

Design and performance analysis of global
path planning techniques for autonomous
mobile robots in grid environments

Journal Paper

*CISTER Research Centre

CISTER-TR-170308

2017

Imen Chaari

Anis Koubâa*

Hachemi Bennaceur

Adel Ammar

Maram Alajlan

Habib Youssef

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/83044633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal Paper CISTER-TR-170308 Design and performance analysis of global path planning ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Design and performance analysis of global path planning techniques for
autonomous mobile robots in grid environments

Imen Chaari, Anis Koubâa*, Hachemi Bennaceur, Adel Ammar, Maram Alajlan, Habib Youssef

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: aska@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

This paper presents the results of the two-year iroboapp research project which aims at devising path planning
algorithms for large grid maps with much faster execution times while tolerating very small slacks with respect to
the optimal path. We investigated both exact and heuristic methods. We contributed with the design, analysis,
evaluation, implementation and experimentation of several algorithms for grid map path planning for both exact
and heuristic methods. We also designed an innovative algorithm called RA"17 that has linear complexity with
relaxed constraints, which provides near optimal solutions with an extremely reduced execution time as compared
to A"17. We evaluated the performance of the different algorithms and we concluded that RA"17 is the best path
planner as it provides a good trade-off among all the metrics, but we noticed that heuristic methods have good
features that can be exploited to improve the solution of the relaxed exact method. This led us to design new
hybrid algorithms that combine our RA"17 with heuristic methods which improve the solution quality of RA"17 at
the cost of slightly higher execution time, while remaining much faster than A"17 for large scale problems. Finally,
we demonstrate how to integrate the RA"17 algorithm in the Robot Operating System (ROS) as a global path
planner and we show that it outperforms its default path planner with an execution time 38% faster on average.

Research Article

Design and performance analysis
of global path planning techniques
for autonomous mobile robots
in grid environments

Imen Chaari1, Anis Koubaa2,3, Hachemi Bennaceur4,

Adel Ammar4, Maram Alajlan4,6 and Habib Youssef 5

Abstract

This article presents the results of the 2-year iroboapp research project that aims at devising path planning algorithms for

large grid maps with much faster execution times while tolerating very small slacks with respect to the optimal path. We
investigated both exact and heuristic methods. We contributed with the design, analysis, evaluation, implementation and

experimentation of several algorithms for grid map path planning for both exact and heuristic methods.We also designed an

innovative algorithm called relaxed A-star that has linear complexity with relaxed constraints, which provides near-optimal

solutions with an extremely reduced execution time as compared to A-star. We evaluated the performance of the different

algorithms and concluded that relaxed A-star is the best path planner as it provides a good trade-off among all the metrics,

but we noticed that heuristic methods have good features that can be exploited to improve the solution of the relaxed exact

method. This led us to design new hybrid algorithms that combine our relaxed A-star with heuristic methods which improve

the solution quality of relaxed A-star at the cost of slightly higher execution time, while remaining much faster than A� for
large-scale problems. Finally, we demonstrate how to integrate the relaxed A-star algorithm in the robot operating system as

a global path planner and show that it outperforms its default path planner with an execution time 38% faster on average.

Keywords

Robot path planning, exact methods, heuristic methods, large grid environments

Date received: 25 February 2016; accepted: 12 June 2016

Topic: Mobile Robots and Multi-Robot Systems

Topic Editor: Nak Young Chong

Associate Editor: Euntai Kim

Introduction

Motivation

Global path planning is a major component in the naviga-

tion process of any mobile robot. It consists of finding a

global plan of the path that will be followed by the robot

from an initial location to a target location. In the iroboapp

project,1 we addressed the design of intelligent algorithms

for mobile robots applications, in particular path planning

and multi-robot task allocation problems. In this article,

we present the main results of the project in what concerns

1PRINCE Research Unit, University of Manouba (ENSI), Manouba, Tunisia
2College of Computer and Information Sciences, Prince Megrin Data

Mining Center, Prince Sultan University, Riyadh, Saudi Arabia
3CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal
4Research Unit of Sciences and Technology, Al-Imam Mohammad Ibn

Saud Islamic University, Riyadh, Saudi Arabia
5PRINCE Research Unit, University of Sousse, Sousse, Tunisia
6Cooperative Robots and Sensor Networks (COINS) Research Group,

Saudi Arabia

Corresponding author:

Imen Chaari, PRINCE Research Unit, University of Manouba (ENSI),

Manouba 2010, Tunisia.

Email: imen.chaari@coins-lab.org

International Journal of Advanced

Robotic Systems

March-April 2017: 1–15

ª The Author(s) 2017

DOI: 10.1177/1729881416663663

journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 3.0 License

(http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

mailto:imen.chaari@coins-lab.org
https://doi.org/
http://journals.sagepub.com/home/arx
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage

mobile robot path planning in grid maps. Roughly, the

project aims at responding to this general question: Among

all existing search techniques and optimization approaches

proposed in the literature, what is the best approach to

solve the path planning problem? This represents the pri-

mary motivation behind this project.

For path planning, our objectives were to (1) investigate

existing approaches for solving the path planning problem,

(2) evaluate their performance, (3) design new and more

efficient approaches, (4) validate through extensive simu-

lations, (5) integrate them into real-world robots and

demonstrate their effectiveness. Firstly, we started by ana-

lysing the path planning problem and focused on grid map

path planning (eight neighbours). In the project, we had

particularly addressed large-scale problems with large map

sizes, reaching up to 2000 � 2000 grid maps. In fact,

although this problem has a polynomial complexity in the-

ory, when the problem size is huge, the execution time of

existing fast algorithms (e.g. like A-star (A�)) might be

very high. For example, we found out that the average

A� execution time on a 2000 � 2000 random obstacle map

may reach 296 s on a laptop equipped with an Intel Core i7

processor and an 8 GB RAM.

Problem and solution outline

Analysis of existing literature shows two major approaches

commonly used to address the path planning problem:

(1) exact methods such as A� and Dijkstra’s algorithms,

(2) heuristic methods such as genetic algorithm (GA), tabu

search (TS), and ant colony optimization (ACO). Typi-

cally, heuristic methods are used in the more general

problem, that is, motion planning. It generally pertains to

non-deterministic polynomial time hard problems, in par-

ticular for robotics arm navigation. However, there has

been several attempts to adapt these techniques to grid path

planning as well. In fact, Miao et al.2 used GA to solve the

global path planning in combination with the potential field

method. Shu and Fang3 used ACO to solve global and local

path planning in U and V-shaped obstacles. These works

only addressed small-scale scenarios with map sizes not

exceeding 100 � 100, and for most of these cases, it was

demonstrated that exact methods perform better.

In this article, we propose a comprehensive comparative

study between a large variety of algorithms, both exact and

heuristic as well as a relaxed version of A�, used to solve

the global path problem. In this work, our concern is not

only optimality but also the real-time execution for large

problems as this is an important requirement in mobile

robots navigation. In fact, we can tolerate some deviation

with respect to optimality for the sake of reducing the exe-

cution time of the path planning algorithm, since in real

robotics applications, it does not harm to generate paths

with slightly higher lengths, if they can be generated much

faster.

In a first step, we conclude that both exact and heuristic

methods are not appropriate for grid path planning and

show that relaxed A-star (RA�) is the best path planner as

it provides a good trade-off for all metrics. However, heur-

istic methods have some good features that could be

exploited to improve the solution quality of near-optimal

relaxed version without inducing extra execution time. Our

contribution in this article consists of the design of hybrid

algorithms that combine both the RA� algorithm and a

selected heuristic method, and we demonstrate their effec-

tiveness through simulation.

Contributions of the article

This article has three major contributions:

� We perform a comparative study between exact and

heuristic methods and a relaxed version of A�. We

conclude that heuristic and exact methods are not

appropriate for path planning in large grid maps.

We also show that RA� outperforms the other

algorithms;

� We propose a new hybrid path planners that com-

bine RA* and a heuristic method (GA/ TS/ACO);

� We integrate RA� planner in the robot operating

system (ROS) and show that it outperforms navfn,

the default path planner used in ROS.

