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Abstract The practical significance of bio-inspired, self-organising methods
is rapidly increasing due to their robustness, adaptability and capability of
handling complex tasks in a dynamically changing environment. Our aim is to
examine an artificial hormone system that was introduced in order to deliver
multimedia content in dynamic networks. The artificial hormone algorithm
proved to be an efficient approach to solve the problem during the experi-
mental evaluations. In this paper we focus on the theoretical foundation of its
goodness. We show that the hormone levels converge to a limit at each node in
the typical cases. We form a series of theorems on convergence with different
conditions which are built on each other by starting with a specific base case
and then we consider more general, practically relevant cases. The theorems
are proved by exploiting the analogy between the Markov chains and the arti-
ficial hormone system. We examine spatial and temporal monotonicity of the
hormone levels as well and give sufficient conditions on monotonic increase.

Keywords self-organizing algorithm, convergence, Markov chains

1 Introduction

Artificial hormone systems [1] are bio-inspired self-organizing algorithms that
promise a robust and adaptive behavior [2] to cope with the problem of content
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delivery in dynamic networks [3]. This paper investigates the hormone-based
algorithm and its extensions introduced by Sobe et al. [4], [5], [6] inspired by
the endocrine system of higher mammals. This hormone-based system was
developed for sharing small content units (e.g., a short video, video scene,
picture, information) in a self-organising manner.

A content unit is atomic, i.e., cannot be further split during content delivery
and each content unit is routed through a single path. The units represent
the building blocks of more complex compositions (e.g., sequential streaming,
parallel presentation etc., for details on unit compositions, see [7]).

In case of the artificial hormone algorithm, nodes are glands that create,
consume and forward hormones through the network (the blood stream). Hor-
mones indicate interest in a specific content unit. Content units react on hor-
mones, by moving from lower towards higher hormone concentration. There-
fore, the algorithm can successfully deliver the units on the requesting node
if the hormone level increases strictly monotonically towards the requesting
node.

The algorithm creates an artificial hormone system where requests for units
are mapped to hormones. The hormone level can be represented by a real num-
ber and it may vary on the different nodes of the network. The hormones can
be created by the network nodes and diffused over the network. There are
several paths on which hormones can spread, and an evaporation mechanism
is introduced for reducing the hormone levels. The hormone-based algorithm
includes search for the requested unit and then the delivery of the units to
the requesting clients. In the search phase, the hormone is spreading in the
network. If the hormone reaches a node storing the requested unit then the
increasing hormone levels attract the required unit and guide it on an appro-
priate path to the requester.

The artificial hormone algorithm proved to be an efficient approach to
solve the content delivery problem during our experimental evaluations. In
this paper we focus on the theoretical foundation of its goodness.

The hormone levels at the time of decisions on the directions of forwarding
the units are formed after many iterations of the hormone update algorithm.
We define a recursive function describing the hormone updates. The paper
examines the convergence of the hormone levels in order to approximate the
hormone levels with their limits. The artificial hormone system is not linear
in the general case but the problem can be reduced to the convergence of a
linear system by exploiting temporal monotonicity of the hormones. Our main
result is that the hormone levels converge to a limit in the general case and
we give a formula for their limits.

We study monotonicity of the limits of the hormone levels along a path of
subsequent nodes in the network. We give sufficient conditions for the cases
when the requested unit is copied in the system and when the hormone levels
are increasing from the content sources towards the requesting node.

Section 2 gives a brief overview on the work related to the convergence
analysis of the self-organising systems. Section 3 presents the former results
about the applicability of the hormone based algorithm and introduces formu-
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las, basic terms and properties which we can apply to the convergence analysis.
Section 4 shows some results on temporal monotonicity of the hormone levels.
Section 5 contains our main results on convergence. Section 6 considers the
problem of spatial monotonicity in the network. Section 7 concludes the paper.

2 Related work

We provide a brief summary on the results of the convergence analysis of some
bio-inspires methods. In ant colony optimization artificial ants build candidate
solutions for a combinatorial optimisation problem by performing randomized
walks on completely connected weighted graphs. Their convergence is proved
in several papers [8], [9], [10] etc. Due to the randomness of the algorithm, the
convergence can be proved in a probabilistic sense.

Gossip algorithms are distributed message passing methods widely used
for information distribution and processing over ad-hoc and sensor networks.
Furthermore, they can be used to solve the distributed averaging problem.
Its convergence is proved and the steady state behaviour of the convergence
is clearly characterised [11]. The convergence can be proved by using ergodic
theory and its application to products of random matrices, which describes
the averaging processes realised by the gossip methods.

Coupled oscillators can operate in a self-organising and adaptive manner by
following the behaviour of swarms of fireflies. Kinglmayr and Bettstetter [12]
proved by analysing the synchronisation precision over time that inhibitory
coupling can lead to perfect synchrony independently of the initial conditions
in case of delay-free environment and homogeneous oscillators. Furthermore,
they give an upper precision bound on the synchronisation for systems with
variable delays and heterogeneous oscillators. In [13], Leidenfrost, Elmenreich
and Bettstetter show convergence and precision even in the presence of two-
faced malicious faulty nodes for a modified fault-tolerant firefly algorithm.

The diffusion is a common method in dynamic load balancing [14], av-
eraging in a network, reaching consensus [15], etc. Cybenko [14] found the
conditions under which the diffusion converges to the uniform distribution. He
applied the numerical analysis of matrix iterative schemes and he already men-
tioned the analogies with Markov chains as well. The structure of the diffusion
matrix applied in load balancing is very similar to the one applied in hormone
diffusion (the sum of the elements in each row is 1). However, the convergence
results are different (hormones do not converge to their average) because the
matrix is multiplied by vectors from different sides in the two models. Fur-
thermore, nodes not forwarding the hormones make our model special and as
we will see, they play a crucial role in the asymptotic behaviour.

