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Abstract 

Quality of Service (QoS) is an important enablerfor communication in industrial environments. The 
ArrowheadFramework was created to support local cloud functionalitiesfor automation applications by means of a 
Service OrientedArchitecture. To this aim, the framework offers a number ofservices that ease application 
development, among them theQoSSetup and the Monitor services, the first used to verify andconfigure QoS in the 
local cloud, and the second for onlinemonitoring of QoS. This paper describes how the QoSSetupand Monitor 
services are provided in a Arrowhead-compliantSystem of Systems, detailing both the principles and 
algorithmsemployed, and how the services are implemented. Experimentalresults are provided, from a 
demonstrator built over a real-timeEthernet network. 
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Abstract—Quality of Service (QoS) is an important enabler
for communication in industrial environments. The Arrowhead
Framework was created to support local cloud functionalities
for automation applications by means of a Service Oriented
Architecture. To this aim, the framework offers a number of
services that ease application development, among them the
QoSSetup and the Monitor services, the first used to verify and
configure QoS in the local cloud, and the second for online
monitoring of QoS. This paper describes how the QoSSetup
and Monitor services are provided in a Arrowhead-compliant
System of Systems, detailing both the principles and algorithms
employed, and how the services are implemented. Experimental
results are provided, from a demonstrator built over a real-time
Ethernet network.
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I. INTRODUCTION

The Service Oriented Architecture (SOA) has been used

by several to implement Internet of Things (IoT) automation

[1]. The Arrowhead project is a large European effort that

aimed at normalizing by means of SOA design the interaction

between IoT applications. The effort targeted many application

domains comprising industrial production, smart buildings,

electromobility, and energy production. Services are exposed

and consumed by (software) systems, which are executed on

devices, which are physical or virtual platforms providing

computational resources. The devices are grouped into local

automation clouds, which are self-contained, geographically

co-located, independent from one another, and mostly pro-

tected from external access through security measures.

Arrowhead services are considered either application ser-

vices (when implementing a use case), or core services (that

provide support actions such as service discovery, security,

service orchestration, and protocol translation). To ease the de-

velopment of new applications, the core services are included

into the common Arrowhead Framework [2]. The Arrowhead

Framework is intended to be either deployed at the industrial

site, or accessed securely, for example through a VPN.

Distributed IoT automation requirements includes latency,

security and packet delivery. Realisations of IoT-based au-

tomation systems would benefit greatly from Quality of

Service (QoS) capabilities, including service-oriented man-

agement and monitoring of different QoS characteristics. In

fact, industrial applications depend on the quality of infor-

mation communication, since they drive actions on industrial

processes, which in different scenarios are inherently time-

dependent, require communication robustness, sufficient band-

width, or other stringent QoS requirements [3], and in fact

the problem of QoS in clouds has already been targeted by

research efforts, such as in [4].

The QoSSetup and the Monitor are two core services

devoted to supporting QoS in Arrowhead local clouds. The first

is provided by the QoSManager system, and it is consumed

by systems to verify that QoS requirements are feasible in

a local cloud, and to actually request the configuration of

network actives and devices to grant given QoS, this latter

including performing reservation on resources such as network

bandwidth and device processing time. The Monitor service,

produced by the QoSMonitor system, is used to instruct

the system to collect data from network actives and devices

regarding the performance of a service, and compare it with

required QoS. Should the local cloud not meet the configured

QoS, the QoSMonitor sends a message to interested parties

regarding the QoS fault through the Event Handler service [5].

This work, after reporting some background information in

Section II, discusses the architecture of QoS-related systems

and services, firstly presented in [6] and detailed in Section

III. Section IV provides a formal description of the problem

of setting up a particular kind of QoS, communication delay

in heterogeneous networks, and a preliminary algorithm that

is executed on the QoSManager to verify and set up QoS.

Section V describes a demonstrator where the QoSManager

and QoSMonitor capabilities are used on top of the Flexible

Time Triggered - Switched Ethernet (FTT-SE) technology.

Section VII draws conclusions and discusses future work.

