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Disease mapping using mixture distribution
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Background & objectives: Data on infectious diseases like tuberculosis (TB) have been analyzed
in the past without giving adequate attention to spatial variations. Earlier studies also attempted
to display disease status of sub regions, usually census tracts, by categorizing them into quartiles,
that helps the authorities to identify high- or low-risk areas. This approach is based mainly on
binomial and Poisson models for disease data, and the recent attempts focus on using mixture
models of Poisson distribution. We carried out this study to find wards of Madurai Corporation
having high risks for TB disease, to develop a model of mixture of Poisson distributions for the
number of cases and to classify each ward to one of many risk groups for TB disease, and to
represent spatial distribution of TB incidence in Madurai city.

Methods: Mixture models were used in finding the number of risk groups which might have
produced the observed counts of TB patients in 72 wards of Madurai Corporation. The number
of risk groups and the Poisson parameters of each group were found by maximum likelihood
approach using the computer package C.A.MAN (Computer Assisted Mixture ANalysis). Bayesian
methods were used to associate each ward to a particular risk group. The results were
geographically presented in maps by using ArcView mapping software.

Results: Using binomial model, 26 wards were categorized as high risk wards, and with mixture
model approach 15 wards showed standardized morbility ratio (SMR) >1. The wards along river
Vaigai and densely populated wards had high risk.

Interpretation & conclusion: Our findings demonstrate the usefulness of the mixture models for
disease data with geographical variations.

Key words Disease mapping - mixture models - spatial statistics

Data collected in biological and medical research,
usually contain variations. Identifying and separating
these variations due to external and known factors
is done by statistical methods. The usual procedure
is to assume a probability density for the variable
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of interest (e.g., the number of people having the
disease), which is used to answer various questions
on the (observed) values of the variable and to
compute the measure of the variations of the
variable.
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But the variations found in the observed values
might also have been caused by unobserved
covariates or may be due to clustered observations.
In such cases, the observed values are said to have
over-dispersion or extra-heterogeneity. When data
such as the number of people having a disease,
are collected on small regions such as city wards,
census tracts, etc., the variations that are found
in these data may be due to spatial proximity
between regions or may be due to inter-differences
in variables of regions. Thus, over-dispersion is
always present in the spatially referenced data.

The analysis of extra-heterogeneity and the
representation of the geographic variations of the
disease on a map of the study region has become
an important topic in epidemiological research. Such
maps are more useful to policymakers and
implementers as they can target regions with high
risks. Identification of high risk groups (or regions)
also provides valuable hints for possible exploration
and gives additional directives to control the disease
or to obtain more health funding.

Howe1, in his overview of disease mapping
pointed to John Snow’s famous map which traced
cholera to the pump containing the contaminated
water. Dole2, and Hutt and Burkitt3 have described
variations in cancer incidence through maps. A
common approach in map construction is the
Choropleth method4.

We undertook this study to analyze the data
concerning smear positive TB patients in Madurai
city, Tamil Nadu, and present the geographical
distribution of TB incidence by mapping the chosen
epidemiological measure (incidence rate) on the
study region.

The Choropleth map of incidence rates of TB
cases was obtained. This map was shown to be
inadequate in representing the geographical
distribution as the data had over-dispersion. We
proposed a mixture distribution5 (more explicitly a
mixture of Poisson distributions) for the disease

incidence and the non parametric maximum
likelihood estimator (NPMLE) of mixture
distribution was obtained by Computer Assisted
Mixture Analysis (CAMAN) package6. Choropleth
maps were prepared using ArcView software (ESRI,
USA) for the estimated mixture distribution and
to interpret the result. All statistical computations
were carried out using R-public domain software.

Material & Methods

Data on patients with smear-positive TB were
obtained from the records of Madurai Unit of
Tuberculosis Research Centre (TRC) of the Indian
Council of Medical Research (ICMR) for the period
1999 to 2003. These records included the cases
referred from other hospitals. According to 2001
census, the population of Madurai was 9,28,675.
The size of the population of wards varied from
4794 to 27972 in 2001 (Fig. 1). The number of
observed cases and the size of the population of
72 wards of Madurai Corporation, Madurai, Tamil
Nadu, are given in Table I.