Chemotaxis is a widely studied biological phenomena [16], [17], [18] where
signal molecules (chemo) guide the movement (taxis) of living cells. It inspired
computational algorithms as well where the signal controls the spreading of
data in the network [19], [20]. Both hormone-based algorithm and chemotaxis
move two kinds of objects, one of the objects (signal/hormone) moves signifi-
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cantly faster than the other (data/content unit), the fast object spreads with
diffusion, the slow objects follow the gradient of the fast object. The signal is
often produced by the moving objects while the hormones are generated by
the non-moving requests. Furthermore, the amount of data can be represented
by a real value in chemotaxis, while the content unit can be represented by
a simple indicator showing whether the content unit is located or not at a
specific node.

Markov analysis is a well-known method in stochastic systems (see e.g.,
[21]). It has a wide range of application areas in life sciences [22], social sci-
ences [23] and engineering including the self-organising systems as well [24].
The convergence of Markov chains is thoroughly studied in the last century
and motivated several new results on matrix iterative schemes. Although the
hormone based method is not a random process, we found that the underlying
algebraic structure is the same at both problems which makes it possible to
apply the convergence results on Markov chains to the hormone system.

3 The artificial hormone system

The section gives an overview on former results and experiences related to the
artificial hormone system, provides a recursive formula for the hormone update
function and introduces some basic terms and properties which we apply to
the convergence analysis.

3.1 Applicability of the artificial hormone system

A series of previous works ([4], [25], [27], [26], etc.) shows that, if the initial
parameters are set properly, the artificial hormone algorithm performs well in
comparison with state-of-the art techniques. This subsection summarises the
results related to scalability and practicality of the artificial hormone system.

Simulations are necessary in evaluations, because a distributed measure-
ment system is hard to achieve, especially, if a system containing of multiple
thousands of devices is evaluated. An open source simulator [5] is implemented
to show the performance of the algorithm and to test its behavior under real
circumstances.

The number of nodes varied from 50 to 10,000 at the different simulation
scenarios. The network topology was represented by a connected Erdős-Rényi
random graphs and scale-free graphs. Multiple requests for different units lead
to a different set of hormones being handled in parallel by the network. During
the simulations, each node generated sequential requests continuously: if one
request is fulfilled the next one is sent by the client. Each node contained sev-
eral content units. The number of different content units was between several
hundreds and several thousands.

Requests for the same unit result in a superimposed hormone landscape
for that unit. In this case, a unit might be attracted by two hormone trails.
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Without replication, the unit must move to different requesters in order. The
requester that receives the unit first is determined by the strength of hor-
mone reaching the unit (from the requester). In order to avoid such detours,
we investigated a number of replication mechanisms. A series of experiments
showed that by relying on local information only in combination with replica-
tion mechanisms, the algorithm can scale up to at least 1,000 nodes and can
cover up to 50 % node churn [5], [4], [6].

A middleware named as SEAHORSE (SElforganizing Artificial HORmone
SystEm) [6] was introduced that generalizes the artificial hormone system
algorithm to a middleware for search and delivery of information units. Simu-
lations were executed in order to examine its application in different technical
fields including distributing multimedia content at a social event (for example
spectators at a sports event such as a triathlon) and information dissemina-
tion in smart electrical grid. In the first use case, SEAHORSE enabled tens
of thousands of participants to produce and share multimedia content contin-
uously and instantaneously. The selection of the parameters of the algorithm
were analyzed in detail and it was found that different network sizes can be
executed on the same parameter set. The algorithm scaled well, e.g., time to
full coverage comparison was doubled when the number of nodes increased
from 100 to 10,000 in the second case study. The performance of the artifi-
cial hormone system was compared with pull-based Gossip and the artificial
algorithm used by SEAHORSE performed better.

We introduced and implemented an ILP-based optimization method in
order to determine the optimal values of Quality of Service (QoS) parameters
(average delay, number of failed unit deliveries) of the content delivery system
in a centralized manner. The optimums served as bounds during the evaluation
of the hormone-based algorithm [28]. The evaluation showed that that the
delay of the self-organizing content distribution tends towards the optimum.

3.2 The hormone update function

Sobe [26] presents the steps of the hormone update algorithm and their detailed
explanations. The subsection considers the steps of the algorithm in order to
give a recursive formula for the hormone level.

Given a graph describing the topology of the network with n nodes and
each node may exchange data with its neighbours. Given a requesting node
nr as well that would like to get a content unit stored in one of the nodes (ni,
i = 1..n) of the network. In order to find and deliver the requested unit, each
node of the network runs the same algorithm in a self-organising manner i.e.,
none of the nodes has global knowledge on the network but the nodes make
their decisions on local information only.

The main steps of the hormone-based algorithm as follows are continuously
repeated in each node of the network:

1. handle incoming requests
2. diffuse hormones
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3. move units
4. evaporate known hormones

We give a recursive formula for the hormone levels in the next subsections.
We will use the notation as follows for the hormone levels:

– h
(s)

(t) = (h
(s)
1 (t), h

(s)
2 (t), ..., h

(s)
n (t)): the vector containing the hormone

levels at different nodes in iteration t after the sth step of the algorithm

The initial values of the hormone levels are considered constant zero in
each algorithmic step: h

(s)
(0) = 0

3.2.1 Handle incoming requests (Step 1)

In the algorithmic step of handling incoming requests, the requesting node
starts the presentation of the unit if the requested unit is present on it. Oth-
erwise, it generates hormones in order to indicate the demand for the unit.

The hormone level h
(1)

(t+1) can be calculated from the hormone level h
(4)

(t)
after the end of the previous step as follows:

h
(1)

(t+ 1) = h
(4)

(t) + b
(1)

(t+ 1)

Where

– b(1)(t) = (b
(1)
1 (t), b

(1)
2 (t), ..., b

(1)
n (t)): the vector containing the generated

hormones at different nodes in iteration t

If the content is not present on requesting node nr the requesting node
generates η0 and η hormones in the first and the subsequent iterations, re-
spectively. The value of the additive term can be given as follows:

b
(1)
i (t) =

 η0 i = r, t = 1
η i = r, t > 1
0 i 6= r

3.2.2 Diffuse hormones (Step 2)

In the step of diffusing hormones, a part of the hormone on each node is

distributed among the neighbors. The hormone level h
(2)

(t) after diffusing
hormones can be calculated as follows:

h
(2)

(t) = (h
(1)

(t) + b
(2)

(t))D

Where

– D: The diffusion matrix describing the spreading of the hormone between
nodes.