II. BACKGROUND INFORMATION

This section provides details on the Arrowhead Framework,

and on technologies that can support real-time communication.

A. The Arrowhead Framework

The core services of Arrowhead takes care of the main-

tenance of the local cloud itself and of non-functional re-

quirements of use cases, and are included into, and shipped

in the form of, the Arrowhead Framework [2]. Even in the

most minimal local cloud, the core services take care of978-1-5090-5788-7/17/$31.00 c©2017 IEEE



Fig. 1. An Arrowhead local cloud comprising an orchestrated service instance.

registration and discovery of services, systems and devices

(ServiceDiscovery service, or SD), security (Authentication

service, or AA), and orchestration of complex services (Or-

chestration service, or O). Figure 1 shows an example featuring

just the connection between application services (depicted in

yellow). The application systems are also consumers of the

core services.

The Orchestration service is used to assemble complex

services, which may be comprised of several individual ser-

vices. To this aim, services, systems and devices in an Arrow-

head local cloud have to be registered, and through the reg-

istries (ServiceRegistry, SystemRegistry and DeviceRegistry

systems) the Orchestrator can access a global view of the

local cloud. Orchestrated services can be ”pulled” by service

consumers, or can be ”pushed” by the Orchestrator itself when

it detects changes in the local cloud that create the need for a

reconfiguration.

The Arrowhead Framework provides a large set of support

Core Services, among which the Historian, Configuration

Manager and Event Handler are examples carrying obvious

names. Arrowhead also enables the development of systems

of systems supported on multiple protocols, like REST, MQTT

and COAP. Further details are provided for example in [2].

B. Network support for real-time communications

Applications have different QoS requirements in terms of

latency, security, robustness or bandwidth, just to name a few

qualities. Nowadays, most automation applications are sup-

ported on closed systems with limited capabilities to evolve.

The trend on applying Industrial IoT (IIoT) technologies and

specifically SOAs to these systems require changes on the

philosophy applied to their development [7].

Proposed in 1998, the Flexible Time-Triggered (FTT)

paradigm [8] can handle time-triggered and event-triggered

messages, timelines guarantee, and temporal isolation support.

Its master/slave architecture allows a centralized message

scheduling by a single node in the network called master. The

centralized scheduling allows a dynamic QoS management and

the master/multislave control makes the network deterministic,

capable of supporting TDMA communication that is inherently

immune to collisions.

The master schedules the traffic in Elementary Cycles (EC),

which are divided into 3 parts, one for the Trigger Message

(TM), one for synchronous messages, and one for asyn-

chronous messages. The TM is always sent by the master at the

beginning of the EC, and it contains scheduling information

for the communication activities. Synchronous messages are

periodic and are sent over time slots that are reserved in

advance. Asynchronous messages are associated with priority

values, the master takes care of scheduling messages taking

into account the respective priorities, and the TM specifies

which messages are allocated to each EC.

The FTT - Switched Ethernet (FTT-SE) [9] is based on the

FTT paradigm, and brings a novel advantage, the absence of

collisions between concurrent communication between differ-

ent slaves. Due to its micro-segmented switch-based structure,

each port in the switch is a private domain collision.

A number of works have addressed the problem of verifying

QoS feasibility. The work in [10] proposes some algorithms

to deal with the composition of real-time services, where

it considers the real-time requirements in the context of

Ethernet networks, using the FTT-SE protocol. This protocol

can be modeled using a mathematical holistic analysis model

proposed in [11], which accounts for the processing time

of the nodes involved on a transaction and provides hard

real-time guarantees. Similarly, the work in [12] is capable

of providing real-time guarantees for beacon-enabled IEEE

802.15.4 networks.

The HaRTES [13] technology is quite similar with the FTT-

SE one, and its main advance is that the master node is

incorporated into the switch.

Different fieldbus technologies have been invented or mod-

ified to provide real-time communication or other kinds of

QoS guarantees [14], comprising PROFIBUS, PROFINET and

CANopen. They make use of either TDMA communication,

paired with token-based rotation between the bus masters, or

dominance-based prioritized communication.

