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The paper presents a model and solution method for optimized robot joint motion planning of redundant industrial robots that execute a set of tasks in a 
complex work environment, in face of various technological and geometric constraints. The approach aims at directly exploiting redundancy to optimize 
a given performance measure, e.g., cycle time. Alternative configurations along the path are captured in a graph model, whereas bi-directional transition 
between task and configuration spaces facilitates generating relevant, collision-free configurations only. Re-parametrization of the trajectory warrants 
compliance with the robot’s kinematic constraints. Successful application of the method is demonstrated in remote laser welding. 
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1. Introduction  

Industrial robots have inhabited production systems for a long 
time, still their effective and efficient automatic off-line 
programming (OLP) poses serious challenges [1]. Depending on 
their actual tasks (such as welding, cutting, grinding, assembly, 
measurement, etc.), all domain-specific technological constraints 
must be complied with. In parallel with meeting task level 
constraints on ordering and resource assignment, a joint motion 
plan has to be generated that is compatible with the robot’s 
kinematic model and minimizes some global criterion like cycle 
time, jerk, energy demand or a combination thereof. Any motion 
plan must be collision-free, a requirement that can be verified in 
case of intricate geometrical relationships and potential 
interactions of objects (parts, tools, fixtures, etc.) only on the task 
level. Redundancy—when the robot has more degrees of freedom 
than needed for performing the tasks—provides room for 
optimization, because, at least in principle, infinitely many joint 
configurations may result in executing the same task.  

The paper investigates the issue whether and how automatic 
OLP aimed at a global optimization criterion can be supported by 
a bi-directional transition between relatively high-dimensional 
task and configuration spaces. This approach is in contrast with 
the traditional hierarchical refinement methods where task 
sequencing and path planning [2] is followed by inverse 
kinematics resulting in some executable motion plan [3]. 
However, computational complexity implied by high dimensions, 
redundancy, cluttered work environment and task space 
constraints allow only for the use of custom-tailored solution 
methods [4]. Alternatively, direct kinematic model of the robot 
can be used in search for a series of feasible configurations, even 
in a bilevel optimization scheme [5].  

For a working example, the emerging technology of robotic 
remote laser welding (RLW) will provide the background [6]. RLW 
joins metal sheets by a laser beam that is emitted from a scanner 
that is mounted as an end-effector on an industrial robot, see Fig. 
1. This contactless welding comes together with technological 
constraints on the inclination angle and the focal length of the 
beam, as well as on the welding speed and power applied to 
individual welding stitches. Ideally, the scanner processes the 
stitches on the fly, without idle time as the robot moves along its 

optimized path. However, this can seriously be hampered by the 
geometrical distribution of welding stitches and the fixture—a 
dense structure of clamps, seats and structural elements—that is 
responsible for part-to-part gap control. In industrial practice, 
robot programming for RLW is typically performed by time 
consuming and inefficient on-line teach-in methods. The first 
automated OLP methods for RLW were proposed in [7] whose 
performance was later surpassed by new task modelling and 
integrated task sequencing and path planning methods [6][8]. 
Recently, all main aspects of introducing RLW into the 
automotive industry have been discussed in [9], while [10] took a 
systemic approach to workstation design and motion planning in 
multi-robot spot welding. The above works put much emphasis 
on cycle time optimized task sequencing and path planning, but 
were content with providing heuristic, feasible solutions to the 
corresponding robot motion planning problem. In fact, 
redundancy of robots has not been exploited, optimality of 
motion plans in the configuration space has not been explicitly 
tackled, hence, the final executed robot codes might easily run 
with fairly suboptimal performance.  

Furthermore, the paper has also a broader motivation by 
recalling the chances of cross-fertilization of ideas in robot joint 
motion planning and trajectory generation for CNC machine tools 
[11]. In the latter domain as well, cycle time reducing trajectory 
planning schemes are sought that comply with both task level 
constraints (such as precisely machined freeform surfaces, or 
smooth corners with desired tolerances) and drive-specific 
constraints on speed, acceleration and jerk limits [12][13].  