– b
(2)

(t) = (b
(2)
1 (t), b

(2)
2 (t), ..., b

(2)
n (t)): the vector containing the additive terms

coming from the hormone diffusion at different nodes in iteration t.
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A specified ratio denoted by α of the hormone level at each node is dis-
tributed among the neighboring nodes proportionally to the weights wij ex-
pressing the quality of the link from node ni to nj . The values of the diffusion
matrix can be defined as follows:

D =


1− α α · w12 . . . α · w1n

α · w21 1− α . . . α · w2n

...
...

. . .
...

α · wn1 α · wn2 . . . 1− α


The special features of the matrix D are that its elements are all non-

negative, less than or equal to one and their sum for each row is equal to one.
If the requested unit is stored on the node, the hormone is deleted from the
node first. The value of the additive term can be given as follows:

b
(2)
i (t) =

{
−h(1)i (t) xi(t) = true
0 xi(t) = false

where xi(t) is a boolean indicating whether the requested content is present
on node ni in iteration t.

3.2.3 Move units (Step 3)

When the hormone reaches a node storing the requested content unit, a de-
cision is made to which neighbour to copy the unit from the node. Although
Step 2 deletes the hormone from the node that stores the unit, the hormone
level is not zero because it can be diffused there from the neighbouring nodes
after the deletion.

The unit is copied to the neighbour with the highest hormone level, if this
value is higher than the hormone level on the current node plus the migration
threshold m. Copying takes several iterations because the content units are
much larger than the packets containing the hormones.

This step does not change the hormone level: h
(3)

(t) = h
(2)

(t). It has an
indirect effect on the hormone update function because xi(t) indicating the
presence of the requested content on a node changes after completing the copy
of the unit to the new location.

3.2.4 Evaporate (Step 4)

The evaporation reduces the hormones by a constant value if possible and then
deletes the hormone if its value is below a specified threshold. This step ensures
that the hormones on alternative paths will disappear from the system after
delivering the unit at the destination. The hormone level after evaporating

hormones h
(4)

(t) can be calculated as follows:

h
(4)

(t) = h
(2)

(t) + b
(4)

(t)

Where
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η0 Generated hormone level at a new request
η Increase of the hormone level after each iteration at the requesting node
α Percentage of hormones to be forwarded to the neighbors
ε Hormone evaporation value
T Minimum hormone strength
m Minimum hormone difference to move unit (migration threshold)

Table 1 Summary of the parameters of the algorithm. We apply the same notation as
Sobe [26]. The only difference is that T is used for minimum hormone strength instead of t
because t denotes the index of the iteration in this paper.

– b
(4)

(t) = (b
(4)
1 (t), b

(4)
2 (t), ..., b

(4)
n (t)): the vector containing the evaporations

at different nodes in iteration t

ε and T give the constant evaporation value and the threshold of deletion,
respectively. The value of the additive term can be given as follows:

b
(4)
i (t) =

{
−ε, h

(2)
i (t) ≥ T + ε

−h(2)i (t), h
(2)
i (t) < T + ε

3.2.5 One entire iteration

The above steps can be accumulated into one formula for a whole iteration. The
monotonicity is evaluated for unit guidance after Step 2 (Diffuse hormones),
therefore we focus on the hormone level after this step.

The hormone update function can be presented as follows:

h(t+ 1) = (h(t) + b(t+ 1))D

Where

– h(t) = (h1(t), h2(t), ..., hn(t)): the vector containing the hormone levels at

different nodes before the evaluation for unit forwarding (h(t) = h
(2)

(t))
– D: The diffusion matrix (See Subsection Diffuse hormones (Step 2)).
– b(t) = (b1(t), b2(t), ..., bn(t)): the vector containing the accumulated addi-

tive terms at different nodes in iteration t

The value of the accumulated additive term can be given as follows (see
Table 1 for the summary of the parameters):

bi(t) =


η0 i = r, t = 1
η − ε i = r, t > 1, hi(t− 1) > T + ε
η i = r, t > 1, hi(t− 1) ≤ T + ε
−ε i 6= r, hi(t− 1) > T + ε
−hi(t) i 6= r, hi(t− 1) ≤ T + ε
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3.3 The diffusion matrix

In this section, we introduce some terms and properties related to the diffusion
matrix which are useful in the convergence analysis of the hormone-based
algorithm.

3.3.1 Basic terms and properties

The hormones diffuse in a deterministic manner in the algorithm. Due to the
next lemma, the results on the well-studied transition probability matrix of
Markov chains can be applied to the diffusion matrix of the hormone-based sys-
tem although the diffusion of the hormones does not follow a Markov-process.
In this subsection, we introduce some terms into the artificial hormone system
which correspond to some basic terms of Markov chains (e.g., regularity, fixed
row vector of the transition matrix, absorbing Markov chain).

Lemma 1 For an artificial hormone system, there exists a Markov chain
whose transition probability matrix is equal to the diffusion matrix of the sys-
tem.

Proof: The lemma follows from the fact that the elements of the diffusion
matrix D are all non-negative, less than or equal to one and their sum for each
row is equal to one. The elements of matrix D correspond to the transition
probabilities of the Markov chain. ut

Definition 1 A hormone system is called regular if some power of the diffusion
matrix has only positive elements.

In other words, for some l, the hormones can diffuse from any state to
any state in exactly l steps in a regular system. The following lemma gives a
condition for regularity which holds for the typical hormone systems.

Lemma 2 If the network is strongly connected and 0 < α < 1 then the hor-
mone system is regular.

Proof: We give a graph theoretical proof. Since diffusion matrix A is a
nonnegative matrix, (Ak)ij is positive if and only if there exists at least one
edge sequence of length k between nodes i and j. If the network is strongly
connected, there exist k for every pair of nodes i and j such that (Ak)ij is
positive. If 0 < α < 1 then loop edges are added at each node. By circulating
in loop edges, the edge-sequences can be extended to any length. For this
reason, if l is equal to the maximal shortest paths length between two nodes
in the network, then all elements of the lth power of the diffusion matrix are
positive. ut

For this reason, the hormone systems are regular in the most cases. A
counterexample for the regularity is when the directed network graph has no
loop edges and it is acyclic or bipartite graph.
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Definition 2 A hormone system is called time-homogeneous if both the dif-
fusion matrix and the location of the units are the same after each iteration.