Related works

Comparative studies of heuristic and exact
approaches

To the best of our knowledge, the only previous compara-

tive study of exact and heuristic approaches is the study by

Randria et al.4 In this article, six different approaches for

the global path planning problem were evaluated: breadth-

first search, depth-first search, A�, Moore–Dijkstra, neural

approach and GA. Three parameters were evaluated: the

distance travelled by the robot, the number of visited way-

points and the computational time (with and without initi-

alization). Simulation was conducted in four environments,

and it was demonstrated that GA outperforms the other

approaches in terms of distance and execution time.

Although the presented work evaluates the performance

of some exact and heuristics techniques for path planning,

there is still a need to evaluate them in large-scale environ-

ments as the authors limited their study to small-size envir-

onments (up to 40 � 40 grid maps). In this article, we

improve on this by considering a vast array of maps of

different natures (rooms, random, mazes, video games)

with a much larger scale up to 2000 � 2000 cells. Cabreira

et al.5 presented a GA-based approach for multi-agents in

dynamic environments. Variable length chromosomes

using binary encoding were adopted to represent the solu-

tions where each gene is composed of three bits to represent

2 International Journal of Advanced Robotic Systems

a motion direction, that is, up, left, down and so on. The GA

performance was compared to that of A* algorithm using

simulations with NetLogo platform.6 The results show that

the A* algorithm highly outperforms the GA, but the GA

shows some improvements in the performance when the

environment complexity grows. An extension for this work

was presented in the work by Cabreira et al.,7 where the

authors extended their simulations to complex and larger

environments (up to 50� 25) and proposed new operator to

improve the GA.

Comparative studies of heuristic approaches

In the literature, some research efforts have proposed and

compared solutions for path planning based on heuristic

approaches. For instance, a comparative study8 between

trajectory-based metaheuristic and population-based meta-

heuristic has been conducted. TS, simulated annealing

(SA) and GA were evaluated in a well-known static envi-

ronment. The experiment was performed in the German

University in Cairo campus map. Four evaluation metrics

were considered in the experimental study: the time

required to reach the optimal path, the number of iterations

required to reach the shortest path, the time per each itera-

tion and the best path length found after five iterations. It

has been argued that SA outperforms the other planners in

terms of execution time, while TS was shown to provide

the best solution in terms of path length. Sariff and Buniya-

min9 used two metaheuristics ACO and GA for solving the

global path planning problem in static environments. The

algorithms have been tested in three workspaces that have

different complexities. Performances between both algo-

rithms were evaluated and compared in terms of speed and

number of iterations that each algorithm makes to find an

optimal path. It was demonstrated that the ACO method

was more effective than the GA method in terms of exe-

cution time and number of iterations. Grima et al.10 pro-

posed two algorithms for path planning, where the first is

based on ACO and the second is based on GA. The authors

compared between both techniques on a real-world deploy-

ment of multiple robotic manipulators with specific spray-

ing tools in an industrial environment. In this study, the

authors claimed that both solutions provide very compara-

ble results for small problem sizes, but when increasing the

size and the complexity of the problem, the ACO-based

algorithm produces a shorter path at the cost of a higher

execution time, as compared to the GA-based algorithm.

Four heuristic methods were compared in the study by

Koceski et al.11: ACO, particle swarm optimization

(PSO), GA and a new technique called quad harmony

search (QHS) that is a combination between the quad tree

algorithm and the harmony search method. The quad tree

method is used to decompose the grid map in order to

accelerate the search process, and the harmony method is

used to find the optimal path. The authors demonstrated

through simulation and experiments that QHS gives the

best planning times in grid map with a lower percentage

of obstacles. The work by Gomez et al.12 presents a com-

parison between two modified algebraic methods for path

planning in static environments, the artificial potential field

method enhanced with dummy loads and Voronoi diagrams

method enhanced with the Delaunay triangulation. The

proposed algorithms were tested on 25 different cases

(start/goal). For all test cases, the system was able to

quickly determine the navigation path without falling into

local minima. In the case of the artificial potential field

method enhanced with dummy loads, the paths defined

by the algorithm always avoided obstacles (the obstacles

that cause local minima) by passing them in the most effi-

cient way. The algorithm creates quite short navigation

paths. Compared with Voronoi, this algorithm is computa-

tionally more expensive, but it finds optimal routes in

100% of the cases.

Comparative studies of exact methods

Other works compared solutions based on exact methods.

Cikes et al.13 presented a comparative study of three A�

variants: D�, two-way D* (TWD �) and E �. The algorithms

have been evaluated in terms of path characteristics (path

cost, the number of points at which path changes directions

and the sum of all angles accumulated at the points of path

direction changes), the execution time and the number of

iterations of the algorithm. They tested the planners on

three different environments. The first is a grid map ran-

domly generated of size 500 � 500, the second is a 165 �
540 free map and the third is a 165� 540 realistic map. The

authors concluded that E� and TWD� produce shorter and

more natural paths than D�. However, D� exhibits shorter

runtime to find the best path. The interesting point of this

article is the test of the different algorithms on a real-world

application using Pioneer 3DX mobile robot. The authors

claimed that the three algorithms have a good real-time

performance. Haro and Torres14 tackled the path planning

problem in static and dynamic environments. They com-

pared three different methods: a modified bug algorithm,

the potential field method and the A� method. The authors

concluded that the modified bug algorithm is an effective

technique for robot path planning for both static and

dynamic maps. A� is the worst technique as it requires a

large computational effort. Eraghi et al.15 compared A�,

Dijkstra and HCTLab research group’s navigation algo-

rithm (HCTNav) that have been proposed in the study by

Pala et al.16 HCTNav algorithm is designed for low

resources robots navigating in binary maps. HCTNav’s

concept is to combine the shortest-path search principles

of the deterministic approaches with the obstacle detection

and avoidance techniques of the reactive approaches.

They evaluated the performance of the three algorithms

in terms of path length, execution time and memory usage.

The authors argued that the results in terms of path

length of the three algorithms are very similar. However,

Chaari et al. 3

HCTNav needs less computational resources, especially

less memory. Thus, HCTNav can be a good alternative for

navigation in low-cost robots. In the work by Duchon

et al.,17 both global and local path planning problems are

tackled. The authors compared five different methods: A�,

focusedD�, incremental Phi�, Basic Theta* and jump point

search (JPS). They concluded that the JPS algorithm

achieves near-optimal paths very quickly as compared to

the other algorithms. Thus, if the real-time character is

imperative in the robot application, JPS is the best choice.

If there is no requirement of a real time and the length of

path plays a big role, then Basic Theta* algorithm is rec-

ommended. Focused D* and incremental Phi� are not

appropriate for static environments. They can be used in

dynamic environments with a small amount of obstacles.

Chiang et al.18 compared two path planning algorithms that

have the same computational complexity Oðn logðnÞÞ
(where n is the number of grid point): the fast marching

method (FMM) and A�. They tested the two algorithms on

grid maps of sizes 40 � 40 up to 150 � 150. The authors

claimed that A� is faster than the other planners and gen-

erates continuous but not smooth path, while FMM gener-

ates the best path (smoothest and shortest) as the resolution

of the map gets finer and finer. Other research works

addressed the path planning problem in unknown environ-

ments. Zaheer et al.19made a comparison study of five path

planning algorithms in unstructured environments (A�,

RRT, PRM, artificial potential field (APF) and the pro-

posed free configuration eigenspaces (FCE) path planning

method). They analysed the performance of the algorithms

in terms of computation time needed to find a solution, the

distance travelled and the amount of turning by the auton-

omous mobile robot and showed that the PRM technique

provides a shorter path than RRT but RRT is faster and

produces a smooth path with minimum direction changes.