III. SOS ARCHITECTURE

Any Arrowhead-compliant local cloud is service-oriented

and structured as a System of Systems (SoS). Services are

orchestrated either in a reactive (orchestration pull) or proac-

tive (orchestration push) way by the Orchestrator system. The

QoS-related services are provided by the QoSManager and the

QoSMonitor system, which are devoted to QoS verification

and configuration, and QoS online monitoring, respectively.

This section recalls and extends the work in [6], and targets

a number of questions on the QoS architecture, which is

represented in Figure 2, such as which types of QoS are

provided, how QoS-related systems interact with the core

systems and with non-SOA elements, and how QoSManager

and QoSMonitor are structured.

A. Which QoS for the service?

QoS is required in many industrial applications, for example

on distributed control loops. This work identifies 4 classes,

related to the QoS dimensions on which most industrial appli-

cations focus. Delay implies the execution of communication

and computation within a deadline, both on the time elapsed



Fig. 2. Architecture for QoS in Arrowhead.

for a message delivery, and end-to-end delay of a service

invocation. This class of QoS objectives spans over both hard

real-time and soft real-time constraints. Bandwidth refers to

guarantees for sufficient communication and computational re-

sources, concretized as constraints on the minimum bandwidth

for data produced / transmitted in a time unit, and on the

number of service requests supported in a time unit. Resources

Limits protects the SoS against services, since it prevents

resource choking by limiting the resources that a system or

service consumes. Communication Semantics is a class used

to request assurance of receiving the message at least once, of

not receiving duplicated messages, and of receiving messages

in the same order they were produced.

The QoS classes and parameters are applied in environments

that vary in terms of device capabilities (techniques that

were developed for internet nodes are applied to resource

constrained IIoT devices), kind of networks (both traditional

contention-based networks, real-time capable networks, and

heterogeneous networks have to be supported, the latter refer-

ring to automation systems that span across multiple networks

with different technologies), scalability (local cloud can be

limited to a few computers, or span over a large complex of

factories) and security (resource constrained devices and tra-

ditional computational nodes have to adapt security measures

to their computational capabilities).

B. How do the systems interact?

The QoSManager and QoSMonitor systems present differ-

ent needs to be able to function properly, which shape the set

of systems and devices they interact with (refer to Figure 2).

The QoSManager needs as much knowledge as it can ac-

quire, since it must compute QoS feasibility based on structure

and condition of the whole local cloud. The Orchestrator

already acquires that knowledge from the registries when

orchestrating services. Thus, the Orchestrator can feed the

information to the QoSManager when querying it.

As discussed in [6], QoS verification and configuration is

usually done at service orchestration time (orchestration pull)

or local cloud reconfiguration (orchestration push). Moreover,

the same work showed that a good option was to consider

the QoSManager as a plugin that is interrogated by the

Orchestrator whenever it builds QoS-enabled services, and that

QoSManager services are consumed by the Orchestrator only.

Apart from the information received from the Orchestrator,

we consider that the QoSManager has exclusive control of a

database, called QoS Store, that contains information regarding

resource reservations. The QoSManager consumes the Monitor

service, to instruct the QoSMonitor system regarding what to

monitor in the local cloud.

We consider that some devices and most network actives are

not Arrowhead-compliant yet. The QoSManager is equipped

with a module called QoSDriver, or QoSDrv, that provides a

uniform interface for the configuration of QoS parameters on

network actives and devices. The QoSDriver acts as an adapter

between the non-SOA protocols of the network actives and

devices, such as SNMP, Nagios [15] and OpenFlow [16].

The QoSMonitor system receives a set of characteristics

to monitor from the QoSManager, and it consumes publish-

oriented services [5] to publish QoS information and QoS

faults to peers that require awareness of the local cloud perfor-

mance. As discussed in [6], the systems that need information

regarding QoS faults are either the service consumer, to ”pull”

a new orchestrared service, or the Orchestrator system, to

compute autonomously new orchestrated services that will be

”pushed” to service consumers. The QoSMonitor consumes

services to acquire information regarding the performance

of the local cloud, and to this aim it is possible to add

software modules (QoSM in Figure 2) to devices, through

which accessing performance data in an Arrowhead-compliant

manner.