The hormone levels are used in the decisions on the direction where to
forward the content units. The decision is made when copying a content unit
is completed. For this reason, our convergence analysis refers to the period of
the iterations of the hormone update function while a unit is copied. In this
period, the locations of the content units are unchanged.

The following term of the fixed row plays a key role in convergence.

Definition 3 A row vector w with the property wD = w is called a fixed row
vector for diffusion matrix D. A fixed row vector with the property

∑n
i=1 wi =

1 (wi is the ith component of w) is called a normalised fixed row vector for D.

Lemma 3 The fixed row vector does not depend on the algorithm parameters
but only on the weights between the network nodes.

Proof: Let us introduce D′ denoting the matrix representing the weights
between the nodes. The diffusion matrix can be expressed by using D′ as
follows:

D = (1− α)E + αD′

where E represents the unit matrix. Let us replace D with the above ex-
pression in the definition of the fixed vector.

w[(1− α)E + αD′] = w

This implies that
w(−αE + αD′) = 0

We may assume α 6= 0 otherwise, no hormone is distributed among the
nodes. Therefore, we may divide both sides by α.

w(−E + D′) = 0

wD′ = w

According to the above equations, the fixed vectors of matrix D are also
fixed vectors for D′. D′ and therefore its fixed vectors do not depend on any
parameter of the algorithm but on the weights between the network nodes. ut

The hormone system may contain nodes that receive hormones but do
not forward them to any neighbors: the nodes containing the requested unit
and the nodes with hormone level below the threshold T . The hormone level
drops to zero at these nodes according to the formal description of the update
algorithm in Section 3. We introduce some terms related to these nodes.

Definition 4 In the hormone system, a node is called a deleting node in iter-
ation t if its hormone level drops to zero in any algorithmic step of iteration t.
The other nodes not deleting their whole hormone level are called preserving
nodes. The hormone system is called deleting if it has at least one deleting
node and if the hormones from every node can diffuse to a deleting node.
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If only the rows and columns of preserving nodes is held from a diffusion
matrix of a hormone update functions then the resultant matrix corresponds
to matrix Q of an absorbing Markov chain.

Definition 5 In a deleting hormone system, matrix Q gives the diffusion rates
between the preserving nodes.

The deleting hormone systems can be characterised by absorbing Markov
chains. A state si of a Markov chain is called absorbing if it is impossible
to leave it (i.e., pii = 1). A Markov chain is absorbing if it has at least one
absorbing state and if from every state it is possible to go to an absorbing state
(not necessarily in one step). In an absorbing Markov chain, a state which is
not absorbing is called transient.

Lemma 4 For an artificial hormone system, there exists an absorbing Markov
chain whose matrix containing the transition probabilities between the transient
states is equal to Q of the hormone system if the network is strongly connected.

Proof: The deleting and preserving nodes correspond to the absorbing
and the transient states, respectively, of the Markov chains. The transition
probabilities are equal to the elements of the diffusion matrix of the hormone
system except the transition probabilities from the absorbing nodes. For the
absorbing node ni, pii = 1. Due to the connectivity, absorbing nodes can be
reached from each transient node. Matrix Q contains the transition probabil-
ities between the transient states. ut

3.3.2 Convergence of the powers of the diffusion matrix

Since the diffusion matrix may represent the transition matrix of a Markov
chain, we decided to apply the results on the well-studied Markov chains to
the convergence analysis of the artificial hormone system. In this subsection,
some theorems on the powers of the diffusion matrix are presented that can be
applied to prove the convergence of the hormone levels. They can be proved by
applying the properties of the transition probability matrix of Markov chains
to the diffusion matrix. The related theorems on Markov chains can be found
in the book of Grinstead and Snell [21].

The following theorem claims that the powers of a diffusion matrix of a
regular hormone system form a convergent sequence.

Lemma 5 If D is a diffusion matrix for a regular hormone system, then
limn→∞Dn = W, where W is matrix with all rows the same vector w.

It follows from the Fundamental Limit Theorem for Regular Chains and Lemma
1. ut

The common row of W is equal to the fixed row vector of D (wP = w)
and it is the only fixed row vector.

Lemma 6 Let D be the diffusion matrix for a regular hormone system and v
a vector whose length is equal to the number of nodes and for which the sum
of its components is 1. Then limn→∞ vPn = w, where w is the unique fixed
row vector for P.
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It follows from a similar theorem on Markov chains and Lemma 1. ut

Lemma 7 Let D be the diffusion matrix for a regular hormone system, let W
be the limit of the sequence of its powers. Then the matrix E−D + W has an
inverse. The series of E + (D−W) + (D2−W) + ... converges to the inverse
of E−D + W.

It follows from a similar theorem on Markov chains and Lemma 1. ut
As we mentioned in the previous subsection, the absorbing Markov chains

are relevant for the artificial hormone systems if the hormone systems contain
nodes deleting the hormones.

Lemma 8 In a deleting hormone system, the powers of Q containing the
diffusion rates between the preserving nodes converge to the zero vector. (i.e.,
Qn → 0 as n→∞).

It follows from a similar theorem on absorbing Markov chains and Lemma 4.
If the considered hormone system is deleting then the hormone would dis-

appear from the system without continuous production due to the above theo-
rem. According to the next theorem, the sum of the matrix powers converges.

Lemma 9 For a deleting hormone system the matrix E−Q has an inverse.
The series of E + Q + Q2 + ... converges to the inverse of E−Q.

It follows from a similar theorem on absorbing Markov chains and Lemma 4.

4 Monotonicity in time

This section concentrates on the monotonicity of the hormone level on a spe-
cific node as a function of the iteration t. The hormone levels may decrease
(e.g. at evaporation) and increase (e.g. at generation) within one iteration in
the different steps of the algorithm. However, if the hormone levels always in
the same algorithmic step of the subsequent iterations are considered then the
sequence of the hormone levels at a node proves to be monotonic in many cases.
The hormone system is monotone increasing in time at node ni in iteration t

if h
(s)

i (t) ≥ h
(s)

i (t− 1), s ∈ {1, 2, 3, 4}.