 
Fig. 1. RLW robot welding a car door in a fixture. 
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2. Problem statement 

Given a robot path defined in the task space, together with the 
kinematic model of the robot and the geometric model of the 
robot and its environment, joint motion planning addresses 
finding a continuous-time robot trajectory in the robot 
configuration space that realizes the desired path and satisfies the 
relevant constraints. These constraints tackle all aspects of 
feasibility, such as technology (e.g., the execution of the effective 
tasks according to given motion laws), geometry (e.g., collision 
avoidance), as well as the kinematic constraints of the robot. 
Moreover, a performance measure such as cycle time or energy 
consumption must be optimized.  

This paper looks at joint motion planning as a crucial step of the 
overall OLP workflow [6] where, departing from the workpiece 
model and the definition of the tasks to be accomplished by the 
robot, task sequencing and path planning are responsible for 
constructing the optimal robot path. However, these steps work 
in the task space, and therefore, are not suitable to address 
criteria that can only be interpreted in the robot’s configuration 
space. This is exactly the duty of joint motion planning while 
converting the task space path into a configuration space 
trajectory. The detailed workstation design required for this, 
including the placement and calibration of the workpiece in the 
robot’s reference frame, is specified by setup planning. The robot 
trajectory computed by joint motion planning, typically after 
verification by simulation, is then submitted for commissioning: 
the robot code is automatically generated and uploaded to the 
robot controller. In the sequel focus is set on the formal model 
and solution of the joint motion planning problem. 

3. Modelling the optimized joint motion planning problem  

In order to reflect the redundancy of the robot’s kinematic 
chain, the robot path in the input is defined in the Cartesian task 
space coordinate system for multiple robot controlled points 
(RCPs) in discrete time instants. Each RCP path is given as a series 
of path base points (𝒓𝑡1

𝑘 , 𝒓𝑡2

𝑘 , … , 𝒓𝑡𝑇

𝑘 ), where 𝒓𝑡𝑖

𝑘 ∈ ℝ3 and k=1, …, K 

is the number of RCPs. The multiple RCP paths are synchronized, 
i.e., different RCP paths are defined over the same set of time 
instants, and therefore, the ensemble of all RCP positions at time t 
can be denoted by 𝒓𝑡

∗ = [𝒓𝑡
1, … , 𝒓𝑡

𝐾]𝑇 . Path sections are classified 
into two types: effective task and idle movement sections. Time 
instants ti include (but are not limited to) the start and end times 
of all effective tasks. Set A includes the base point indices i such 
that the robot performs an effective task in time interval [𝑡𝑖 , 𝑡𝑖+1). 
For each effective task, the input contains a technologically 
feasible motion law 𝒓𝑘(𝑡). Hence, the continuous-time 𝒓𝑘(𝑡) 
function is defined only over time intervals [𝑡𝑖 , 𝑡𝑖+1) such 
that 𝑖 ∈ 𝐴. 

In case of RLW, the two RCPs (K=2) are the end point of the 
laser beam, focused at the welding stitches, and the scanner 
center point, see Fig. 1 and 2. The two synchronized RCP paths 
guarantee technological feasibility, including aspects of welding 
speed (by motion laws), incidence angle and laser focal length (by 
the relative position of the corresponding RCP base points), as 
well as collision avoidance for the laser beam. Collision avoidance 
for the complete robot will be achieved by joint motion planning. 

Finally, the robot’s kinematic model is also given, in terms of 
𝜃𝑗(𝑡) joint values, joint ranges, velocity and acceleration limits 

𝜃̇𝑀𝐴𝑋
𝑗

 and 𝜃̈𝑀𝐴𝑋
𝑗

 for each j=1, …, N joint. The input also contains the 
CAD model of the complete workstation, including the robot, the 
workpiece and the fixture, which will be used for collision 
avoidance. 

 The output is a continuous-time motion plan c(t) defined in the 
robot configuration space that implements the prescribed RCP 

paths, respects the motion laws and the robot’s kinematic limits, 
is free of any collisions, and is (close-to-)optimal according to the 
defined objective function. It is noted that the motion plan is re-
parameterized in time compared to the RCP paths, since path 
planning in task space cannot deliver feasible and optimal time 
parameterization in configuration space. Hence, motion planning 
can be briefly formulated as follows: 

𝒓𝑡
∗  ∀𝑡   →    𝒄𝑡   ∀𝑡   →    𝒄(𝑡) = (

𝜃1(𝑡)
…

𝜃𝑁(𝑡)
)  

 
Fig. 2. RCP paths in RLW: scanner path (blue: effective tasks, yellow: idle 
movement) synchronized with the movement of the laser over stitches.  