C. How is QoSManager structured?

The QoSManager acts as a plugin for the Orchestrator.

When a service consumer asks for an orchestrated service,

it can set up QoS requirements. The Orchestrator computes

alternative orchestrated services and verifies them through the

QoSManager until one of them appears to support required

QoS. Finally, the Orchestrator requests the QoSManager to

perform the reservations to grant the QoS, and returns the

orchestrated service to the system consuming the service.

The set of elements that can be configured by the QoS-

Manager comprises devices’ traffic smoothing filters on the

output of service producers or consumers, parameters like

traffic priority and delivery guarantees of message oriented

middleware with QoS capabilities, like DDS [17], AMQP /

MQTT [18] or XMPP [19]. Network actives such as switches,

routers or gateways can also be configured in order to control

the bandwidth of specific message streams. The QoSManager

is also equipped with a QoSDriver module that mediates

any non-Arrowhead interaction used to configure the network

actives and devices.

To be able to support the plethora of network technologies

that are currently in the market, the QoSManager makes

use of a QoSAlgorithm module, which performs calculations

to verify that QoS requirements are feasible, and determine



the system parameters that are capable of fulfilling the QoS

requirements, taking into account the current status of the local

cloud. These algorithms can be based on different mathemat-

ical models of the system of systems, and the QoSManager

can comprise multiple algorithms for the same technologies,

for example to perform comparison of their efficiency.

In some cases, the QoSManager might be capable of con-

figuring the device running the service producer and consumer

in order to have response time guarantees for coding/decoding

the request and providing a reply. Thus, the QoSManager

must be aware of the applications and threads running on

the devices and it must be able to configure these devices

through a specific interface. More complex situations occur

when services are composed by set of services running on

different devices. Assuming that the application requires a

specific response time, then, in both cases response time

calculation tools, like holistic analysis [20] have to be applied

in order to integrate communications with task scheduling.

QoS requirements are sent to the QoSManager by means

of its QoSSetup service, and they are specified by means of

Service Level Agreements (SLAs) mechanisms [21], [22]. The

usage of SLAs for setting up QoS parameters for embedded

computing was already proposed in [23], where a common

platform hosted both critical applications and mainstream

embedded applications, having strict timing requirements the

first, and need for energy saving and low cost the second.

The QoSManager must have access to a global view of

the local cloud including network topology and capabilities of

each device. Depending on the scenario, these data will be pro-

vided by the Orchestrator when requesting QoS verification,

or retrieved by the QoSManager by contacting the Service

Registry, System Registry, Device Registry. The QoSManager

has also access to its own QoS Store, which is a SOA database

that holds information regarding the resource reservations

active in the local cloud. The data in the QoS Store are kept

aligned with the QoS configurations deployed onto network

actives and devices. Should the system of systems host more

than one QoSManager system, all of them will refer to the

same QoS Store to gain a consistent vision.

D. How is the QoSMonitor structured?

By means of the QoSMonitor system, the Arrowhead

Framework becomes capable of performing real-time mon-

itoring of the performance of services, system and devices

hosting Arrowhead compliant systems. The QoSMonitor main

functionality is to monitor violations of SLAs between ser-

vice producers and consumers, and to inform other systems

regarding QoS faults. The QoSMonitor makes use of modules

running over devices, or indirectly by accessing logs of

network actives or other devices, to monitor the behaviour

of devices and network actives over time. Violation of QoS

requirements and its status is disseminated using the Event

Handler system.

Additionally, some dynamic and adaptable QoS algorithms

require the knowledge of the status of the local cloud during

run-time in order to adapt to changing conditions. As an

example one of the Arrowhead pilots is capable of reducing

its sampling rate and consequently the consumed bandwidth in

order to support more devices in an IEEE 802.15.4 network.

This can be achieved by monitoring the network status using

the QoSMonitor system, and informing the interested parties,

using the Event Handler.