A� generates an optimal path but its computational time is

high and the clearance space from the obstacle is low. The

APF algorithm suffers from local minima problem. In case

of FCE, the path length and turning value are comparatively

larger than all other methods. The authors considered that in

case of planning in unknown environments, a good path is

relatively short, keeps some clearance distance from the

obstacles and is smooth. They concluded that APF and the

proposed FCE techniques are better with respect to this

attributes. Al-Arif et al.20 evaluated the performance of

A*, Dijkstra and breadth-first search to find out the most

suitable path planning algorithm for rescue operation. The

three methods are compared for two cases: for one starting

one-goal cells and for one starting multi-goal cells in 256 �
256 grid in terms of path length, number of explored nodes

and CPU time. A* was found to be the best choice in case of

maps containing obstacles. However, for free maps, breadth-

first search is the best algorithm for both cases (one starting

one-goal cell and one starting multi-goal cells) if the execu-

tion time is the selection criteria. A* can be a better alterna-

tive if the memory consumption is the selection criteria.

Path planners under study

We have proposed and designed carefully the iPath

library21 that provides the implementation of several path

planners according to the following two classes of methods:

� Heuristic methods

� Exact methods

The iPath library is available as open source on GitHub

under the GNU GPL v3 license. The documentation of

Application Programming Interface (API) is available in

http://www.iroboapp.org/ipath/api/docs/annotated.html.22

Heuristic methods

The TS algorithm. In the study by Chaari et al.,23 we pro-

posed a TS-based path planner (TS� PATH). We adapted

and applied the different theoretical concepts of the TS

approach to solve the path planning problem in grid map

environments. The TS� PATH algorithm starts with an

initial path generated randomly using the greedy approach.

Then, it attempts iteratively to improve the current path

around an appropriately defined neighbourhood until a pre-

defined termination criterion is satisfied. Each neighbour

path is reached from the current path by applying a small

transformation called move, and we consider three differ-

ent moves in TS-PATH: insert move, remove move and

swap move. Before accepting a new move, we must verify

that it improves the current solution and also that the move

is not tabu. To avoid being trapped at a local optimum and

backtracking to already visited paths, the TS approach

keeps track of the recent moves in a temporary buffer

referred to as tabu list. Two tabu lists are considered in

TS� PATH: TabuListIn and TabuListOut. TabuListIn

contains the edges that are added to a path after carrying

out a move and TabuListOut contains the edges that are

removed from the path after performing a move. A move

that exists in a tabu list is considered a tabu move. To avoid

the search stagnation during a certain number of consecu-

tive iterations, we designed a new method of diversification

to guide the search towards new paths that are not explored.

The diversification begins with drawing a straight line

between the start and the goal positions. At the radius of

N cells (N is a random parameter), the algorithm chooses a

random intermediate cell, which will be used to generate a

new feasible path from the start to the goal cells across it.

The new generated path will be used as an initial solution to

restart the TS.

The GA. The second proposed path planner is GA.24 The

first step of GA consists of generating an initial population

of chromosomes. Each chromosome represents a path. The

robot path is encoded as a sequence of free cells. It begins

at a start cell and finishes with the goal cell joined by a set

of intermediate cells. To generate the initial population, we

start with generating an initial path using a greedy approach

4 International Journal of Advanced Robotic Systems

http://www.iroboapp.org/ipath/api/docs/annotated.html

based on Euclidean distance heuristic. To generate the

remaining paths in the initial population, the algorithm will

choose a random intermediate cell, not in the initial path,

which will be used to generate a new path from start to goal

cells across the selected intermediate cell. After the gener-

ation of the initial population, each path is evaluated and

ranked. The fittest paths are selected to form the current

generation. Two selection strategies were used in the GA:

elitist selection and rank selection. In each iteration, the

paths selected undergo two genetic operators called cross-

over and mutation. We implemented three different cross-

over operators: one point, two points and a modified

crossover presented in the work by Chaari et al.,25 in order

to compare between them and choose the best operator.

These steps are repeated until achieving the termination

condition.

The ACO algorithm. The third proposed algorithm is the

ACO algorithm.26 In nature, ants wander randomly, and

upon finding food return to their colony while laying down

a chemical substance called pheromone. If other ants find

such a path, they are likely not to keep travelling at random

but instead to follow the trail, returning and reinforcing it.

Over time, the quantity of pheromone is intensified on

shorter paths as they become more traversed than longer

ones. Within a fixed period, the pheromone trail evapo-

rates. Pheromone evaporation also has the advantage of

avoiding the convergence to a local optimal solutions.

In the solution construction phase, each ant is firstly

positioned on the start position and then it moves from one

cell to another to construct its own path. Before moving to

the next cell, the probabilities of candidate neighbour cells

are calculated using the pheromone rule probability that

takes into consideration two values: the pheromone trail

amount t and the heuristic information �. When the ants

finish constructing their paths, the pheromone trails are

updated by the ants that have constructed paths. So, the

edges belonging to constructed paths will gain more pher-

omone than others. Additionally, evaporation mechanism

causes pheromone decrease at some edges which are not in

the paths.

The neural network algorithm. The Hopfield-type neural net-

work (NN) presented in the study by Glasius et al.27 consists

of a large collection of identical processing units (neurons),

arranged in a d-dimensional cubic lattice, where d is the

number of degrees of freedom of the robot. This lattice

coincides with the grid representation of the state space such

that each state (including obstacles) is represented by a neu-

ron. The neurons are connected only to their z nearest neigh-

bours (where z ¼ 4 or 8, for a 2-dimensional workspace) by

excitatory and symmetric connections Tij. The initial state

qinit and the target state qtarg are represented by one node

each. The obstacles are represented by neurons whose activ-

ity is clamped to 0, while qtarg is clamped to 1. All other

neurons have variable activity i between 0 and 1 that changes

due to inputs from other neurons in the network and due to

external sensory input. The total input ui to the neuron i is a

weighted sum of activities from other neurons and of an

external sensory input Ii

ui ¼
X

N

j

TjisjðtÞ þ Ii (1)

where Tij is the connection between neuron i and neuron j

and N is the total number of neurons. These connections are

excitatory (Tij > 0), symmetric (Tij ¼ Tji) and short range

Ti;j ¼
0 if �ði; jÞ < r

1 otherwise

� �

(2)

where �ði; jÞ is the Euclidean distance between neurons i

and j. In the case of time-discrete evolution, the activity of a

neuron i (excluding the target and obstacles) is updated

according to the following equation

siðt þ 1Þ ¼ g
�

X

N

j

TjisjðtÞ þ Ii

�

(3)

where g is a transition function that can be a sigmoid or

simply a linear function:

� being the maximum number of neighbours. It is rig-

orously proven in the study by Glasius et al.27 that, with the

above conditions, the network dynamics converges to an

equilibrium. The obtained path leads from one node of the

lattice to the neighbouring node with the largest activity

and ends at the node with activity 1 (qtarget). The number of

steps and the length of the path obtained are proven to be

minimal.

Exact methods

The A* algorithm. The A � algorithm is a path finding algo-

rithm introduced in the study by Hart et al.28 It is an exten-

sion of Dijkstra’s algorithm. A � achieves better

performance (with respect to time), as compared to Dijk-

stra, by using heuristics. In the process of searching the

shortest path, each cell in the grid is evaluated according

to an evaluation function given by

f ðnÞ ¼ hðnÞ þ gðnÞ (4)

where gðnÞ is the accumulated cost of reaching the current

cell n from the start position S

gðnÞ ¼
gðSÞ ¼ 0

gðparentðnÞÞ þ distðparentðnÞ; nÞ

� �

(5)

hðnÞ is an estimate of the cost of the least path to reach the

goal position G from the current cell n. The estimated cost

is also called heuristic. hðnÞ can be defined as the Euclidian
distance from n toG. f ðnÞ is the estimation of the minimum

cost among all paths from the start cell S to the goal cell G.

The tie-breaking technique is used in our implementation.

The tie-breaking factor tBreak multiplies the heuristic

Chaari et al. 5

value (tBreak � hðnÞ), when it is used the algorithm favours

a certain direction in case of ties. If we do not use tie-

breaking, the algorithm would explore all equally likely

paths at the same time, which can be very costly, especially

when dealing with a grid environment. The tie-breaking

coefficient is equal to

tBreak ¼ 1þ 1= lengthðGridÞ þ widthðGridÞð Þ (6)

The algorithm relies on two lists: The open list is a kind

of a shopping list. It contains cells that might fall along the

best path but may be not. Basically, this is a list of cells that

need to be checked out.