4. Solution method 

The proposed solution method aims to effectively exploiting 
redundancy so as to optimize the given objective function. For 
this purpose, it first (1) generates a set of candidate robot 
configurations for each path base point by solving the inverse 
kinematic problem, and (2) filters this set for collision-free 
configurations. Then, it (3) selects the optimal combination of 
configurations by constructing the shortest path in a graph 
representation, and finally (4) re-parameterizes the trajectory in 
time to respect all kinematic constraints of the robot. Each of 
these steps is presented in detail below. 

 
4.1. Computing inverse kinematics 

The direct kinematics (DK) problem 𝒓𝑡
∗ = 𝑓(𝒄𝑡) transforms the 

points of the configuration space (𝒄𝑡) to the robot task space (𝒓𝑡
∗) 

with a smooth nonlinear vector function f. The inverse kinematics 
(IK) problem 𝒄𝑡 = 𝑓−1(𝒓𝑡

∗) maps task space points back to the 
configuration space, as shown in Fig. 3. 

 
Fig. 3. Illustration of the direct and inverse kinematic transformations. 

 In case of redundant robots, there are infinitely many IK 
solutions for a given task space base point. As shown in [14], the 
infinity of IK solutions can be grouped into a finite and bounded 
set of disjoint continuous manifolds, called self-motion manifolds. 
Hence, the result of the IK problem can be considered as ordered 
pairs of a task space base point and a set of joint configurations 

𝒓𝑡
∗ → {𝒄𝑡

𝑞,𝑠
} , 𝑠 ∈ 𝑆𝑞, where 𝑆𝑞 denotes the q-th self-motion 



manifold. Each self-motion manifold reduces into a single point in 
case of non-redundant IK problems, and they are referred to as 
branches of IK solutions (for an RLW example, see Fig. 4).    

The goal of IK is to calculate the discretized set {𝒄𝑡
𝑞,𝑠

} of the self-

motion manifolds to prepare the ground for subsequent 
optimization. An approach is proposed that solves the IK problem 

in two steps. First, an initial solution 𝒄𝑡
𝑞,0

 is generated for each 
solution branch by reducing the redundant IK problem into a 
non-redundant one. Then, starting from this initial solution, the 
set of discrete solutions is computed for the self-motion manifold 
associated with the given branch. 

 

Fig. 4. Eight branches of IK solutions. Branches q=4 and q=8 are feasible. 

The RLW robot of the case study has 5 revolute degrees of 
freedom (DOF) in the robot arm carrying the scanner head, 1 
revolute DOF by the actuated mirror in the scanner, and 1 
prismatic DOF corresponding to the focal length. By the 
construction of the robot, only solution branches q=4 and q=8 can 
satisfy the joint range limits (Fig. 4). The self-motion manifolds 
corresponding to each solution branch are one dimensional 
submanifolds that can be parametrized with the 𝜃6 joint variable. 

Initial IK solutions 𝒄𝑡
𝑞,0

, 𝑞 ∈ {4,8} are determined using an IK 
algorithm introduced in [6], which combines closed-form and 
iterative elements, and reduces the redundant IK problem into a 
non-redundant one by fixing the last revolute DOF, the mirror in 
the scanner, at midrange (𝜃6 = 0). Then, the self-motion 

manifolds {𝒄𝑡
𝑞,𝑖

}, 𝑞 ∈ {4,8} are caluculted by finding solutions with 

different additional constraints 𝜃6 = 𝑝 while p scans the feasible 
range of joint 𝜃6. For each value of p, the corresponding solution 
is determined by solving the DK equations using an iterative root 
finding algorithm and an initial solution value received by 

substituting 𝜃6=p into 𝒄𝑡
𝑞,0

 . The reduced DK function g received 

by substituting out 𝜃6 can be formulated as follows: 
 

𝒓𝑡
∗ = 𝑓(𝜃t

1, 𝜃t
2 , 𝜃t

3 , 𝜃t
4𝜃t

5, 𝜃t
6, 𝐹t) ,        𝑓: ℝ7 → ℝ6 

𝑔(𝜃𝑡
1 , 𝜃𝑡

2, 𝜃𝑡
3, 𝜃𝑡

4𝜃𝑡
5 , 𝐹𝑡) = 𝑓(𝜃𝑡

1 , 𝜃𝑡
2, 𝜃𝑡

3, 𝜃𝑡
4𝜃𝑡

5 , 𝑝, 𝐹𝑡) 

𝒓𝑡
∗ = 𝑔(x) ,             𝑔: ℝ6 → ℝ6  

𝒙 = [𝜃1, 𝜃2 , 𝜃3, 𝜃4, 𝜃5, 𝐹 ]𝑇 
 
Table 1 below shows an excerpt of the self-motion manifold 

corresponding to solution branch q=4 for a given task space base 
point, received by varying 𝜃6 over the range [−7°, 9.5°]. It is 
noted that the value of F, the laser focal length, is determined by 
the input RCP paths. 