Disease mapping: we first considered traditional
method of presenting the spatial distribution of TB
incidence by mapping the incidence rate of the
disease, and introduced the notations, for ward
number i ranging from 1 to 72, io  denoted the
observed number of cases in the i-th ward, and in

denoted the size of the population in the i-th ward.

The incidence rate (IR) of the disease was
defined as the ratio of the number of observed
cases to the population at risk. More explicitly,
IRi =oi / n i.  Fig. 2 shows the Choropleth map of
the incidence rate of wards of Madurai city
assigning shades based on a classification using
quantiles (the four values that divide the distribution
into five groups with equal number of values). The
map presents the geographical distribution of the
disease in the study region. However, it should be
noted that the incidence rate was influenced by
the ward population and that the incidence rate
was small for the wards (ward numbers 7, 10, 17,
31, 58, 59 and 61) with large population. To estimate
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Fig.1. Choropleth map of population of wards.

Madurai City Wards Population

Fig.2. Choropleth map of incidence rate.

Madurai City Wards Incidence Rate

Population
4794 - 9574
9596 - 11545
11719 - 13026
13177 - 15182
15249 - 27912

Incidence Rate

0.081 - 0.379
0.379 - 0.573
0.573 - 0.745
0.745 - 1.281
1.281 - 2.555
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Table I. Number of observed cases, population and incidence rate for wards of Madurai city

Ward Number o i n i oi/ni Ward Number o i n i oi/ni

1 17 23019 0.739 37 5 7589 0.659

2 17 27912 0.609 38 4 13177 0.304

3 10 15249 0.656 39 4 11119 0.36

4 12 13318 0.901 40 4 8695 0.46

5 14 18579 0.754 41 7 9799 0.714

6 5 13673 0.366 42 4 10415 0.384

7 5 4794 1.043 43 7 10581 0.662

8 10 16594 0.603 44 3 11545 0.26

9 23 13026 1.766 45 2 11788 0.17

10 19 8659 2.194 46 2 7971 0.251

11 10 11823 0.846 47 1 12289 0.081

12 5 13197 0.379 48 6 10217 0.587

13 12 12658 0.948 49 16 12117 1.32

14 28 13783 2.031 50 12 11195 1.072

15 9 10321 0.872 51 7 12791 0.547

16 14 10928 1.281 52 9 19776 0.455

17 15 10140 1.479 53 19 12988 1.463

18 6 16230 0.37 54 2 9574 0.209

19 13 13227 0.983 55 7 14689 0.477

20 10 13724 0.729 56 20 15418 1.297

21 16 12168 1.315 57 8 12797 0.625

22 7 15182 0.461 58 16 10481 1.527

23 3 8886 0.338 59 23 9002 2.555

24 4 8556 0.468 60 28 18513 1.512

25 19 11719 1.621 61 19 9197 2.066

26 4 11037 0.362 62 4 13868 0.288

27 6 13936 0.431 63 6 14018 0.428

28 4 9053 0.442 64 4 17494 0.229

29 10 24889 0.402 65 7 11134 0.629

30 7 12215 0.573 66 6 12954 0.463

31 22 9596 2.293 67 13 13551 0.959

32 2 8226 0.243 68 14 14945 0.937

33 8 8420 0.95 69 9 15684 0.574

34 7 9554 0.733 70 6 12179 0.493

35 10 9931 1.007 71 19 25496 0.745

36 4 8445 0.474 72 16 21236 0.753
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the incidence rate by pooling the information from
all the wards, binomial model was used for the number
of TB cases. If we assume a constant incidence rate
θ  for the TB disease in the whole study region, then
θ  can be treated as “velocity” at which new cases
occur homogeneously in all the wards. Thus, the
probability for an individual to get the disease was
θ . An estimate of the incidence rate θ  is given by