The closed list contains the cells already explored.

Each cell saved in the list is characterized by five attri-

butes: ID, parentCell, g cost, h cost and f cost.

The search begins by expanding the neighbour cells of

the start position S. The neighbour cell with the lowest

f cost is selected from the open list, expanded and added

to the closed list. In each iteration, this process is repeated.

Some conditions should be verified while exploring the

neighbour cells of the current cell, a neighbour cell is

1. Ignored if it already exists in the closed list.

2. If it already exists in the open list, we should com-

pare the g cost of this path to the neighbour cell and

the g cost of the old path to the neighbour cell. If

the g cost of using the current cell to get to the

neighbour cell is the lower cost, we change the par-

ent cell of the neighbour cell to the current cell and

recalculate g, h and f costs of the neighbour cell.

This process is repeated until the goal position is

reached. Working backwards from the goal cell, we go

from each cell to its parent cell until we reach the starting

cell (the shortest path in the grid map is found).

The RA* algorithm

RA� is a new linear time relaxed version of A �. It is

presented in the study by Ammar et al.29 It is proposed to

solve the path planning problem for large-scale grid maps.

The objective of RA � consists of finding optimal or near-

optimal solutions with small deviation from optimal solu-

tions, but at much smaller execution times than traditional

A �. The core idea consists of exploiting the grid map

structure to establish an accurate approximation of the opti-

mal path, without visiting any cell more than once.

In fact, in A �, the exact cost gðnÞ of a node n may be

computed many times; namely, it is computed for each path

reaching node n from the start position. However, in the

RA � algorithm, gðnÞ is approximated by the cost of the

minimum move path from the start cell to the cell associ-

ated with node n.

In order to obtain the relaxed version RA �, some

instructions of A � that are time consuming, with relatively

low gain in terms of solution quality, are removed. In fact,

a node is processed only once in RA �, thus avoiding to use

the closed set of the A � algorithm. Moreover, in order to

save time and memory, we do not keep track of the previ-

ous node at each expanded node. Instead, after reaching the

goal, the path can be reconstructed, from goal to start by

selecting, at each step, the neighbour having the minimum

gðnÞ value. Also, it is useless to compare the gðnÞ of each
neighbour to the gðnÞ of the current node n as the first

calculated gðnÞ is considered definite. Finally, it is not

needed to check whether the neighbour of the current node

is in the open list. In fact, if its gðnÞ value is infinite, it

means that it has not been processed yet and hence is not in

the open list. The RA � algorithm is presented in algorithm 1.

Both terms g(n) and h(n) of the evaluation function of

the RA algorithm are not exact, thus there is no guar-

antee to find an optimal solution.

Comparative study

Simulation environments

To perform the simulations, we implemented the iPath

Cþþ library21 that provides the implementation of several

Algorithm 1. Relaxed A*.

input : Grid, Start, Goal
tBreak ¼ 1þ1/(length(Grid)þwidth(Grid));
// Initialisation:

openSet ¼ Start // Set of nodes to be

evaluated;

for each vertex v in Grid do

g_score(v)¼ infinity;
end

g score½Start� ¼ 0
// Estimated total cost from Start to

Goal:

f score½Start� ¼ heuristic cost(Start, Goal);
while openSet is not empty and g_score[Goal]¼¼
infinity do

current ¼ the node in openSet having the lowest
f score

remove current from openSet;
for each free neighbour v of current do

if g_score(v) ¼¼ infinity; then
g score½v� ¼ g score½current� þ
dist edgeðcurrent; vÞ;
f score½v� ¼ g score½v� þ tBreak *
heuristic cost(v, Goal);
add neighbour to openSet;

end

end

end

if g_score(goal) ! ¼ infinity then
return reconstruct_path(g_score) path will
be reconstructed based on g score

values;

else

return failure;
end

6 International Journal of Advanced Robotic Systems

path planners including A�, GA, TS, ACP and RA�. The

iPath library is implemented using Cþþ under Linux OS.

It is available as open source on GitHub under the GNU

GPL v3 license. The documentation of API is available in

http://www.iroboapp.org/ipath/api/docs/annotated.html.22

A tutorial on how to use iPath simulator is available in

http://www.iroboapp.org/index.php?title¼IPath.30

The library was extensively tested under different maps

including those provided in the benchmark31 and other

randomly generated maps.32 The benchmark used for test-

ing the algorithms consists of four categories of maps:

(1) Maps with randomly generated rectangular shape

obstacles: This category contains two (100 � 100)

maps, one (500 � 500) map, one (1000 � 1000)

map and one (2000 � 2000) map with different

obstacle ratios (from 0.1 to 0.4) and obstacle sizes

(ranging from 2 to 50 grid cells).

(2) Mazes: All maps in this set are of size 512 � 512.

We used two maps that differ by the corridor size

in the passages (1 and 32).

(3) Random: We used two maps of size 512 � 512.

(4) Rooms: We used two maps in this category with

different room sizes (8� 8 and 64� 64). All maps

in this set are of size 512 � 512.

(5) Video games:We used one map of size 512� 512.

The simulation was conducted on a laptop equipped

with an Intel Core i7 processor and an 8 GB RAM. For

each map, we conducted 5 runs with 10 different start and

goal cells randomly fixed. This makes 600 (12 � 5 � 10

maps) total runs for each algorithm.

Simulation results

In this section, we present the simulation results relative to

the evaluation of the efficiency of the five different plan-

ners. Figures 1 and 2 depict the box plot of the average path

costs and average execution times for the randomly gener-

ated maps and the benchmarking maps, respectively, with

different start and goal cells. Figure 3 shows the average

path cost and the average execution time of all the maps.

On each box, the central mark is the median, the edges of

the box are the 25th and 75th percentiles. Tables 1 and 2

present the average path costs and average execution times

for the different maps. Table 3 presents the percentage of

extra lengths of the different algorithms in different types

of maps, and Table 4 presents the percentage of optimal

paths found by the algorithms.

We can conclude from these figures that the algorithms

based on heuristic methods are in general not appropriate

for the grid path planning problem. In fact, we observe that

these methods are not as effective as RA � and A � for

solving the path planning problem, since the latter always

exhibit the best solution qualities and the shortest execution

times.

Although GA can find optimal paths in some cases as

shown in Table 4, it exhibits higher runtime as compared to

A � to find its best solution. Moreover, non-optimal solu-

tions have large gap 15.86% of extra length on average as

depicted in Figure 4. This can be explained by two reasons:

The first reason is that GA needs to generate several initial

paths with the greedy approach, and this operation itself

takes time which is comparable to the execution of the

whole A* algorithm. The second reason is that GA needs

several iterations to converge, and the number of iterations

depends on the complexity of the map and the positions of

the start and goal cells.

The TS approach was found to be the least effective. It

finds non-optimal solutions in most cases with large gaps

(32.06% as depicted in Figure 4). This is explained by the

fact that the exploration space is huge for large instances,

and the TS algorithm only explores the neighbourhood of

the initial solution initially generated. On the contrary, the

NN path planner could find better solution qualities as

compared to GA and TS path planners. We can see from

Figure 4 that the average percentage of extra length of non-

optimal paths found by this planner does not exceed 4.51%.

For very large (2000� 2000) and complex grid maps (maze

maps), heuristic algorithms fail to find a path as shown in

Tables 1 and 2. This is due to the greedy approach that is

used to generate the initial solutions, and this method is very

time-consuming in such large and complex grid maps.

A* RA* GA TS NN

0

500

1000

1500

2000

2500

A
v

er
ag

e
p

at
h
 c

o
st

s
(g

ri
d

 u
n

it
s)

A* RA* GA TS NN
10

0

10
5

A
v

er
ag

e
ex

ec
u
ti

o
n
 t

im
es

 (
µ

s)

Figure 1. Box plot of the average path costs and the average
execution times (log scale) in 100 � 100, 500 � 500 and 1000 �
1000 random maps of heuristic approaches, tabu search, genetic
algorithms and neural network as compared to A* and RA*. A*:
A-star; RA*: relaxed A-star.