Lemma 10 If the hormone system is time-homogeneous and the hormone
level increases monotonically in time at each node in iteration t0, t0 > 1 then
it does in each iteration t ≥ t0 as well.

Proof: The lemma can be proved by mathematical induction on the steps
of the algorithm. In the iteration t0, the monotonicity follows from the condi-
tion of the theorem. Now, let us assume that the hormone level were monoton-
ically increasing in algorithmic step s of iteration t. The aim of the inductive
step is to prove that it is monotonically increasing at each node in the next

step as well: h
(s)
i (t+ 1) ≥ h(s)i (t) if h

(s−1)
i (t+ 1) ≥ h(s−1)i (t) for 1 < s ≤ 4, and

if h
(4)
i (t) ≥ h(4)i (t− 1) for s = 1.
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Let us consider the algorithmic steps one after the other. Step 1 Handle
incoming requests provides higher hormone level by η than in the previous
algorithmic step in iteration t if t > 1, therefore, it provides greater or equal
hormone levels than in the previous iteration if the hormone levels were mono-
tone increasing in the previous iteration step as well. It is true for Step 2 Diffuse
hormones as well for any iteration if the hormone system is time-homogeneous.
Step 3 Move units does not change the hormone level. Step 4 Evaporate hor-
mones is also appropriate because more hormone remains after the evaporation
if the hormone level was higher before it. Therefore, the hormone level is mono-
tonically increasing in iteration t+1 if it was in iteration t. The inductive step
is ready. ut

The condition of monotonicity at each node seems to be strict but the
following lemma gives a simple condition for monotonicity in all iterations.

Lemma 11 If the hormone system is time-homogeneous and the hormone
level at the requesting node increases in the second iteration then the hormone
level at each node monotonically increases in time in each iteration. The con-
dition of the monotonicity of the hormone level at the requesting node in the
second iteration is η ≥ min(η0, ε+ αη0).

Proof: In the first iteration (t = 1), the monotonicity is a trivial conse-
quence of the zero initial values. Let us turn to iteration t = 2. Similarly to the
previous lemma, it can be proved that the hormone update steps except Step 1
Handle incoming requests provide greater or equal hormone level for iteration
t = 2 if the hormone levels were increasing in iteration t = 1. The problem
with Step 1 in the second iteration is that the increase η in this iteration may
be smaller than the increase η0 in the first iteration.

Let us examine the condition of the monotonicity at the requesting node in
the second iteration. The hormone level is initially η0 at the requesting node.
In the second iteration, it is (1− α)η0 − ε+ η if the hormone was not deleted
in the evaporation step and η otherwise. We can get after a short calculation
that the hormone level in the second iteration after Step 1 Handle incoming
requests is greater than η0 if η > min(η0, ε+αη0). If this condition is fulfilled,
then the hormone levels are monotonic at each node in step t = 2. In this case,
Lemma 10 implies monotonicity in each iteration t ≥ 2 as well. ut

We are interested whether the set of preserving nodes is extending or
shrinking. According to the following corollary, the set of preserving nodes
never shrinks.

Corollary 1 If the hormone system is time-homogeneous and the hormone
level is monotonically increases with time at each node in iteration t0, t0 > 1
then the size of the set of preserving nodes is monotone increasing in each
iteration t ≥ t0.

Proof: If the hormone level is larger than 0 at node ni in iteration t0, t0 > 1
and the hormone level monotonically increases with time at each node in the
same iteration then the hormone level remains positive at node ni in each
iteration t ≥ t0. This implies the corollary because preserving nodes refer to
nodes with nonzero hormone levels. ut
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5 Convergence results for the hormone levels

In this section, we examine the convergence of the hormone levels at the nodes
of the network. The hormone based algorithm diffuses hormone in the network
and looks for the requested content unit. If the unit is found it is always
forwarded from the storing node to its neighbor with the highest hormone
level. Therefore, the direction of forwarding depends on the relative values of
the hormone levels in the network. After the unit arrives to the new location,
a decision is made again where to copy or move it further.

We assume that the hormone update is running repeatedly while a unit
is forwarded and it is iterated for several times before the decision is made
on the direction of forwarding the units based on the current hormone levels.
The hormone spreads much faster than the content unit because the size of
the content unit is much larger than the one of the messages containing the
hormones. This is especially true for multimedia content. The hormone is
represented as a real value which can be encoded as a few bytes while the
size of the multimedia units was between 100KB and 16 MB in the simulation
scenarios. Since the number of iterations between the decisions is usually large,
convergence analysis can characterise the behaviour of the hormone system.

Since the decision on direction is based on the hormone levels at the time
when copying a content unit is completed, we examine the convergence of the
hormone values during the period before this time while a unit is being copied.
The location of the content unit is unchanged in this period.

5.1 Zero additive term

In this subsection, the additive term in the hormone update function is as-
sumed to be constant zero except at the first iteration.

Theorem 1 If the hormone system is regular and time-homogeneous and the
additive term is zero for iterations t > 1 (b(t) = 0,∀t > 1) then the hormone
level converges at each node. The limit of the hormone level vector is η0w
where w is the normalised fixed vector of the diffusion matrix.

Proof: The hormone level at the first iteration can be formulated as fol-
lows:

h(1) = (h(0) + b(1))D = b(1)D

The additive term in the first iteration is simply b(1) = b
(1)

(1). Its com-
ponents for the ith node can be defined as follows:

bi(1) =

{
η0 i = r
0 i 6= r

Let us introduce vector v for which η0v = b(1). Its components can be
defined as follows:

vi =

{
1 i = r
0 i 6= r
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If the additive term is zero

h(t) = h(1)Dt−1 = b(1)Dt = η0vDt

Theorem 6 can be applied to the limit of the hormone levels:

lim
t→∞

h(t) = h(1)Dt−1 = η0 lim
t→∞

vDt = η0w (1)

ut
The content unit is guided towards the increasing hormone levels. As a

consequence of the above theorem, the relative values of the hormones on the
nodes are determined only by the fixed vector of the diffusion matrix (w).
According to Lemma 3, it means that they depend neither on the algorithm
parameters nor the location of the requesting node but only on the weights
between the nodes. The above result is not surprising if we think on the analogy
with Markov chains. The regular Markov chains converge to the stationary
distribution (also called as equilibrium distribution) independently from the
starting distribution. The zero additive term has practically low relevance
because η and ε are usually not zero. However, the above results will be applied
in the next subsection.