θ̂  = The total number of observed TB patients
/ the total number of population

= /i io n∑ ∑

With this estimate of θ , the number of TB cases
for the i-th ward can be modeled as binomial with
parameters n i   and θ . That is,

i io ~ binomial(n , )θ

The expected number of cases (e i) in the i-th
ward was given by the mean of the binomial

distribution, namely e i= θni , i = 1, 2, …, 72. A
measure of the difference between the observed
number of cases io  and the expected number of
cases e i could serve as a rate. In the literature the
widely used rate has been defined by io / ei , which
is called standardized morgbidity ratio (SMR)7 for
the i-th ward (SMRi). As the incidence rate IR i

was proportional to SMRi, Choropleth map of SMR
was not shown. As such mapping SMR does not
help to identify high risk groups.

For the purpose of computing probabilities (and
for extending the model), the binomial model for
the i-th ward may be approximated by a Poisson
model as in  is large and ιθ  is very small. Thus we
proposed that the number of cases for the i-th ward
had

iPoisson(m )

where the parameter im  was a function of the
expected number of cases ie  in an area and a
relative risk λi  for the i-th ward. That is

λi i io ~ Poisson( e )

so that the probability of getting an observed count
y in the i-th ward was given by

( ) !λ λ- e yi i i ie e /y

where y was a non negative integer. We computed
the standard error of SMR i (=oi /e i) for the i-th
ward as proportional to e i. Hence the fluctuation
in the observed count was indirectly proportional
to the expected count. It is to be noted that when

ie  is small, the SMR can change a lot by small
changes in oi, which may be simply due to chance.
Thus our assumption of having a fixed relative risk
λi  failed to capture the over-dispersion in the data.
This has to be kept in mind when interpreting the
SMR values.

Moreover by having a separate relative risk
( λi ) for each ward we had as many parameters
as the number of wards and the estimate of λi  by
o i/e i was not consistent. It is proposed in the
literature that λi  may be assumed to stem from a
population of parameters with suitable distribution.
Recently several models have been presented for
describing spatial variation of rates7-9.

Poisson mixture: Schlattmann and Bohning5 showed
that discrete mixtures were useful for modeling
the population heterogeneity, which was common
in disease mapping problems. In this approach, the
relative risk of the ward is assumed to be
realizations of a random variable, which is a mixture
of Poisson distribution, i.e.

λi io ~ Poisson( e )

where, the relative risk λ , is treated as a random
variable and is assumed to have a discrete
probability distribution taking k values 1λ , 2λ , ...,

kλ  with probabilities 1p , 2p , ..., kp  respectively,,
for some fixed k. Thus, we write,

.λ∑
k

i j i j
j=1

o ~ p Poisson(e )
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Appendix

λ
λ∑ ∑

n k e oi j iij j i j i
i=1 j=1

l = g  log{p e (e ) /o !}

The E step of the EM algorithm is to compute
the expected value of log-likelihood of complete
data

(3)λ
λ∑ ∑

n k e oi j iij j i j i
i=1 j=1

E(l)= E  log{p e (e ) /o !}...

where ijE  = E [ ijg | io , λ j , jp ]

= Pr[ ijg =1 | oi , λ j jp ]

as ijg  is a binary random variable taking values
0 and 1. This probability can be computed by
Bayes formula

!

!

λ

λ

λ

λ∑

e oi j ij i j i
e oi r ir i r i

r

p e (e ) /o

p e (e ) /o

The M-step of the EM algorithm is to maximize
the expected log-likelihood. We differentiate (3)
with respect to parameters and equate them to
zero to get the MLE’s.
This gives the estimates:

1
p = Ej ijn

∑

,λ ∑ ∑= E o / E ej ij i ij i
i i

We present here the derivations for the EM
algorithm.

We have

λ∑
k

i j i j
j=1

o ~ p Poisson(x|e )  , i = 1, 2, …, n,

where, λ
λ λ

e xi j
i j i jPoisson(x | e ) = e (e ) /x!