Chaari et al. 7

Onthecontrary,wedemonstrated that the relaxedversionof

A � exhibits a substantial gain in terms of computational time

but at the risk of missing optimal paths and obtaining longer

paths. However, simulation results demonstrated that for most

of the tested problems, optimal or near-optimal path is reached

(at most 10.1% of extra length and less than 0.4% on average).

We can conclude that RA � algorithm is the best path

planner as it provides a good trade-off of all metrics.

A* RA* GA TS NN

0

200

400

600

800

1000

1200

A
v
er

ag
e

p
at

h
 c

o
st

s
(g

ri
d

 u
n

it
s)

A* RA* GA TS NN
10

0

10
5

10
10

A
v
er

ag
e

ex
ec

u
ti

o
n
 t

im
es

 (
µ

s)

Figure 3. Box plot of the average path costs and the average
execution times (log scale) in the different maps (randomly gen-
erated and those of benchmark) of heuristic approaches tabu
search, genetic algorithms and neural network as compared to A*
and RA*. A*: A-star; RA*: relaxed A-star.

A* RA* GA TS NN

0

500

1000

1500

2000

2500

A
v
er

ag
e

p
at

h
 c

o
st

s
(g

ri
d

 u
n

it
s)

A* RA* GA TS NN

10
5

A
v
er

ag
e

ex
ec

u
ti

o
n
 t

im
es

 (
µ

s)

Figure 2. Box plot of the average path costs and the average exe-
cution times (log scale) in 512� 512 random, 512� 512 rooms, 512
� 512 video games and 512 � 512 mazes maps of heuristic
approaches tabu search, genetic algorithms and neural network as
compared to A* and RA*. A*: A-star; RA*: relaxed A-star.

Table 1. Average path cost (grid units) for the different algorithms per environments size.

Algorithm 100 � 100 500 � 500 1000 � 1000 2000 � 2000
Random

(512 � 512
Rooms

(512 � 512)
Video games
(512 � 512)

Mazes
(512 � 512)

A � 66.2 273.8 473.4 1366.4 303.4 310.6 243.6 1661.9
RA � 70.5 277.0 477.7 1443.3 319.5 341.8 257.8 1687.1
GA 75.3 293.3 476.8 – 360.8 408.7 269.9 –
TS 69.6 335.9 541.1 – 322.9 322.9 531.7 –
NN 82.3 282.8 487.2 – 485.4 322.9 253.1 –

A*: A-star; RA*: relaxed A-star; GA: genetic algorithm; TS: tabu search; NN: neural network.

Table 2. Average execution times (microseconds) for the different algorithms per environment size.

Algorithm 100 � 100 500 � 500 1000 � 1000 2000 � 2000
Random

(512 � 512
Rooms

(512 � 512)
Video games
(512 � 512)

Mazes
(512 � 512)

A � 114 9196 102,647 296,058,499 17,626 62,753 11,761 3,161,774
RA � 17 67 271 15,414 299 834 78 2435
GA 9687 34,405 20,329 – 2,587,005 849,645 39,462 –
TS 544 23,270 39,130 – 58,605 144,768 110,478 –
NN 688 27,713 321,630 – 26,211 62,599 13,802 –

A*: A-star; RA*: relaxed A-star; GA: genetic algorithm; TS: tabu search; NN: neural network.

8 International Journal of Advanced Robotic Systems

Heuristic methods are not appropriate for grid path plan-

ning. Exact methods such as A � cannot be used in large

grid maps as they are time-consuming, and they can be

used for small-size problems or for short paths (near start

and goal cells). However, heuristic methods have good

features that can be used to improve the solution quality

of near-optimal relaxed version of A � without inducing

extra execution time.

RA* þ x hybrid path planners

As mentioned in the previous section, RA � was found to be

the most appropriate algorithm in this study among the

different studied algorithms. Heuristic and exact methods

are not suitable to solve global path planning problem for

large grid maps. However, heuristic methods have good

features that can be used to improve the near-optimal solu-

tions of RA � without inducing too much extra execution

time. This observation led us to design new hybrid

approaches by using RA � to generate an initial path, which

is further optimized by using a heuristic method, namely,

GA, TS and ACO. In this section, we will demonstrate

through simulations the validity of our intuition about the

effectiveness of the hybrid techniques to simultaneously

improve the solution quality and reduce the execution time.

Design of hybrid path planners

The key idea of the hybrid approach consists of combining

the RA � and one heuristic method together. The hybrid

algorithm comprises two phases: (i) the initialization of the

algorithm using RA � and (ii) a post-optimization phase (or

local search) using one heuristic method that improves the

quality of solution found in the previous phase. We

designed three different hybrid methods: RA � þ TS,

RA � þ ACO and RA � þ GA aiming at comparing their

performances and choose the appropriate one.

(1) Initialization using RA �. As it is described in the

previous section, the use of the greedy approach to

generate the initial path(s) in the case ofGA and TS

increases the execution time of the whole algo-

rithm especially in large grid maps. This, led us

to use RA � instead of the greedy approach in the

quest of ensuring a fast convergence towards the

best solution.

The hybrid RA � þ TS algorithm will consider the RA �

path as an initial solution.

In the original ACO algorithm, an initial pheromone

value is affected to the transition between the cells of the

grid map. After each iteration of the algorithm, the quan-

tities of pheromone are updated by all the ants that have

Table 3. Percentage of extra length compared to optimal paths calculated for non-optimal paths.

Algorithm
100 � 100

(%)
500 � 500

(%)
1000 � 1000

(%)
2000 � 2000

(%)
Random

(512 � 512; %)
Rooms

(512 � 512; %)
Video games

(512 � 512; %)
Mazes

(512 � 512; %)

A � 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RA � 6.99 0.4 1.97 6.81 5.48 10.13 5.95 2.356
GA 13.68 10.42 1.55 – 16.1 40.48 12.9 –
TS 35.74 17.7 13.06 – 47.31 51.75 26.82 –
NN 5.06 3.2 3.44 – 7.32 3.75 4.3 –

A*: A-star; RA*: relaxed A-star; GA: genetic algorithm; TS: tabu search; NN: neural network.

Table 4. Percentage of optimal paths per environment size.

Algorithm
100 � 100

(%)
500 � 500

(%)
1000 � 1000

(%)
2000 � 2000

(%)
Random

(512 � 512; %)
Rooms

(512 � 512; %)
Video games

(512 � 512; %)
Mazes

(512 � 512; %)

A � 100 100 100 100 100 100 100 100
RA � 5 40 60 10 5 0 20 55
GA 10 50 60 – 10 0 30 –
TS 5 0 0 – 5 0 0 –
NN 5 10 20 – 5 0 0 –

A*: A-star; RA*: relaxed A-star; GA: genetic algorithm; TS: tabu search; NN: neural network.

A* RA* GA TS NN
0

5

10

15

20

25

30

35

P
er

ce
n

ta
g

e
o

f
ex

tr
a

le
n

g
th

 (
%

)

15.86%

0.0%

5.15%

32.06%

4.51%

Figure 4. Average percentage of extra length compared to
optimal path, calculated for non-optimal paths.

Chaari et al. 9

built paths. The pheromone values increase on the best

paths during the search process. The core idea of RA* þ
ACO is to increase the quantities of pheromone around the

RA � path from the beginning of the algorithm in order to

guide the ants towards the best path and to accelerate the

search process. Thus, we consider different values of pher-

omones; the quantities of pheromone between the cells of

the RA � path and on their neighbourhood at radius N (N is

randomly generated) will be higher than the remaining cells

in the maps.

In RA � þ GA, RA � algorithm will be used to generate

the initial population of the GA. The generation of the

initial population starts with generating an initial path

from the start cell to the goal cell using the RA � algo-

rithm. To generate the subsequent paths in the initial pop-

ulation, the algorithm will choose a random intermediate

cell, not in the RA � path, which will be used to generate a

new path from start to goal positions across the selected

intermediate cell.