5.2 Constant additive term

In this section, the additive term of the hormone update function may differ
from zero but it is assumed to be constant after the first iteration.

Theorem 2 If the hormone system is regular and time-homogeneous, additive
term b is constant at each node in iterations t > 1 and c =

∑n
i=1 bi > 0 then

the hormone levels are asymptotically equivalent with the linear function t·c·w
where w is the normalised fixed vector of the diffusion matrix. Furthermore,

lim
t→∞

(h(t)− t · c ·w) = η0w + b(E−D + W)−1 − b (2)

Proof: If the additive term is constant, the hormone level can be formu-
lated as follows:

h(t) = (h(t− 1) + b)D = h(1)Dt−1 + b

t−1∑
i=1

Di

lim
t→∞

h(t) = lim
t→∞

h(1)Dt−1 + lim
t→∞

b

t−1∑
i=1

Di (3)

The first term of the above sum converges η0w according to the previous
theorem. Now, let us turn to the second term. It follows from Lemma 7 that

lim
t→∞

(

t∑
i=0

Di − t ·W) = (E−D + W)−1
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Since
∑t
i=1 Di =

∑t
i=0 Di −E and limt→∞

∑t
i=1 Di = limt→∞

∑t−1
i=1 Di

lim
t→∞

(

t−1∑
i=1

Di − t ·W) = (E−D + W)−1 −E

Let us multiply the above equation by b.

lim
t→∞

(b

t−1∑
i=1

Di − t · bW) = b(E−D + W)−1 − b (4)

According to Lemma 5, each row of W is equal to vector w, therefore,

lim
t→∞

(b

t−1∑
i=1

Di − t · (
n∑
i=1

bi)w) = b(E−D + W)−1 − b (5)

If
∑n
i=1 bi 6= 0, we may divide both sides by t · (

∑n
i=1 bi)w and we get that

lim
t→∞

b
∑t−1
i=1 Di

t · (
∑n
i=1 bi)w

= 1

By using the notation of asymptotic equivalence, we may write:

b

t−1∑
i=1

Di ∼ t · (
n∑
i=1

bi)w (6)

From Eqs. (1), (3) and (6),

h(t) ∼ η0w + t · (
n∑
i=1

bi)w ∼ t · (
n∑
i=1

bi)w

Eq. (2) comes from Eqs. (1), (3) and (5). ut
According to the theorem, the hormones levels diverge and are unbounded.

However, this may happen only if the network does not contain any deleting
nodes. Otherwise, the deleting node would delete hormone amount that is pro-
portional to the increasing hormone levels, therefore, the additive term cannot
be constant. For this reason, the conditions of the theorem for the constant
additive term is rather strict because the additive term may be positive at
each node only if the requested content unit cannot be found in the network
and the hormone can spread over the whole network.
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5.3 Fixed set of deleting nodes

Let us replace the condition of the constant additive term with the more
general condition that the set of preserving (or deleting) nodes is fixed. In this
case, the deleting nodes can be dropped from the system because they will
never forward hormone towards the other nodes. This subsection reformulates
the theorems in the previous subsections for a hormone system with a fixed
set of preserving nodes.

Theorem 3 If the hormone system is deleting and time-homogeneous, the set
of deleting nodes is fixed and the additive term is zero at the preserving nodes
in iterations t > 1 then the hormone levels converge to zero at each node.

Proof: Let h′(t) denote the hormone levels on the preserving nodes. If the
additive term is zero

h′(t) = h′(t− 1)Q = h′(1)Qt−1

lim
t→∞

h′(t) = lim h′(1)Qt−1

We know from Lemma 8 that Qn → 0 as n→∞, therefore,

lim
t→∞

h′(t) = 0 ut

Theorem 4 If the hormone system is deleting and time-homogeneous, the set
of deleting nodes is fixed and the additive term b is constant nonzero at the
preserving nodes in iterations t > 1 then the hormone levels converge at each
node. The limit of the vector containing the hormone levels is

lim
t→∞

h′(t) = b′[(E−Q)−1 −E]

where b′ denotes the additive term on the preserving nodes.

Proof: If b′ is constant, the hormone level can be calculated as follows:

h′(t) = (h′(t− 1) + b′)Q = h′(1)Qt−1 + b′
t−1∑
i=1

Qi

lim
t→∞

h′(t) = lim
t→∞

h′(1)Qt + lim
t→∞

b′
t−1∑
i=1

Qi

The first term of the above sum converges to zero according to the proof
of the previous theorem (Theorem 3). For this reason, the hormone levels
converge to the second term of the sum.

lim
t→∞

h′(t) = lim
t→∞

b′
t−1∑
i=1

Qi = lim
t→∞

b′
t∑
i=0

Qi − b′ (7)

The sum of powers of Q converges to (E−Q)−1 according to Lemma 9:

lim
t→∞

h′(t) = b′(E−Q)−1 − b′ = b′[(E−Q)−1 −E] ut
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5.4 General case

Theorem 5 If the hormone system is deleting and time-homogeneous and
there is an iteration t0 for which the hormone level monotonically increases
with time at each node then the hormone levels converge at each node.

Proof: From Corollary 1, the set of preserving nodes is monotonically
increasing, therefore, there exists a maximal set of preserving nodes whose
size does not change any more. The components of the additive term b′ is
constant for the preserving nodes in iterations t > 1. They can be simply
calculated as follows:

b′i =

{
η − ε i = r
−ε i 6= r

For this reason, we can apply Theorem 4 for the maximal set of preserving
nodes (i.e., minimal set of deleting nodes) and for the fixed additive term
specified above.

lim
t→∞

h′(t) = b′[(E−Q)−1 −E] (8)

where Q denotes the matrix of the diffusion rates between the nodes of the
maximal set of preserving nodes. ut

We remark that although the condition on monotonicity in time for each
node seems to be restrictive, Lemma 11 gives a simple sufficient condition for
it. Furthermore, a systems is deleting if it contains the requested unit and
there is a path from every node to a node containing the unit. For this reason,
the conditions of the lemma are fulfilled in the most of the practically relevant
cases.