The likelihood function for the sample io  , i
= 1, 2, …, n is,

λ
λ∑∏

n k e oi j ij i j i
j=1i=1

L = p e (e ) /o !           (1)

Since this involves summation, it is not possible
to take logarithm and it is difficult to use MLE
method. We define a binary random variable gij

which takes 1 if i-th observation has come from
a Poisson distribution with parameter ei jλ  and 0
otherwise. Here gij is the missing data. The data
{oi} are called incomplete data and {oi, gij} are
called complete data. Then L is rewritten as

(2)λ
λ∏∏

n k e goi j ijij i j i
i=1 j=1

L= {p e (e ) /o ! } ...

The expression (2) is called likelihood function
of complete data. The log-likelihood function of
the complete data is

The above distribution is called mixture distribution
with λi jPoisson(e )  as the component density and with
the mixing distribution j jPr[ ] p , j 1,2...kλ = λ = = , which
is represented by the following notation:

λ λ λ 
  
 

...1 2 kP = 

...p p p1 2 k

 It may be noted that the mixing distribution P
does not have any specific form for the density
function depending on any parameter and hence it
is said to be in non parametric form. The maximum
likelihood estimator of P  (denoted by P̂ )  is called

non parametric maximum likelihood estimator
(NPMLE)10. We distinguished between flexible
support size and fixed support size; in the first case
the number of mixing components k was unknown,
and in the later case, k was assumed to be known.
In either case the estimation was done using
maximum likelihood approach, which could be
implemented by EM (expectation maximization)
algorithm. The algorithm is detailed below (The
theoretical basis is given in the Appendix). However,
we have accomplished this by using the computer
package C. A. MAN6. The software description
is given by Schlattman and Bohning 11.
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Weight

jp

0.3418

0.4410

0.2172

0.4631

0.3173

0.1052

0.1144

0.0031

0.3151

0.4470

0.1431

0.0916

Components Log-likelihoodParameter

λ j

0.420

0.686

1.632

0.449

0.752

1.379

1.842

0.415

0.416

0.665

1.398

1.905

Table II. Maximum likelihood estimates provided by C. A.
MAN

k=3

k=5

-224.2514

-220.1599

-220.7683

k=4

 The algorithm for estimating the weights pj

and parameters λ j  of Poisson mixing distribution:

1. Start with some initial values for  pj  and λ j ,
 j = 1, 2, …, k

2. E-step: Compute Eij,  expected log-likelihood,
by Bayes formula:

λ

λ∑
j i i j

ij
r i i r

r

p f(o | e )
E =

p f(o | e )  i = 1, 2, ..., n

where f(x|m) =mxe-m/x!

3. M-step: Maximization of the expected
log-likelihood function. This gives new values
for the parameters:

j ij
i

p = E /n∑

λ ∑ ∑j ij i ij i
i i

= E o / E e

4. Repeat the steps 2 and 3 with new
approximates until the desired accuracy is
achieved.

Using C. A. MAN package, the NPMLE of
the mixture distribution was obtained for each value
of k ranging from 3 to 5. The results are given in
Table II.

Since the values of log-likelihood were almost
equal for the models k=4 and k=5, any one of
these models could have been chosen. But we
selected the model k=4 so as to have a parsimonious
model. The observed values oi were found to be
arising from four subpopulations where  j- th
subpopulation represented fraction pj  of the whole
population and  j-th subpopulation had Poisson
distribution with parameters ei jλ , j = 1, 2, 3, 4.
The estimated values of 

jλ  and  p j  were

0449 0.752 1 .379 1 .842ˆ
0.463 0.317 0.105 0114

P
 

=  
 

and the mixture density was given by

ˆ 0 . 4 6 3 | 0 .4 4 9 ) 0 . 3 1 7 | 0 . 7 5 2 )i i if (o | P ) f(o f(o= + +

0.105 ( |1.379)if o 0 . 1 1 4 ( | 1 . 8 4 2 )if o+

where ( | ) ( ) / !i j ie o
i j i j if o e e o−= λλ λ

We next assigned each ward to one of the four
subpopulations having relative risk

jλ (j = 1, 2, 3, 4). For this, we computed the
posterior probability for the membership of i-th ward
in j-th subpopulation, ( j = 1, 2, 3, 4) by Bayes
formula:

4
ˆ ˆˆ ˆ( | ) ( | ) / ( | ),

1
P o p f o p f oj i j i j r i jr

= ∑
=

λ λ λ

i=1, 2, 3, 4, j=1, 2, 3, 4.