Table 1. Alternative configurations for one path base point, received by 
sampling for 𝜽𝟔 in the range [−𝟕°, 𝟗. 𝟓°], using solution branch q=4. 

𝜃1[°] 𝜃2[°] 𝜃3[°] 𝜃4[°] 𝜃5[°] 𝜃6[°] F [mm] 

-16.757 -32.957 -136.531 -44.741 21.644 -7.0 1052.14 
-17.145 -33.117 -136.995 -47.526 21.471 -6.0 1052.14 
-17.518 -33.285 -137.484 -50.339 21.254 -5.0 1052.14 

… … … … … … … 
-19.102 -34.267 -140.316 -65.04 19.478 0.0 1052.14 

… … … … … … … 
-19.999 -36.921 -147.93 -100.342 11.251 9.5 1052.14 

 

4.2. Filtering for collision-free configurations 

To verify the feasibility of each computed configuration 𝒄𝑡
𝑞,𝑠

, the 
configurations are transformed back to the task space by DK, and 
collision detection is performed among robot links and all 
components of the workstation CAD model, including the 
workpiece and the fixture. If no feasible configuration exists for 
an RCP base point, then the joint motion planning problem itself 
is infeasible, and the input RCP paths must be modified.  

4.3. Optimizing the configuration space path 

Planning the configuration space path requires selecting for 
each path base point 𝒓𝑡

∗ one robot configuration 𝒄𝑡
𝑞,𝑠

 from the 
candidates computed above. In order to find a path that 
minimizes the cost, a graph representation, the so-called 
configuration space graph (CSG) is constructed as follows. 

The CSG is a multi-partite graph with each partition (column of 
vertices in Fig. 5.) standing for one base point 𝒓𝑡

∗. The partition 
contains the feasible robot configurations 𝒄𝑡

𝑞,𝑠
 for the given base 

point as vertices. There are two additional dummy nodes, S and T 
as shown in the figure. Every vertex in partition i is connected to 
all vertices in partition i+1 by a directed edge, characterized by 
edge weight we set according to the actual objective function. 
Then, the optimal configuration space path corresponds to a 
minimum cost S→T path in the CSG, which can be computed 
efficiently, in O(|E|+|V|) time, where E and V are the number of 
edges and vertices, respectively. 

 

Fig. 5. Small-size illustration of a configuration space graph. 

In the RLW case study, where the objective is minimizing the 
cycle time and motion laws prescribe non-zero velocities at base 
points, a particular complication is that weights we are not well 
defined: for idle movement edges, the time required for travelling 
the edge depends on the selection of the neighboring edges as 
well. To overcome this difficulty, when solving the shortest path 
problem, a surrogate cost function 𝑤′𝑒  is applied that contains the 
time required for travelling the edge with a trapezoid velocity 
profile, with zero velocities at the start and end points. The 
efficiency of this approximation is confirmed by the 
computational experiments.  

 
4.4. Computing the configuration space trajectory 

The time parameterization of the robot path must respect the 
upper bounds on joint velocity and acceleration as defined in the 
kinematic model of the robot. Recall that the path consists of a 
series of effective task and idle movement sections. The time 
parameterization of effective task sections is determined by the 
given technology (e.g., applicable welding speed), and fully 
defined in the input motion laws. At the same time, the 
parameterization of the idle movement sections can only be 
approximated in the task space RCP paths. The time function 𝒄(𝑡), 
𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1) of an idle movement section must be therefore re-
parameterized in such a way that the end time of the section, 𝑡𝑖+1

′ , 
is minimized subject to the joint velocity and acceleration limits:  

 

𝒄̇(𝑡) < 𝜽̇𝑀𝐴𝑋, 𝒄̈(𝑡) < 𝜽̈𝑀𝐴𝑋,       ∀ 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1
′ ). 