IV. QOS IN HETEROGENEOUS NETWORKS

This section provides a formal definition of the problem

of verifying QoS feasiblity in heterogeneous networks, and

proceeds on proposing a preliminary algorithm for its soluton.

Further on, a concrete example based on FTT-SE and 802.15.4

networks is described.

A. Formalization of the problem

Let us consider that a set of A periodic applications

a1, ..., aA are executed over a heterogeneous network. Each

application is characterized by a period Ti, a deadline Di

and a number of bits that must be transmitted Ci, i.e.:

ai = {Ti, Di, Ci}.

Each application involves the transmission of data over mul-

tiple networks of different types, and thus the communication

of application ai is divided into Qi steps {qi1, ..., qiQi
}.

Let us consider for simplicity that each step qij is executed

over a network Nk that uses TDMA, act over different physical

broadcast domains, is divided into superframes of duration mk,

and capacity zk bits. Moreover, each network has associated

a function that provides the network resources consumed to

send messages, i.e. sending payload of size x on network Nk

will consume a total of fk(x) of the capacity of the network.

The function allows to take overheads into account. A boolean

pijk is equal to 1 if step qij is executed over the network nk,

else it is 0.

The goal of the scheduliing algorithm is to assign booleans

to the scheduling variables sijl, which assume value 1 if and

only if step qij involves a data transfer in the superframe l of

the related network.

The constraint on the capacity of the networks can be

expressed as: ∀k∀l
∑

i

∑

j pijksijlfk(Ci) ≤ zk
A condition that is sufficient (but not necessarily stringent)

for the correct assignment of the scheduling variables sijl is

that the sum of the transmission times on each step qij of

application ai is under the deadline Di of the application, thus

∀i
∑

j

∑

k pijkdijmk ≤ Di thus the problem involves finding

partial deadlines dij such that ∀i∀j∀v
∑v+dij

l=v+1
sijl ≥ 1

The full formalization of the problem is thus:

Given a set of A periodic applications ai =
{Ti, Di, Ci, qij}, a set of networks Nk with superframe

duration mk, capacity zk, that consumes fk(x) to send x

bits, with {0, 1} ∋ pijk equal to 1 em if and only if step

sij is executed on network Nk, Nk = {mk, zk, pijk}, find

sijl ∈ 0, 1 and dij ∈ N such that:






∀i
∑

j

∑

k pijkdijmk ≤ Di

∀i∀j∀v
∑v+dij

l=v+1
sijl ≥ 1

∀k∀l
∑

i

∑

j pijksijlfk(Ci) ≤ zk



Fig. 3. Testbed for QoS experiments in Arrowhead.

B. QoS Algorithm

A simple approach to the problem of scheduling communi-

cation actrivities with QoS requirements, is inspired by the

traditional work of Layland [24]. We advocate associating

a fixed priority to each application ai as a function of the

communication deadline Di. Each node will schedule the

communication based on this priority, with the priority of

application ai inversely proportional to its deadline Di.

To verify QoS requirements, a conservative approach is

to build the critical instant [24] for each network Nk, and

to calculate the time tij for completing each step qij , i.e.

sending the relevant message on the related network. For each

network Nk, the usual equations to compute the worst case

communication time are used.

To stay on the safe side, if two messages have the same

priority, for example if they pertain to different steps qij1 and

qij2 of the same application ai, the time for sending both

messages is considered as the time when both qij1 and qij2
are completed.

To verify the requested QoS, it is sufficient to sum up

all the tij for each application ai, and compare them to the

deadline Di. If the total communication time is smaller than

the deadling Di, the QoS request is feasible, and the computed

priorities are implementing it.

C. Example

Let us consider a simplified scenario with just a FTT-SE

network and one 802.15.4 network. The nodes in the set X =
x1...xX are on a unique FTT-SE bus and have no 802.15.4

interfaces. Relayers compose the set Y = y1...yY , are located

on the FTT-SE bus, and can also communicate over 802.15.4.

A third set of nodes Z = z1...zZ have 802.15.4 interfaces,

but are not on the FTT-SE network. Let us consider that each

node in the X set wants to execute a client/server protocol

with the server nodes, which compose set Z.