The i-th area was assigned to that subpopulation
j for which it has the highest posterior probability
of belonging. Table III presents the posterior
probability and the assigned group membership for
all wards, and Choropleth map (Fig. 3) presents
these results. To identify low and high risk areas,
we combined the two smaller relative risks ( 1λ
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

0.135646538

0.389934008

0387464838

0.098848103

0.170247897

0.843992963

0.208579372

0.483691045

5.99289E-07

6.46946E-07

0.174384961

0.825215259

0.076967728

1.67458E-09

0.180178299

0.004769684

0.0007014

0.870045291

0.051554477

0.285182427

0.001602396

0.747497046

0.793876729

0.673547555

2.52884E-05

0.810059708

0.776621774

0.705267671

0.909122954

0.556326289

3.3658E-08

0.842721408

0.157706522

0.353681243

0.08536901

0.666156893

0.853255325

0.609623861

0.601444615

0.745550526

0.80623646

0.155661708

0.481105726

0.512079738

0.001428606

0.000678989

0.717469089

0.174271656

0.700438088

4.24132E-05

0.678607291

0.199186413

0.061386902

0.129838283

0.668330021

0.683158464

0.131905661

0.251731246

0.203776777

0.318066225

0.011112431

0.188844192

0.222600766

0.289129149

0.090871445

0.435784821

0.000127121

0.155835533

0.609101498

0.590688862

0.60169695

0.32466946

0.011023513

0.000441775

0.010807865

0.14042867

0.023064149

0.000341165

0.196478206

0.004168462

0.251978799

0.138527581

0.096905595

0.000505498

0.194583179

0.099340258

0.121022859

0.515270848

0.463109238

0.000115805

0.24354773

0.030129802

0.5529347

0.000763086

0.002224556

0.007732697

0.374166188

0.001065479

0.000766318

0.005245976

5.59885E-06

0.00757787

0.092118579

0.00136825

0.181410726

0.049207434

0.247567181

0.008426296

7.46248E-05

3.56373E-07

0.000282683

0.015172701

0.000451494

4.16357E-06

0.113836696

6.0755E-05

0.746591996

0.860792783

0.011240355

7.58744E-06

0.028011005

0.900617327

0.020191552

0.280773055

0.47480246

6.21098E-07

0.036567771

0.001529307

0.313557243

8.62198E-06

0.000121938

0.000653523

0.614696093

3.06218E-05

1.11424E-05

0.000357204

2.21567E-09

0.00031102

0.907754266

7.48088E-06

0.051781255

0.006422462

0.065366859

0.00074735

2

2

2

2

2

1

2

2

4

4

2

1

2

4

2

3

4

1

2

2

3

1

1

1

4

1

1

1

1

1

4

1

2

2

2

1

Contd...

Ward Posterior probability for components Associated

number 1 2 3 4 components

Table III. Posterior probabilities for each component of the mixture distribution
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2

