 − x1 and x = x2+x1

2 . So, the first task is to

derive expressions for x1 and x2. Based on Fig. 3 they can

be expressed as:

x1 = f tan(β1), x2 = f tan(β2)

β1 = β − γ, β2 = β + γ
(11)

Considering that the lines intersecting the P plane at x1 and

x2 are the tangents of the disc, the tangents of the angles

can be formulated as shown:

v =
√

X2 + Z2, l =
√

X2 + Z2 − r2

tan(β) =
X

Z
, tan(γ) =

r

l
tan(β1) = tan(β − γ), tan(β2) = tan(β + γ)

tan(β1) =
tan(β)− tan(γ)

1 + tan(β) tan(γ)
=

Xl− rZ

Zl+Xr

tan(β2) =
tan(β) + tan(γ)

1− tan(β) tan(γ)
=

Xl+ rZ

Zl−Xr

(12)

Combining (11) and (12) S and x finally result as:

S = f
2rl

Z2 − r2
, x = f

XZ

Z2 − r2
(13)

Substituting l from (12) and the X,Z distances from (2)

results in overly complicated expressions from which tTC (or

tC ) and CPA can not be easily estimated. However, making

a simplification which is negligible in practical applications

makes the formulae similarly simple as they were.

Considering the Z1 and Z2 coordinates in Fig. 3 they can

be constructed as Z1 = Z −∆Z +∆r and Z2 = Z−∆Z −

∆r. This leads to the expression:

cos(β1) + cos(β2) =
2Z − 2∆Z

l
(14)

Considering other relations in Fig. 3 ∆Z results as:

∆Z =
r2Z

X2 + Z2

∆Z is the projection of the line segment between point

(X,Z) and the intersection point of Z1Z2 with v to the Z

axis. Substituting this into (14) finally l can be expressed

with X,Z, r, β1, β2. However, substituting this expression

into (13) gives again overly complicated expressions. The

solution is the approximation of ∆Z as follows:

∆Z ′ =
r2

Z
, (∆Z ′

≥ ∆Z) (15)

This means that the effect of X2 is neglected. An intruder

should be close in the X direction to be a real threat of MAC

/ NMAC so this neglection can be reasonable. However,

examine the magnitude of neglection closer.

∆Z ′
−∆Z =

r2X2

Z(X2 + Z2)

Here, r2 is constant in a given scenario, the others are time-

varying. If X2

Z(X2+Z2) is close to 0 that means that the error
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is negligible. At first glance, its hard to state that it is close

to zero. However, consider its difference from 1:

1−
X2

Z(X2 + Z2)
=

(Z − 1)X2 + Z3

ZX2 + Z3

If Z ≫ 1 then this difference is about 1 which means that
X2

Z(X2+Z2) is about zero. Z = 1 means that the intruder is 1m

in front of own aircraft and its too late to make any decision.

So, in the time slot when the Collision decision should be

made Z ≫ 1 is surely satisfied. This means that the error of

the approximation of l is negligible in the practical range of

parameters.

Substituting (14) and (15) into (13), considering R = 2r
and reordering terms in x gives the final approximated

formulae for S and x in (8).
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