The following broadcast domains are involved: one 802.15.4

wireless domain, the Ethernet lines of the nodes in X , and the

Ethernet lines of the nodes in Y . Each application involves a

packet that gets from a node in set X to a node in set Y , then

to a server Z, then back to the node in Y , and finally back to

the node in X . Since each relayer can receive messages from

multiple nodes, the bottlenecks on the FTT-SE lines are on

the side of the relayers in Y , and the lines to the broadcast

domains corresponding to the nodes in X can be disregarded.

The problem is formalized considering that there is one

broadcast domains N1, ...NY for each relayer in Y , plus a

802.15.4 broadcast domain N0 (thus index k ∈ [0, Y ]); 1
application a1, ..., aX per node in X , each one having period

Ti, deadline Di, Ci bits to send, 4 steps (thus index j ∈ [1, 4]),
and association to the networks such as step 2 and 3 are in

the 802.15.4 physical medium N0, and the other two are in

the same broadcast domain b(i), which is also reflected by the

pi1k = pi4k = 1 when k = b(i) only. The network N0 has got

superframe duration m0, capacity z0, that consumes f0(x) to

send x bits, all the FTT-SE broadcast domain have the same

superframe duration m1, capacity z1, and consumes f1(x) to

send x bits. The problems reduces to finding find sijl ∈ 0, 1
and dij ∈ N such that















∀i di1m0 + di2m1 + di3m1 + di4m0 ≤ Di

∀i∀j∀v
∑v+dij

l=v+1
sijl ≥ 1

∀l
∑

i(si2l + si3l)f0(Ci) ≤ z0
∀k ∈ [1, Y ] ∀l

∑

i pi1k(si1l + si4l)f1(Ci) ≤ z1

V. TESTBED PLATFORM

A testbed was implemented, to demonstrate QoS over an

Arrowhead local cloud. Figure 3 depicts the deployment view

of the local cloud. The testbed makes use of a FTT-SE

network, which can provide hard real-time to communication

flows. The testbed comprises the Arrowhead environment,

consisting in the core systems, among them Orchestrator,

QoSManager and QoSMonitor, and the FTT-SE environment,

which comprises an EntryPoint to the network, service con-

sumers and producers, and the master of the FTT-SE.

The testbed considered that all except ServiceDiscovery-

related systems were installed locally. The ServiceDiscovery

service was reached through a Virtual Private Network over in-

ternet. A preliminary video describing the testbed is available

on [25].

A. Arrowhead Core Services

The architecture of the Arrowhead Framework comprises

three services that must be part of any Arrowhead local cloud.

As discussed in Subsection II-A, they take care of service,

system and device registration (ServiceDiscovery service),

security (Authentication service) and service orchestration

(Orchestration service). This latter service is provided by the

Orchestrator system, which takes care of building orchestrated

services and providing them to service consumers as per ”pull”



or ”push” interaction (Section III). The Orchestrator uses the

QoSManager as a plugin to verify and configure required QoS

for the orchestrated services.

The QoSSetup and Monitor services are core services, and

are produced by QoSManager and QoSMonitor systems. They

are described in their specific subsections since they are the

main implementation results of this work.

Just like the QoSMonitor and QoSManager, the Event

Handler is a core system of the Arrowhead Framework. It pro-

vides publish/subscribe communication, filtering of events, and

storage of information regarding events, for the SOA world. It

provides 4 services: the Registry service stores and keeps track

of all consumers and producers, and of their subscriptions;

a producer accesses the Publish service to disseminate the

events it produces; the Notify service must be provided by

each event consumer, and it will be accessed by the Event

Handler to deliver event data; the GetHistoricalData service

stores permanently events in a database, log file or through

the Arrowhead Historian service, and returns data regarding

events as response to queries. More details are given in [5].