1

1

1

2

1

2

1

1

1

1

1

3

2

1

1

3

1

1

3

2

4

4

4

4

1

1

1

2

1

2

2

1

1

2

2

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

0.467832766 0.487189558 0.038380638 0.006597038

0.887298097 0.112519772 0.00018009 2.04134E-06

0.813665512 0.185310594 0.000996264 2.76298E-05

0.682644404 0.309862062 0.006941297 0.000552237

0.372692889 0.580529964 0.041865087 0.004912061

0.780880987 0.217284306 0.001768113 6.65943E-05

0.433195684 0.540170024 0.024581396 0.002052896

0.892267595 0.107482962 0.000245213 4.23045E-06

0.937038126 0.06289327 6.78153E-05 7.88069E-07

0.832648616 0.165559113 0.001689093 0.000103178

0.966401582 0.033583612 1.47029E-05 1.02877E-07

0.539663668 0.445631 0.01370178 0.001003552

0.001527923 0.12761358 0.551248733 0.319609763

0.037970676 0.523942695 0.344426841 0.093659788

0.597578481 0.397342031 0.004922218 0.00015727

0.796300228 0.203560598 0.000138795 3.7971E-07

0.000101889 0.031204142 0.497730611 0.470963357

0.887682194 0.111860172 0.000444121 1.35135E-05

0.719907114 0.278946709 0.001130352 1.58246E-05

0.000351511 0.090309699 0.631729165 0.277609625

0.467733895 0.51999422 0.011770831 0.000501054

0.000292619 0.038926809 0.440566958 0.520213614

3.92524E-09 2.94011E-05 0.055426945 0.94454365

4.84048E-07 0.003191721 0.46155723 0.535250565

1.26098E-06 0.001135601 0.168786267 0.830076871

0.905559191 0.094339441 0.000100524 8.43776E-07

0.780671381 0.218601476 0.000717082 1.00613E-05

0.964194299 0.035801182 4.51164E-06 7.82811E-09

0.475575462 0.506681229 0.016649957 0.001093352

0.723906666 0.274371928 0.001683882 3.75227E-05

0.059360734 0.701760717 0.211318687 0.027559862

0.055987147 0.745591913 0.181201408 0.017219532

0.547875459 0.448666125 0.003403259 5.51563E-05

0.676938713 0.319866441 0.003098148 9.66974E-05

0.101946532 0.889031841 0.00898466 3.69681E-05

0.135787028 0.846977708 0.017047697 0.000187567

Ward Posterior probability for components Associated

number 1 2 3 4 components
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Fig. 3. Choropleth map of predicted components of mixture distribution.
(P - Population proportion & L - relative risk)

Madurai City Wards Risk Components

Components
p = 0.463, L = 0.449
p = 0.317, L = 0.752
p = 0.105, L = 1.379
p = 0.114, L = 1.842

and 2λ  which are less than 1) and the two higher
relative risks ( 3λ and 4λ which are more than 1).
The proportion of low risk in the population was
0.78 (= )1 2p + p  and that of high risk was 0.22
(= )3 4p + p .

Results

Under the binomial model, 26 wards (namely
4, 11, 7, 9, 10, 13, 14, 15, 16, 17, 19, 21, 25, 31, 33,
35, 49, 50, 53, 56, 58, 59, 60, 61, 67, 68) were
categorized as high risk region (SMR > 1). Under
the mixture model approach 15 wards were found
to have SMR more than 1. The five wards namely,
16, 21, 49, 53 and 56 were classified as belonging
to third subpopulation and 10 wards (namely 9, 10,
14, 17, 25, 31, 58, 59, 60 and 61) to fourth
subpopulation. Of these 15 wards, seven wards
(namely 9, 10, 16, 17, 21, 25 and 49)  were situated
on the bank of river Vaigai. The remaining wards
were densely populated. Thus, the densely populated

wards, and those along the river Vaigai, had high
risk for TB incidence.

Discussion

In this study, we outlined the traditional method
of computing SMR according to some basic models,
namely, binomial and Poisson. For the spatially
referenced data, due to the presence of over-
dispersion, the traditional methods fail. Several
efforts have been undertaken to provide valid
estimates of SMR7-9.  We used the mixture
distribution approach 5,6 which are known as
empirical Bayesian methods12.

One of the pitfalls connected with this approach
was in determining the number of components of
the mixture of distributions. We solved the problem
by computing (from C. A. MAN) the log-likelihood
ratio statistic and by comparing the log-likelihood
ratio statistic among subpopulations. Another
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weakness of this non parametric empirical Bayes
approach lies in the fact that it does not take
autocorrelation into account. However, from a
mathematical point of view, mixture models within
an empirical Bayes framework provide a
satisfactory method of clustering regions13.
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