6 Monotonicity in the network

This section concentrates on the monotonicity of the hormone level along a
path between the node containing the requested unit and the requesting node.
For brevity, we refer to the node containing the requested unit as a content
source. We give sufficient conditions when the content unit is copied from the
content sources. We also examine monotonic increase at the neighbours of
the content source and at the further nodes along the path to the requesting
node. We restrict our examination to the stationary solution (h(t+1) = h(t) =
h) represented by the limit of the hormone levels. First, we give some basic
formulas for the stationary solutions.

h = (h + b)D (9)

where h denotes a stationary solution and the additive term b is also fixed.
The above equation can be applied to express the hormone level on a single

node as follows:

hi = (1− α)(hi + bi) + α
∑
j∈Ni

wji(hj + bj) (10)
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where hi and bi denote the stationary hormone level and the additive term,
respectively, at node ni. Ni refers to the set of indexes of the neighbours of
node ni.

Let N ′i denote the set of indexes of the nondeleting neighbours of node ni.
Since −hi = bi for the deleting nodes, they can be dropped from the right side
of Eq. (10). Now, let us apply the above equation to nonedeleting node ni:

hi = (1− α)(hi + bi) + α
∑
j∈N ′

i

wji(hj + bj) (11)

If ni is deleting, the equation can be further simplified:

hi = α
∑
j∈N ′

i

wji(hj + bj) (12)

In the preceding section, we gave sufficient condition for the convergence of
the hormone levels. One can easily check that the limit provided by Theorem 4
serves as a stationary solution. The next theorem gives a lower bound on the
hormone levels on a content source.

Lemma 12 If the hormone system converges to a stationary solution and the
requested unit can be found on s1 > 0 different nodes then there is at least one
node among the content sources where the hormone level is at least

1

s1
[η − (n− s1)(ε+ T )]

Proof: In a stationary solution, the total amount of hormone increase is
equal to the total amount of hormone decrease. Diffusing hormones preserves
the total sum of the hormones in the system since the sum of the weights of
outgoing edges from a node is equal to one. The step of handling incoming
requests increases the amount of hormones while evaporation and deleting the
hormone on the node containing the requested unit decreases the hormone
levels.

Let S1 and S2 denote the set of nodes containing the requested unit and
the further deleting nodes, respectively. si gives the size of Si, i = (1, 2).
Furthermore, let s0 denote the number of the nondeleting nodes.

In the stationary state, the generated and the deleted hormone levels are
equal with one another:

η = s0ε+
∑
i∈S1

hi +
∑
i∈S2

hi (13)

Let nm denote the content source with the largest hormone level.

η ≤ s0ε+ s1hm + s2(ε+ T ) (14)

This implies that

hm ≥
1

s1
[η−s0ε−s2(ε+T )] ≥ 1

s1
[η−(s0+s2)(ε+T )] =

1

s1
[η−(n−s1)(ε+T )]
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ut
The requested unit is not forwarded from its original location if the hor-

mones do not reach any content sources.An easy consequence of the above
lemma provides a sufficient condition guaranteeing to find the content unit.

Corollary 2 If the hormone system converges to a stationary solution, the
requested unit can be found in the network and η > (n − s1)(ε + T ) then the
artificial hormone system finds the content unit in the network.

Proof: According to the previous lemma, there exists content source nm
in the network for which hm > 0. ut

The algorithm guides the content unit from the source to its neighbour with
the highest hormone level. The next theorem provides a lower bound on the
highest hormone level among the neighbours of a content source and defines a
condition when the content unit will be copied from its original locations.

Theorem 6 If the hormone levels converge to a stationary solution, none
of the content sources is adjacent with the requesting node and the following
inequality holds

m ≤
η − (n− s1)(ε+ T )(1− α

∑
j∈N ′

i
wji)

s1α
∑
j∈N ′

i
wji

+ ε (15)

then the content unit will be copied from its original location.

Proof: Let us apply Equation (12) describing the stationary solution to
deleting node ni not adjacent with the requesting node:

hi = α
∑
j∈N ′

i

wji(hj − ε) (16)

Let hm denote the maximum hormone level among the neighbours of ni.

hi ≤ (hm − ε)α
∑
j∈N ′

i

wji (17)

It implies that

hm ≥
hi

α
∑
j∈N ′

i
wji

+ ε (18)

The difference of the hormone levels at the content source and at its neigh-
bour with the largest hormone level can be expressed as follows:

hm − hi ≥
hi(1− α

∑
j∈N ′

i
wji)

α
∑
j∈N ′

i
wji

+ ε (19)

As a consequence of the above inequality and Lemma (12), a lower bound
can be expressed for the difference:

hm − hi ≥
[η − (n− s1)(ε+ T )](1− α

∑
j∈N ′

i
wji)

s1α
∑
j∈N ′

i
wji

+ ε (20)
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The content unit will be copied from its original location if the differerence
is larger than threshold m. ut

We can give another condition on copying from the content source:

Theorem 7 If the hormone levels converge to a stationary solution, content
source ni is not adjacent with the requesting node, the hormone level reaches
it (i.e., hi > 0) and

∑
j∈N ′

i
wji <

1
α and m < ε then the content unit will be

copied from its original location.

Proof: It can be proved similarly to the previous theorem that Inequation
(19) holds in this case as well. Let us consider the right side of the inequality.
The following inequalities hold under the conditions of the theorem:

hi(1− α
∑
j∈N ′

i

wji) > 0, ε > m

In this case, hm − hi is larger than migration threshold m according to In-
equation (19). ut

We have given a lower bound on the highest hormone level among the
neighbours of the content source. We go one step further: the next lemma
can be used for providing lower bound on the largest hormone level for the
neighbours of node ni where ni is the neighbour of the content source.

Lemma 13 If the hormone levels converge to a stationary solution, node ni
is nondeleting, it is not adjacent with the requesting node, it has at least one
nondeleting neighbour and the following inequality holds

ε

α
> (

∑
j∈N ′

i

wji − 1)(hi − ε) (21)

then ni has at least one neighbour nm for which hm > hi.