(2) Post-optimization using heuristic methods: This

phase is a kind of post-optimization or local

search. It consists of improving the quality of solu-

tion found in the first phase using one heuristic

method among GA, TS and ACO. We used dif-

ferent heuristic methods in order to compare their

performances. Because of the limited space for this

article, we are not able to present all the hybrid

algorithms, and only the RA � þGA algorithm is

presented in algorithm 2. The flow chart is

depicted in Figure 5.

Performance evaluation

In this section, we present the simulation results of the

hybrid algorithms. To evaluate the performance of the

hybrid algorithms, we compared them against A � and

RA �. Two performance metrics were assessed: the path

length and the execution time of each algorithm. Figure 6

and Tables 5 and 6 present the average path costs and the

average execution times of A �, RA �, RA � þGA and

RA � þTS algorithms in different kinds of maps. Looking

at these figures, we note that A � always exhibits the short-

est path cost and the longest execution time. Moreover, we

clearly observe that RA � þGA hybridization provides a

good trade-off between the execution time and the path

quality. In fact, the RA � þGA hybrid approach provides

better results than RA � and reduces the execution time as

compared to A � for the different types of maps. This

confirms the benefits of using hybrid approaches for

post-optimization purposes for large-scale environments.

However, the hybrid approach using RA � and TS provides

some improvements but less significant than the

RA � þGA approach. In some cases, RA � þTS could not

improve the RA � path cost (in video games maps and 2000

� 2000 grid maps). This can be explained by the fact that

Initialization

Initialization

using RA*

size < maximum

population size Yes

Yes

No

size==1

No

Choose randomly

an intermdiate cell

Select randomly
one cell from the
set of neighbors

Find a path from Start to
the intermediate cell and
from intermediate cell to

goal and add it to the
initial population

GA

Yes
generation num < max

generation num

No

Apply GA to
generate next

population

Generate the
neighbors at

radius N

Generate RA*
path and add it to

the initial
population

Generate the

robot path

Figure 5. The flow chart of the RA*þGA hybrid algorithm. RA*:
relaxed A-star; GA: genetic algorithm.

Algorithm 2. The Hybrid Algorithm RA* þ GA.

input : Grid, Start, Goal
repeat

if size ¼¼ 1 then

Generate the RA* path (described in Algorithm. 1)
Add the RA* to the current population.

else

Choose Randomly an intermediate cell not in
RA*.
NeighborsRadiusN: set of neighbours at Radius
N, N is a parameter.
CrossPoint : Select randomly one cell from
NRadiusN

PathS;CP : find the path using RA* between
start cell and CrossPoint .
PathCP;G : find the path using RA* between
CrossPoint and the goal cell.
Add PathS;CP [PathCP;G to the i population.

end

until (size � max population size);
while (generation number < max generation number)
do

Use GA to generate the next population.
end

Generate the best path.

10 International Journal of Advanced Robotic Systems

TS approach only explores the neighbourhood of the RA �

solution initially generated by applying simple moves

(remove, exchange, insert) which cannot significantly

improve it. We can see also that all the non-optimal solu-

tions have a small gap. Finally, the hybrid approach

RA � þACO was not successful as it does not converge

easily to a better solution that the initial RA � algorithm

because of the randomness nature of the ant motions and its

execution time remains not interesting.

Integration with ROS

To demonstrate the feasibility and effectiveness of our pro-

posed path planners in real-world scenarios, we have inte-

grated the RA� algorithm as global path planner in the

ROS33 as possible replacement of the default navfn path

planner (based on a variant of Dijkstra’s algorithm). In

what follows, we present an overview of ROS, describe the

integration process of RA� as global path planner and

evaluate its performance against the default global path

planner.

An ROS is a free and open-source robotic middleware

for the large-scale development of complex robotic sys-

tems. It acts as a meta-operating system for robots as it

provides hardware abstraction, low-level device control,

inter-processes message-passing and package manage-

ment. The main advantage of ROS is that it allows manip-

ulating sensor data of the robot as a labelled abstract data

stream, called topic, without having to deal with hardware

drivers. This makes the programming of robots much easier

for software developers as they do not have to deal with

hardware drivers and interfaces.

Simulation model

(1) ROS navigation stack: The navigation stack34

is responsible of integrating together all the auton-

omous navigation functions, that is, mapping,

localization and path planning. To reduce the com-

plexity of the path planning problem, the path plan-

ning task is divided into global and local planning.

A* RA* RA*+GA RA*+TS
680

690

700

710

720

730
A

v
er

ag
e

p
at

h
 c

o
st

s
(g

ri
d

 u
n

it
s)

A* RA* RA*+GA RA*+TS
10

0

10
2

10
4

10
6

10
8

A
v

er
ag

e
ex

ec
u

ti
o

n
 t

im
es

 (
m

ic
ro

se
co

n
d

s)

Figure 6. Average path lengths and average execution times (log scale) of hybrid approach RA*þGA and RA*þ TS as compared to A*
and RA*. RA*: relaxed A-star; A*: A-star; GA: genetic algorithm; TS: tabu search.

Table 5. Average path costs (grid units) for A*, RA*, RA* þ GA and RA* þ TS algorithms per environment size.

Algorithm 100 � 100 2000 � 2000
Random

(512 � 512)
Rooms

(512 � 512)
Video games
(512 � 512)

Mazes
(512 � 512)

A � 66.2 1366.4 303.4 319.1 479.5 1661.9
RA � 70.5 1443.3 319.5 350.9 493.8 1687.1
RA* þ GA 68.2 1423.4 315.3 335.0 486.1 1679.2
RA* þ TS 69.3 1443.3 319.5 348.2 493.8 1687.1

A*: A-star; RA*: relaxed A-star; GA: genetic algorithm; TS: tabu search.

Table 6. Average execution times (microseconds) for A*, RA*, RA* þ GA and RA* þ TS per environment size.

Algorithm 100 � 100 2000 � 2000
Random

(512 � 512)
Rooms

(512 � 512)
Video games
(512 � 512)

Mazes
(512 � 512)

A � 114 296,058,499 17,626 73,438 38,649 3,161,774
RA � 17 15,414 299 724 436 5220
RA* þ GA 69 59,149 1295 1813 7160 116,807
RA* þ TS 110 22,258 4298 8900 16,174 51,375

A*: A-star; RA*: relaxed A-star; GA: genetic algorithm; TS: tabu search.

Chaari et al. 11

The move base package is used to link the global

and local planners together.

The global path planner is called before the robot starts

moving to find a long-term collision free path between the

start and the goal locations. The default grid-based global

planner in ROS is implemented in the navfn package, and it

is based on Dijkstra’s algorithm. Currently, the ROS global

planner does not take into consideration the robot footprint

and ignores kinematic and acceleration constraints of the

robot, thus the path generated by the global planner could

be dynamically infeasible.

After finishing the execution of the global planner, the

local path planner (also called the controller) will be called

and seeded with the global planner path to attempt follow-

ing that path while considering the kinematics and

dynamics of the robot besides the moving obstacle infor-

mation. An ROS provides an implementation of two local

planner approaches (the trajectory rollout35 and the

dynamic window approach36) in the base local planner

package.

(2) Integration of a new global planner to ROS navi-

gation stack: In what follows, we present the main

guidelines for integrating a new global path planner

to ROS navigation stack. For more detailed step-by-

step instructions, the reader is referred to our ROS

tutorial available on the links in the literature.37,38

For any global or local planner to be used with the

move base, it must first adhere to some interfaces

defined in nav core package, which contains key

interfaces for the navigation stack, and then it must

be added as a plugin to ROS.

All the methods defined in nav core :: BaseGlobal

Planner class must be overridden by the new global path

planner. The main methods in the nav core :: BaseGlobal

Planner class are initialize and makePlan. The initialize is

an initialization function that initializes the cost map for

the planner. We use this function to get the cost map.