B. QoSManager

Acting as a support system for the Orchestrator system,
the QoSManager provides services to verify QoS parameters,
and configure the systems and network actives of the local
cloud. QoS parameters are specified by means of Service Level
Agreements (SLAs). As most Arrowhead-compliant services,
the Orchestration can accept messages encoded in XML,
JSON, and other formats. When a service consumer requests
a QoS-enabled service, it has to include the SLA into the
orchestration request message to the Orchestrator. An example
of a QoS-related SLA encoded in JSON is as follows:

...

"requestedQoS":{

"entry": [

{

"key": "delay",

"value": "40"

},

{

"key": "bandwidth",

"value": "250000"

}

]

}

...

The interaction between Orchestrator and QoSManager

happens by means of the QoSSetup service, which exposes

two functionalities, the verification of QoS requests with the

support of specific communication protocol algorithms, whose

preliminary design was described in Section III, and the

configuration of all the necessary network actives and devices

to guarantee the selected QoS with the support of specific

communication protocol drivers.

Internally, the QoSManager is articulated into three major

components: QoSSetup, where the core logic is implemented,

the QoSDriver, and the QoSVerifier. The QoSSetup component

manages all the core operations such as interaction with

other systems. QoSDriver acts as an adapter to interact with

non-Arrowhead-compliant devices and network actives, to

configure them according to the request by the Orchestrator.

QoSVerifier verifies the feasibility of QoS parameters on a

specific set of network technologies.

To support the QoSSetup service, the QoSManager must

keep track of the network devices configuration and the QoS

reservations of computational resources. In particular, the

QoSManager accesses two stores: the Config Store, which

extends the information received by the Orchestrator with

data regarding network topologies, capabilities of the network

actives and devices, configuration of both network actives

and systems; the QoSStore, which keeps track of resource

reservations over the network actives and systems.

C. QoSMonitor

The QoSMonitor provides two services, the Monitor and

the Log service, used by the QoSManager to configure what

must be monitored in the local cloud, and by systems to report

performance data, respectively. The QoSMonitor periodically

compares communication performance between one service

producer and one service consumer, against QoS contracts ac-

cepted by the QoSManager system, and then informs interested

parties of any QoS violation using the Event Handler [5].

The QoSMonitor’s architecture is divided into three major

components: the Monitor, the Protocol, and the DatabaseM-

anager. The Monitor component implements the core logic,

for example to manage the periodic access to logs on net-

work actives. Protocol provides a library of interfaces for

specific communication protocols. The DatabaseManager is

responsible for all database-related operations, and is able to

support interaction with both SQL and NoSql databases and

the Arrowhead Historian service.

The QoSMonitor captures information regarding communi-

cation between systems using two strategies. Several QoSMs

modules are installed over the devices in the local cloud, and

they collect information regarding the performance of service

fruition, and provide them to the QoSMonitor through the

Log service. Moreover, the QoSMonitor can use its Protocol

component to access network active performance logs through

traditional (non-SOA) protocols.

To keep track of both active SLAs, and of the actions that

must be made to retrieve performance data, the QoSMonitor

owns a MonitorStore. This database can be also used to store

log data (performance, events, etc).

D. EntryPoint

The EntryPoint acts as a bridge between the Arrowhead and

the FTT-SE environments. REST-based Arrowhead communi-

cation uses the IP address of devices, but FTT-SE nodes use

MAC addresses, and the EntryPoint masquerades the identity

of a system in the FTT-SE network by providing it with an

Arrowhead-compliant address.

The EntryPoint is connected to producers and consumers

by means of a wireless interface and traditional TCP/IP com-

munication. During the mediation between the environments,

the EntryPoint changes the messages protocol from the TCP



stream to Arrowhead-compliant service-oriented HTTPS, or

the other way around.

E. FTT-SE master, and service producers and consumers

These non-Arrowhead-compliant devices are equipped with

an IEEE 802.3 interface for FTT-SE protocol. The FTT-SE

master manages the FTT-SE network by receiving requests

from the slaves to reserve communication opportunities, and

broadcasting Trigger Messages to specify what time each

slave, such as the producer and the consumer, can commu-

nicate with another slave (details are given in Subsection II-B

and in [9]).