Proof: The stationary equation (9) can be formulated as follows for a
single node ni whose neighbours do not contain the requested content unit:

hi = (1− α)(hi − ε) + α
∑
j∈N ′

i

wji(hj − ε) (22)

Let hm denote the maximum among the neighbours of ni. Its introduction
into Eq. (22) results in the following inequality:

hi ≤ (1− α)(hi − ε) + α
∑
j∈N ′

i

wji(hm − ε)

After equivalent transformations we can get that

hm ≥
hi + ε(

∑
j∈N ′

i
wji − 1 + 1

α )∑
j∈N ′

i
wji

(23)
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hm − hi ≥
(hi − ε)(1−

∑
j∈N ′

i
wji) + ε

α∑
j∈N ′

i
wji

(24)

According to this inequality, hm > hi if the inequality (21) holds. ut
The next lemma can be used for the further nodes after the neighbour of

the content source along a path to the requesting node. It provides a less strict
sufficient condition for the monotonic increase than the preceding lemma does.

Lemma 14 If the hormone levels converge to a stationary solution, node ni
is nondeleting and not adjacent with the requesting node, it has at least two
nondeleting neighbours, one of them (ns) has smaller hormone level than ni
and the following inequality holds

ε

α
+ wsi(hi − hs) > (

∑
j∈N ′

i

wji − 1)(hi − ε) (25)

then ni has at least one neighbour nm with larger hormone level than ni.

Proof: The proof is analogous to the one of the preceding lemma but hs is
introduced in addition to hm into Eq. (22), therefore, the details of the proof
are omitted. ut

We can assume that the adjacency in the network represents a symmetric
relation i.e. if there is an edge with positive weights wij from node ni to nj
then wji is also positive.

Let us introduce χi to indicate whether node ni has at least two nondeleting
neighbours and one of them has smaller hormone level than ni:

χi =

{
1 ∃ns, nm ∈ N ′i : hi > hs ∧ i 6= m
0 otherwise

We use this notation in the next lemma on spatial monotonicity in the artificial
hormone system.

Theorem 8 If the hormone levels converge to a stationary solution and each
nondeleting node ni has at least two neighbours, at least one of them is non-
deleting and the following inequality holds

ε

α
+ χiwsi(hi − hs) > (

∑
j∈N ′

i

wji − 1)(hi − ε) (26)

then any paths with strictly monotonically increasing hormone levels start-
ing from a deleting node lead to the requesting node or to one of the neighbours
of the requesting node.

Proof: Let ni0 , ni1 , ni2 , ..., nil denote the subsequent items of the path with
monotonically increasing hormone levels where ni0 denote a deleting node
and the nil is the last node of the path. The path can be continued until
it reaches a local maximum. Node ni0 has a nondeleting neighbour ni1 . ni1
cannot represent a local maximum under the conditions of the theorem due
to Lemma 13.
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If j > 1 then nij has a neighbour with smaller hormone level (nij−1). If
nij has two nondeleting neighbours then Lemma 14 guarantees a neighbour
with larger hormone level. Now, let us examine the case when nij has only
one nondeleting neighbours, the others are deleting. In this case, nij−1

is the
nondeleting neighbour and hij−1

< hij due to the monotonicity of the path.
Since wij ,ij−1 < 1, it follows from Lemma 13 that nij−1 should have larger
hormone level than hij , which is a contradiction. For this reason, we can ex-
clude the case that nij has only one nondeleting neighbour. The above lemmas
guarantee monotonicity for all nodes except the requesting node and its neigh-
bours. ut

The theorem defines conditions guaranteeing a path with monotone in-
creasing hormone levels from the content source towards the requesting node.
A sufficient but not necessary condition of the monotonicity if the sum of the
incoming weights is less than 1 because in this case the inequality in the the-
orem holds. We remark, that if the hormone levels are considered before the
hormone diffusion step then the monotone paths are guaranteed to lead to the
requesting node under the conditions of the theorem.

7 Summary

The paper presents the first convergence and monotonicity results on an arti-
ficial hormone system developed for multimiedia delivery. In order to examine
the convergence of the hormone levels in the system, we gave recursive formu-
las for the hormone levels. We determined the limits of the hormone values
at the nodes of the network under different conditions. We started with a ba-
sic hormone distribution system, then we gradually removed the restrictions
and at the end, we examined a general case. Although the artificial hormone
method in our scope is a deterministic algorithm, it shows analogy with the
Markov chains and the proofs on the convergence are based on the theorems
of the Markov chains.

Table 2 gives an overview on the asymptotic behaviour of the examined
artificial hormone system under different conditions. If the hormone levels are
divergent then the requested content units trying to follow the increasing hor-
mone levels may fail to get to the destination. The results in the paper show
that convergence can be guranteed by properly forming and parameterising
the hormone system if the system contains the requested content unit. If the
requested content unit cannot be found in the network the hormone levels can
linearly increase without any upper bound which causes overflow in the net-
work levels after many iterations. We found that the hormone levels converge
to a limit in the most general case.

Furthermore, we were also interested in whether the hormone levels guide
the unit to the requesting node. In some special cases (no deleting nodes and
either no additive term or constant additive term), the relative values of the
hormone in the network depend neither on the algorithm parameters nor the
location of the requesting node but only on the fixed vector (w) of the diffusion
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Table 2 The convergence of the hormone based algorithm in different cases

Condition Additive term Convergence

regular 0 convergent

regular constant,
∑n

i=1
bi > 0 divergent, unbounded

deleting 0 convergent to 0

deleting constant,
∑n

i=1
b′i > 0 convergent

deleting, monotonic increasing in time no restriction convergent

matrix. In these systems, the units would be forwarded always to the same
direction independently where the requesting node is. However, these cases are
practically not relevant because they assume no deleting nodes in the network.

We studied the conditions of the monotonic increase of the hormone levels
from the content sources towards the requesting node. Sufficient conditions
were given when the hormone level reaches the requested content unit and
when the content unit is copied from its original location which are inevitable
for the proper operation. A sufficient but not necessary condition of the mono-
tonicity is that the sum of the incoming weights is less than one. These results
help in better understanding the behaviour of the artificial hormone system
and in defining the structure and parameters of the system.
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