The makePlan function is responsible for computing the

global path. It takes the start and goal positions as an

input. In this function, we first convert the start and goal

coordinates into cells ID. Then, we pass those IDs with

the map array to the RA* planner. To implement RA*

planner, we used the sorted multiset data structure to

maintain the open set, which sorted the cells based on

their f score values. This allows a significant decrease

of the execution time as we only need to pick up the

first element in the sorted set (having the lowest

f score) instead of searching for it in each iteration.

When the planner completes its execution, it returns the

computed path to the makePlan. Finally, the path will be

converted to x and y coordinates and sent back to the

move base, which will publish it as a new path to ROS

ecosystem.

Performance evaluation

For the experimental evaluation study using an ROS, we

have used the real-world Willow Garage map, with dimen-

sions 584 � 526 cells and a resolution 0.1 m/cell.

We considered 40 different scenarios, where each sce-

nario is specified by the coordinates of randomly chosen

start and goal cells. Each scenario, with specified start/goal

cells, is repeated 30 times (i.e. 30 runs for each scenario). In

total, 1200 runs for the Willow Garage map are performed

in the performance evaluation study for each planner.

Two performance metrics are considered to evaluate the

global planners: (1) the path length, it represents the length

of the shortest global path found by the planner, (2) the

execution time, it is the time spent by an algorithm to find

its best (or optimal) solution.

Figure 7 shows that the RA* is faster than navfn in 82.5%

of the cases. Table 7 shows that, in average, the RA* is much

faster than navfn, with execution time less than 38% of that

of navfn. RA* provides near-optimal paths, which are in

average only 5% longer than navfn paths.

Lessons learned

We have thoroughly analysed and compared five path plan-

ners for mobile robot path planning namely: A �, a relaxed

version of A �, the GA, the TS algorithm and the NN algo-

rithm. These algorithms pertain to two categories of path

planning approaches: heuristic and exact methods. We also

designed new hybrid algorithms and we evaluated their

performance. To demonstrate the feasibility of RA � in

Figure 7. Average execution time (microseconds) of RA* and
navfn. RA*: relaxed A-star.

Table 7. Execution time in (microseconds) and path length in
(metres) of RA* and navfn.

Planner

Execution time Path length

Total Average Total Average

RA* 398.05 9.95 + 0.56 941.58 23.53
navfn 643.33 16.08 + 1.10 896.69 22.41

RA*: relaxed A-star.

12 International Journal of Advanced Robotic Systems

real-world scenarios, we integrated it in the ROS and we

compared it against navfn in terms of path quality and exe-

cution time. We retain the following general lessons from

the performance evaluation presented in the previous

sections:

� Lesson 1: The study shows that heuristic algorithms

are in general not appropriate for solving the path

planning problem in grid environments. They are not

as effective as A � since the latter always exhibits the

shortest execution times and the best solution quali-

ties. GA was found to be less effective for large

problem instances. It is able to find optimal solutions

like A � in some cases, but it always exhibits a

greater execution time. TS was also found to be the

least effective as the exploration space is very huge

in large problems, and it only explores the neigh-

bourhood of the initial solution. On the contrary,

NN provides better solutions than the two aforemen-

tioned techniques.

� This can be explained by two reasons: The first rea-

son is that heuristic approaches need to generate one

or several initial paths with the greedy approach (in

the case of GA and TS), and this operation itself

takes time which is comparable to the execution of

the whole A � algorithm. The second reason is that

heuristic approaches need several iterations to con-

verge, and this number of iteration depends on the

complexity of the map and the positions of the start

and goal cells.

� Lesson 2: The simulation study proved that exact

methods in particular A � have been found not

appropriate for large grid maps. A � requires a large

computation time for searching path in such maps,

for instance, in 2000� 2000 grid map, the execution

time of A � is around 3 h, if we fix the start cell in the

leftmost and topmost cell in the grid and the goal in

the bottommost and rightmost cell in the grid. Thus,

we can conclude that this type of path planning

approaches can be used in real time only for small

problem sizes (small grid maps) or for close start and

goal cells.

� Lesson 3: Overall, RA � algorithm is found to be the

best path planner as it provides a good trade-off of

all metrics. In fact, RA � is reinforced by several

mechanisms to quickly find good (optimal) solutions.

For instance, RA � exploits the grid structure and

approximates the gðnÞ function by the minimum

move path. Moreover, RA � removes some unneces-

sary instructions used in A � which contributes in

radically reducing the execution time as compared

to A � without losing much in terms of path quality.

It has been proved that RA � can deal with large-scale

path planning problems in grid environments in rea-

sonable time and good results are obtained for each

category of maps and for different couples of start and

goal positions tested; in each case, a very near-

optimal solution is reached (at most 10.1% of extra

length and less than 0.4% in average) which makes it

overall better than A � and than heuristic methods.

� The previous conclusions respond to the research

question that we addressed in the iroboapp project

about which method is more appropriate for solving

the path planning problem. It seems from the results

that heuristics methods including evolutionary com-

putation techniques such as GA, local search tech-

niques, namely, the TS and NNs cannot beat the A �

algorithm. A � also is not appropriate to solve robot

path planning problems in large grid maps as it is

time consuming, which is not convenient for robotic

applications in which real-time aspect is needed.

RA � is the best algorithm in this study, and it out-

performs A � in terms of execution time at the cost

of losing optimal solution. Thus, we designed new

hybrid approaches that take the benefits of both

RA � and heuristic approaches in order to ameliorate

the path cost without inducing extra execution time.

� Lesson 4: We designed a new hybrid algorithm that

combines both RA � and GA. The first phase of the

RA � þ GA uses RA � to generate the initial popu-

lation of GA instead of the greedy approach in order

to reduce the execution time, and then GA is used to

improve the path quality found in the previous

phase. We demonstrated through simulation that the

hybridization between RA � and GA brings a lot of

benefits as it gathers the best features of both

approaches, which contributes in improving the

solution quality as compared to RA � and reducing

the search time for large-scale graph environments

as compared to A �.

Acknowledgements

The authors would like to thank the Robotics and Internet of

Things (RIoT) Unit at Prince Sultan University’s Innovation Cen-

ter for their support to this work.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect

to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work is supported by the iroboapp project “Design and Analysis of

Intelligent Algorithms for Robotic Problems and Applications”

under the Grant of the National Plan for Sciences, Technology and

Innovation (NPSTI), managed by the Science and Technology Unit

of Al-Imam Mohammad Ibn Saud Islamic University and by King

AbdulAziz Center for Science and Technology (KACST). This

work is partially supported by Prince Sultan University.

Chaari et al. 13

References

1. Iroboapp: Design and analysis of intelligent algorithms for

robotic problems and applications. http://www.iroboapp.org

(2014, accessed 2016).

2. Miao YQ, Khamis A, Karray F, et al. A novel approach to

path planning for autonomous mobile robots. Int J Control

Intell Syst 2011; 39(4): 1–27.

3. Shu WD and Fang YH. Path planning of mobile robot

in dynamic environments. In: 2011 2nd international con-

ference on intelligent control and information processing

(ICICIP), china, 25–28 July 2011, pp. 691–696. IEEE.

4. Randria I, Khelifa M, Bouchouicha M, et al. A comparative

study of six basic approaches for path planning towards an

autonomous navigation. In: 33rd annual conference of the

IEEE industrial electronics society (IECON), Taiwan, 5–8

November 2007, pp. 2730–2735. IEEE.

5. Cabreira T, Dimuro G and de Aguiar M. An evolutionary

learning approach for robot path planning with fuzzy obstacle

detection and avoidance in a multi-agent environment. In:

social simulation (BWSS), 2012 third Brazilian Workshop

on, Brazil, 20–23 October 2012, pp. 60–67. IEEE.

6. Wilensky U and Evanston I. NetLogo: center for connected

learning and computer based modeling. Technical Report,

Northwestern University, Evanston, 1999.

7. Cabreira T, de Aguiar M and Dimuro G. An extended

evolutionary learning approach for multiple robot path

planning in a multi-agent environment. In: Evolutionary

Computation (CEC), 2013 IEEE Congress on, Mexico,

20–23 June 2013, pp. 3363–3370. IEEE.