The producer and consumer have also a wireless inter-

face to perform TCP/IP communications with the EntryPoint

and, through it, with the Arrowhead Framework. The service

consumer sends an orchestration request with a SLA to the

Orchestrator through the EntryPoint. The answer contains a

user field with the parameters that the service consumer must

use to request a data stream on the FTT-SE. After that, it will

contact the service producer to start consuming the service.

VI. EXPERIMENTAL RESULTS

The experiments involved the testbed described in the pre-

vious section, and a number of secondary service consumers

and producers that generated traffic to congestionate the FTT-

SE network. The experiments aimed at measuring the time

the consumer needs to start using a QoS-enable orchestrated

service, and the effect of QoS guarantees.

The service producer, in these experiments, is limited to

one service only. When contacted by the service consumer,

the producer answers with video data through the stream

specified, and configured, by the service consumer. The FTT-

SE network is based on a 100 Mbit/s 802.3 switch. The goal

of the service consumer is to receive a bandwidth of 250 KB/s

and a maximum delay of 40 ms per packet, which are the QoS

parameters requested through a SLA when QoS is enabled.

To experiment with high traffic condition, a number of

services were competing with the one requiring QoS. Two

computers were connected to the FTT-SE bus to simulate a

large number of random (uncorrelated) interacting systems.

The timing characteristics of the messages between the com-

puters were studied to simulate a configurable - and potentially

large - number of interacting parties.

A. Setup Phase

The setup time is the time elapsed between the request for a

QoS-enabled orchestrated service by the service consumer, and

the beginning of the service fruition. This time comprises the

communication, through the EntryPoint, with the Orchestrator,

the time needed by Orchestrator and QoSManager to verify

and set up the local cloud, and the time needed by the service

consumer to request a FTT-SE stream from the master.

Figure 4 shows the Cumulative Distribution Function (CDF)

of the elapsed time, measured over 1000 QoS-enabled service

orchestrations.

Fig. 4. CDF for orchestrating a QoS-enabled service

B. Service Fruition

Experiments compared the behaviour of service fruition

in a FTT-SE network under heavy traffic, for QoS-enabled

synchronous communication, and for asynchronous best effort

communication. Experiments were done for different bitrates

of the secondary traffic.

Figure 5 reports the bandwidth and the delay of service

fruition in an experiment involving non-QoS communication.

The FTT-SE network had no competing traffic until second 60
of the experiment. Later on, 200 producers started communi-

cating with a consumer with a communication bandwidth of

300 KB/s each. The results show that the required bandwidth

and delay contraints (250 KB/s, maximum delay of 40 ms)

were not attainable in the congested network.

When QoS was enabled, on the other hand, even with much

more aggressive secondary service consumers, both the delay

and the bandwidth QoS parameters were always respected.

C. Monitoring of QoS

The QoSMonitor provides a web-based graphical interface

(see the video describing the testbed [25]) that enables the

online visualization of the performance of service fruition in

a FTT-SE network.

Whenever a new stream is established between a producer

and consumer, the interface updates the QoS constraints that

are being monitored, and a dedicated graph is created for each

QoS constraint. The application reports messages regarding

QoS faults, as well as any other events regarding data incon-

sistency or packet failure. These messages correspond also to

the publication by the QoSMonitor of events through the Event

Handler to interested parties.

VII. CONCLUSIONS

The paper described how QoS can be applied to Arrowhead-

compliant local clouds, both in terms of architecture, of algo-

rithms to verify and configure QoS, and of implementaton on

a testbed based on FTT-SE technology. Experimental results

were provided regarding the set up of FTT-SE streams, and

on the different performance of QoS-enabled and best effort

service fruition.



Fig. 5. Bandwidth (left) and delay (right) for best effort service fruition.

Future works will extend the work done to other technolo-

gies, starting with IEEE 802.15.4, both in terms of QoSDriver

and of QoSAlgorithm. Later on, our study will regard the

implementation of Arrowhead-based QoS communication on

heterogeneous networks. Finally, more stringent feasibility

tests and more general problem formalization for the QoS

problem will be studied.
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