 Assume that d consecutive idle movement sections are 
preceded and followed by effective task sections in the path, 
where the effective tasks define the configuration velocity vectors 
𝒄̇𝑡𝑖

 and 𝒄̇𝑡𝑖+𝑑
. The time function 𝒄(𝑡), 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+𝑑) of the 

consecutive sections is then interpolated with a third-order 

spline function over the control points {𝒄𝑡𝑖
, … , 𝒄𝑡𝑖+𝑑

}  using the 

derivatives 𝒄̇𝑡𝑖
 and 𝒄̇𝑡𝑖+𝑑

. The interpolated joint position function 

𝜃𝑗(𝑡) can be calculated for each joint separately. Each of these 
scalar interpolation functions are re-parameterized by 
contracting or dilating the time parameter until the velocity and 

acceleration constraints are satisfied and the end time 𝑡𝑖+𝑑
𝜃𝑗

 is 
minimized, as shown in Fig 6. Finally, 𝑡𝑖+𝑑

′  is set to the maximum 
of the individual joints’ calculated end time values:  

𝑡𝑖+𝑑
′ = 𝑚𝑎𝑥 {𝑡𝑖+𝑑

𝜃1
, 𝑡𝑖+𝑑

𝜃2
, … , 𝑡𝑖+𝑑

𝜃𝑁
}. 

 

Fig. 6. Re-parameterizing the time interval [𝒕𝒊, 𝒕𝒊+𝒅) for one joint 

variable 𝜽𝒋(𝒕), assuming 𝜽
.

𝒋(𝒕𝒊) = 𝜽
.

𝒋(𝒕𝒊+𝒅) = 𝟎. 

5. Experiments in the RLW domain 

Experiments addressed the validation of the approach on the 
assembly of a car door by RLW using a Comau C4G robot. The 
workpiece contained 72 welding stitches, distributed on all sides 
of the door, with total welding time of 38.3 s. The input RCP paths 
were computed and the output motion plan was converted into 
an OLP by using the techniques presented in [6][8]. Computing a 
motion plan using the algorithms proposed here, via generating 
14 792 candidate robot configurations, took 3200 s on an Intel i7-
4600 2.10GHz computer with 8GB RAM. The feasibility of the 
computed solution was verified both by simulation and by 
physically welding a small batch of doors in an experimental RLW 
workstation presented in [9]. 

Fig. 7 compares alternative time-parameterized motion plans 
for the same problem on Gantt charts. Colored stripes denote 
effective tasks (welding), while white stripes stand for idle 
movement. The alternative motion plans include: 
(1) The input RCP path, with time parameterization determined 

in the task space using theoretical maximum RCP speeds. 
Hence, the 45.5 s cycle time of this infeasible plan can be 
considered as a lower bound on the optimal solution. 

(2) A motion plan computed using the approach of [6], based on 
heuristically fixing the last revolute joint to eliminate the 
redundancy of the robot. This resulted in a cycle time of 82.6s. 

(3) The optimized motion plan achieved by the proposed 
approach, with a cycle time of 62.6 s. This corresponds to a 
24.3% improvement in cycle time, and notably 45.1% in idle 
time compared to the heuristic solution. This gain can be 
attributed to effectively exploiting the redundancy of the 
kinematic chain to optimize the given objective function. 
 

 
Fig. 7. Comparison of alternative RLW robot trajectories: lower bound 
estimation (1), heuristic solution (2), and optimized motion plan (3). 

6. Conclusions  

The paper suggested a novel approach to exploiting the 
kinematic redundancy of industrial robots to optimize their joint 
motion plans. The representation based on multiple synchronized 
RCP paths is generic enough to capture the results of advanced 
task sequencing and path planning algorithms. A graph 
representation of the optimization problem is built from all 
candidate robot configurations generated by inverse kinematics, 
whose geometric feasibility is checked by bi-directional transition 
between the task and configuration spaces to avoid any collisions. 
Final re-parametrization of the trajectory warrants compliance 
with joint velocity and acceleration limits. The successful use of 
the method has been demonstrated in RLW, where it significantly 
reduced idle times compared to a heuristic solution. Operations 
in high-dimensional constrained task spaces—like 5D grinding, 
robotic measurement, assembly, etc.—provide further 
application potential for the approach.  
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