8. Hussein A, Mostafa H, Badrel-din M, et al. Metaheuristic

optimization approach to mobile robot path planning. In:

International Conference on Engineering and Technology

(ICET), Pakistan, 10–11 October 2012, pp. 1–6. IEEE.

9. Sariff N and Buniyamin N. Comparative study of genetic

algorithm and ant colony optimization algorithm perfor-

mances for robot path planning in global static environments

of different complexities. In: IEEE International Symposium

on Computational Intelligence in Robotics and Automation

(CIRA), korea, 15–18 December 2009, pp. 132–137. IEEE.

10. Tewolde GS and Sheng W. Robot path integration in manu-

facturing processes: genetic algorithm versus ant colony opti-

mization. In: IEEE Transactions on Systems, Man and

Cybernetics, Part A: Systems and Humans, Vol. 38, 2008,

pp. 278–287. IEEE.

11. Koceski S, Panov S, Koceska N, et al. A novel quad harmony

search algorithm for grid-based path finding. Int J Adv Robot

Syst 2014; 11(9): 144.

12. Gomez EJ, Santa FM and Sarmiento FHM. A comparative

study of geometric path planning methods for a mobile robot:

potential field and Voronoi diagrams. In: 2013 II interna-

tional congress of engineering mechatronics and automation

(CIIMA), Colombia, 23–25 October 2013.

13. Cikes M, Dakulovic M and Petrovic I. The path planning

algorithms for a mobile robot based on the occupancy grid

map of the environment a comparative study. In: 2011

XXIII international symposium on information, communi-

cation and automation technologies (ICAT), Sarajevo,

27–29 October 2011.

14. Haro F and Torres M. A comparison of path planning algo-

rithms for omni-directional robots in dynamic environments.

In: IEEE 3rd Latin American robotics symposium, 2006.

LARS ‘06, Santiago, 26–27 October 2006.

15. Eraghi NO, Lpez-Colino F, de Castro A, et al. Path length

comparison in grid maps of planning algorithms: HCTNav,

a* and Dijkstra. In: 2014 IEEE conference on design of cir-

cuits and integrated circuits (DCIS), spain, 26–28 November

2014, pp. 1–6. IEEE.

16. Pala M, Eraghi NO, Lpez-Colino F, et al. HCTNav: a path

planning algorithm for low-cost autonomous robot naviga-

tion in indoor environments. Int J Geo-Inform 2013; 1:

729–748.

17. Duchon F, Hubinsky P, Babinec A, et al. Real-time path

planning for the robot in known environment. In: 23rd inter-

national conference on robotics in Alpe-Adria-Danube

region (RAAD 2014), Smolenice Castle, Slovakia, 3–5

September 2014.

18. Chiang CH, Chiang PJ, Fei JCC, et al. A comparative study of

implementing fast marching method and A* search for mobile

robot path planning in grid environment: effect of map reso-

lution. In: IEEE workshop on advanced robotics and its social

impacts, Taiwan, 9–11 December 2007, pp. 1–6. IEEE.

19. Zaheer S, JayarajuMandGulrez T. Performance analysis of path

planning techniques for autonomous mobile robots. In: IEEE

international conference on electrical, computer and communi-

cation technologies (ICECCT), India, 5–7 March 2015.

20. Al-Arif SM, Ferdous AI and Nijami SH. Comparative study

of different path planning algorithms: a water based rescue

system. Int J Comput Appl 2012; 39: 25–29.

21. The iPath library. 2014. https://github.com/coins-lab/ipath

(accessed 2014).

22. API documentation. http://www.iroboapp.org/ipath/api/docs/

annotated.html (2014, accessed 2014).

23. Chaari I, Koubaa A, Bennaceur H, et al. On the adequacy

of tabu search for global robot path planning problem in

grid environments. In: 5th international conference on

ambient systems, networks and technologies (ANT-2014),

the 4th international conference on sustainable energy

information technology (SEIT-2014), Vol. 32, Belgium,

2–5 June 2014, pp. 604–613. IEEE.

24. Alajlan M, Koubaa A, Chaari I, et al. Global path planning for

mobile robots in large-scale grid environments using genetic

algorithms. In: 2013 international conference on individual

and collective behaviors in robotics ICBR’2013, Sousse,

Tunisia, 15–17 December 2013.

25. Chaari I, Koubaa A, Bennaceur H, et al. SmartPATH: a

hybrid ACO-GA algorithm for robot path planning. In:

2012 IEEE congress on evolutionary computation (CEC),

Brisbane, Australia, 10–15 June 2012, pp. 1–8. IEEE.

26. Châari I, Koubâa A, Trigui S, et al. SmartPATH: an effi-

cient hybrid ACO-GA algorithm for solving the global

14 International Journal of Advanced Robotic Systems

http://www.iroboapp.org
https://github.com/coins-lab/ipath
http://www.iroboapp.org/ipath/api/docs/annotated.html
http://www.iroboapp.org/ipath/api/docs/annotated.html

path planning problem of mobile robots. Int J Adv Robot

Syst 2014; 11.

27. Glasius R, Komoda A and Gielen SCAM. Neural network

dynamics for path planning and obstacle avoidance. Neural

Networks 1995; 8: 125–133.

28. Hart PE, Nilsson NJ and Raphael B. A formal basis for the

heuristic determination of minimum cost paths. IEEE Trans

Syst Sci Cybern 1968; 4: 100–107.

29. Ammar A, Bennaceur H, Chaari I, et al. Relaxed Dijkstra and

A* with linear complexity for robot path planning problems in

large-scale grid environments. Soft Comput J, 2015, pp. 1–23.

30. IPath simulator. http://www.iroboapp.org/index.php?

title¼IPath (2014, accessed 2014).

31. Benchmark. http://www.movingai.com/benchmarks/ (2012,

accessed 2014).

32. Grid-maps: 10 x 10 up to 2000 x 2000. http://www.iroboapp.

org/index.php?title¼Maps (2014, accessed 2014).

33. Robot Operating System (ROS). http://www.ros.org (2007,

accessed 2014).

34. Marder-Eppstein E, Berger E, Foote T, et al. The office

marathon: robust navigation in an indoor office envi-

ronment. In: Robotics and automation (ICRA), 2010

IEEE international conference, USA, 3–7 May 2010,

pp. 300–307. IEEE.

35. Gerkey BP and Konolige K. Planning and control in unstruc-

tured terrain. In: Workshop on path planning on costmaps,

proceedings of the IEEE international conference on robotics

and automation (ICRA), California, 19–23 May 2008.

36. Fox D, Burgard W and Thrun S. The dynamic window

approach to collision avoidance. IEEE Robot Autom Maga-

zine 1997; 4(1): 23–33.

37. Adding a global path planner as plugin in ROS. http://www.

iroboapp.org/index.php?title¼Adding_A_Global_Path_

Planner_As_Plugin_in_ROS (2014, accessed 2014).

38. Writing a global path planner as plugin in ROS. http://wiki.

ros.org/navigation/Tutorials/Writing%20A%20Global%

20Path%20Planner%20As%20Plugin%20in%20ROS (2014,

accessed 2014).

Chaari et al. 15

http://www.iroboapp.org/index.php?title=IPath
http://www.iroboapp.org/index.php?title=IPath
http://www.iroboapp.org/index.php?title=IPath
http://www.movingai.com/benchmarks/
http://www.iroboapp.org/index.php?title=Maps
http://www.iroboapp.org/index.php?title=Maps
http://www.iroboapp.org/index.php?title=Maps
http://www.ros.org
http://www.iroboapp.org/index.php?title=Adding_A_Global_Path_Planner_As_Plugin_in_ROS
http://www.iroboapp.org/index.php?title=Adding_A_Global_Path_Planner_As_Plugin_in_ROS
http://www.iroboapp.org/index.php?title=Adding_A_Global_Path_Planner_As_Plugin_in_ROS
http://www.iroboapp.org/index.php?title=Adding_A_Global_Path_Planner_As_Plugin_in_ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS

