

Semi-partitioned mixed-criticality scheduling

Conference Paper

CISTER_TR_161102

2017/04/03

Muhammad Ali Awan*

Konstantinos Bletsas*

Pedro Souto*

Eduardo Tovar*

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/83044604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Conference Paper CISTER_TR_161102 Semi-partitioned mixed-criticality scheduling

© CISTER Research Center
www.cister.isep.ipp.pt

1

Semi-partitioned mixed-criticality scheduling

Muhammad Ali Awan*, Konstantinos Bletsas*, Pedro Souto*, Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: muaan@isep.ipp.pt, ksbs@isep.ipp.pt, pfs@fe.up.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

Scheduling isolation in mixed-criticality systems is challenging without sacrificing performance. In response, we
propose a scheduling approach that combines server-based semi-partitioning and deadline scaling. Semi-
partitioning (whereby only some tasks migrate, in a carefully managed manner), hitherto used in single criticality
systems, offers good performance with low overheads. Deadline-scaling selectivelyprioritizes high-criticality tasks
in parts of the schedule to ensure theirdeadlines are met even in rares case of execution time overrun. Ournew
algorithm NPS-F-MC brings semi-partitioning to mixed-criticalityscheduling and uses Ekberg and Yi 19s state-of-
the-art deadline scaling approach. It ensures scheduling isolation among different-criticality tasksand only allows
low-criticality task migration. We also explore variantsthat disallow migration entirely or relax the isolation between
differentcriticalities (SP-EKB) in order to evaluate the performance tradeoffs associated with more flexible or rigid
safety and isolation requirements.

Semi-partitioned mixed-criticality scheduling

Muhammad Ali Awan∗+, Konstantinos Bletsas∗+, Pedro F. Souto‡∗ and
Eduardo Tovar∗+

∗CISTER/INESC-TEC Research Centre, Porto, Portugal
+ISEP/IPP, Porto ‡Faculty of Engineering, University of Porto

Abstract. Scheduling isolation in mixed-criticality systems is challeng-
ing without sacrificing performance. In response, we propose a schedul-
ing approach that combines server-based semi-partitioning and deadline-
scaling. Semi-partitioning (whereby only some tasks migrate, in a care-
fully managed manner), hitherto used in single criticality systems, of-
fers good performance with low overheads. Deadline-scaling selectively
prioritise high-criticality tasks in parts of the schedule to ensure their
deadlines are met even in rares case of execution time overrun. Our
new algorithm NPS-F-MC brings semi-partitioning to mixed-criticality
scheduling and uses Ekberg and Yi’s state-of-the-art deadline scaling ap-
proach. It ensures scheduling isolation among different-criticality tasks
and only allows low-criticality task migration. We also explore variants
that disallow migration entirely or relax the isolation between different
criticalities (SP-EKB) in order to evaluate the performance tradeoffs as-
sociated with more flexible or rigid safety and isolation requirements.

1 Introduction

Many real-time embedded systems (automotive, avionics, aerospace) host func-
tions of different criticalities. A deadline miss by a high-criticality function can
be disastrous, but losing a low-criticality function only moderately affects the
quality of service. Scalability and cost concerns favor mixed-criticality (MC) sys-
tems, whereby tasks of different criticalities are scheduled on the same processors
but this brings challenges: Lower-criticality tasks interfering unpredictably with
higher-criticality tasks can be catastrophic. Conversely, rigidly prioritisation by
criticality leads to inefficient processor usage. Therefore, we seek (i) efficient use
of processing capacity and (ii) schedulability guarantees for all tasks under typ-
ical conditions subject to (iii) ensured schedulability of high-criticality tasks in
all cases. Most related works [1] use Vestal’s model [2], which views the system
operation as different modes (low- and high-criticality) and associates different
worst-case task execution times (WCETs) in each mode with a corresponding
degree of confidence. This is because the cost of provably safe WCET estimation
(and the associated pessimism) is justified only for high-criticality tasks. Other
tasks have less rigorous WCET estimates, which might be exceeded, very rarely.

We also adopt Vestal’s model, with two criticality levels. Our main contribu-
tion is NPS-F-MC, an extension of the semi-partitioned scheduling algorithm

NPS-F [3] to mixed criticalities. NPS-F is server-based, which helps provide both
fairness to low-criticality tasks and strict temporal isolation between high- and
low-criticality tasks. The new algorithm employs the per-task deadline scaling

scheduling technique by Ekberg and Yi [4], an extension of EDF-VD [5]. NPS-F-
MC allows migration among processors only for servers for low-criticality tasks,
with less severe safety considerations. However, given the conservative stance of
certification authorities [6] towards task migrations, we formulate as another con-
tribution a fully partitioned variant (NPS-F-IMA) and explore the performance
gap from disallowing migrations entirely. As third contribution we explore the
performance penalty from the strict temporal isolation by NPS-F-MC by formu-
lating new partitioned (P-EKB) and semi-partitioned (SP-EKB) extensions of
the (uniprocessor) algorithm of Ekberg and Yi, and comparing with those.

2 Overview

Task model [2] The system can be in either low- or high-criticality mode
(L-mode or H-mode). A task is of either low or high criticality (L-task or H-
task). Each H-task has two different WCET estimates: the one for the L-mode
of operation (L-WCET), is deemed safe but lacks proof, whereas the one for the
H-mode (H-WCET) is provably safe but usually much greater. Each L-task only
has an L-WCET. The default system mode is L, but if any task exceeds its L-
WCET, the system immediately switches into H-mode: all L-tasks are abandoned
and only H-tasks remain. In H-mode, all H-tasks (incl. instances present at the
time of the mode switch) are pessimistically assumed to execute for up to their
H-WCET. Even so, it must be provable that no H-task deadlines can be missed.

MC scheduling with scaled deadlines Deadline-scaling for mixed-criticality
systems originates with EDF-VD (“Earliest Deadline First - with Virtual Dead-
lines”) [5]. EDF-VD uses standard EDF scheduling rules but, instead of report-
ing the real deadlines to the EDF scheduler for scheduling decisions, it reports
shorter deadlines (if needed) for H-tasks during L-mode operation. This helps
with the schedulability of H-tasks in the case of a switch to H-mode, because it
prioritises H-tasks more than conventional EDF would, over parts of the sched-
ule. This allows them to be sufficiently “ahead of schedule” and catch up with
their true deadlines if any task overruns its L-WCET. While in H-mode, the true
H-task deadlines are used for scheduling and L-tasks are dropped. EDF-VD pro-
portionately shortens the H-task deadlines according to a single common scale
factor and its schedulability test considers the task utilisations in both modes.

Ekberg and Yi [4] improved upon EDF-VD by enabling and calculating dis-
tinct scale factors for different H-tasks and using a more precise demand bound

function (dbf) based schedulability test [7]. This improves performance. The
calculation of the scale factors is an iterative task-by-task process. For details,
see [4][8]. Recently, Masrur et al. [9] proposed using just two scale factors, to
balance scheduling performance and computational complexity. A higher scale
factor is used for tasks with an H-WCET/L-WCET ratio above some threshold.

Meanwhile, Easwaran developed a test [10] that dominates [4]. In this work we
innovatively combine the deadline-scaling technique by Ekberg and Yi [4] with
the existing NPS-F semi-partitioned scheduling algorithm.

Semi-partitioning and NPS-F Under semi-partitioned scheduling, most tasks
are partitioned; the rest may migrate, in a carefully managed manner. This al-
lows for efficiently utilising a multicore, without many preemptions, migrations
and overheads, under strong schedulability guarantees. Semi-partitioned mixed-
criticality scheduling was first proposed in [11]. Here, we conclude that work and
adapt the NPS-F algorithm [3] (originally, for single-criticality systems).

Classic NPS-F assigns tasks via bin-packing, not directly to processors but to
periodic fixed-budget servers using EDF as their internal scheduling policy. The
servers are mapped to the available processors in a form of cyclic executive with
a periodicity of S – the “timeslot length”. Each server is either implemented
as either one periodic “reserve” (fixed-length contiguous time window) on one
processor or as multiple periodic reserves on different processors. A given server’s
tasks can only execute within its reserves, which in turn are exclusively used by
those tasks. A server (its reserves) is appropriately sized, to ensure that its tasks
meet all their deadlines at run-time. Additionally, the reserves of a server mapped
to multiple processors must never overlap in time.

3 System model

We assume a set of n sporadic tasks τ
def
= {τ1, τ2, . . . , τn}. Each task τi has a

minimum inter-arrival time Ti, a relative deadline Di≤Ti, a criticality level κi ∈
{L,H} (low or high, respectively) and two WCET estimates, CL

i and CH
i , one for

each mode. The subsets of L-tasks and H-tasks in τ are τ(L)
def
= {τi ∈ τ |κi ∈ L}

and τ(H)
def
= {τi ∈ τ |κi ∈ H}. It is assumed that ∀τi ∈ τ(H), CL

i ≤ CH
i and

∀τi ∈ τ(L), CH
i = 0. Tasks in τ(H) are not allowed to migrate among processors.

The utilisation of τi is U
L
i

def
=

CL
i

Ti
and UH

i

def
=

CH
i

Ti
respectively in each mode. The

system utilisation in each mode is UH def
=

∑
τi∈τ(H) U

H
i and UL def

=
∑

τi∈τ U
L
i .

Our platform P
def
= {P1, P2, . . . , Pm} has m identical processors. We assume a

set P̃ of m
′′

servers, indexed P̃1 to P̃m
′′ , with m

′′

not a priori defined.
During task assignment, the processing capacity of each server is equivalent

to that of a physical processor. The set of tasks assigned to server P̃k is denoted
as τ(P̃k). Each server is only assigned tasks of the same criticality as each other.
A server that contains only H-tasks is termed a H-server. Similarly, an L-server
contains only L-tasks. The budget of a P̃k is denoted by X

P̃k
.

4 Task assignment, scheduling model and timing analysis

Overview NPS-F-MC partitions the set of H-tasks (τ(H)) overm
′′

H non-migrating
H-servers. Each H-server will be assigned to a different corresponding processor,
so it must hold that m

′′

H ≤ m or the algorithm will declare failure.
The set of L-tasks (τ(L)) is partitioned over a separate set of L-servers. The

“leftover” parts of the timeslots, that remain on the m processors, after the
assignment and sizing of the non-migrating H-servers, are reclaimed from the
processors for the mapping of the L-servers.

During L-mode operation, all tasks are scheduled within the respective servers
under EDF. But if a task τi overruns its CL

i (which triggers a mode switch),
then all L-tasks are immediately dropped along with the server arrangement
altogether, and the system switches to pure partitioned EDF scheduling of the
H-tasks. This raises the question of how to specify the server budgets:

A naive approach would (i) partition the H-tasks to the H-servers using
a uniprocessor EDF schedulability test that considers the overly conservative
estimates CH

i , to meet deadlines in H-mode, and (ii) assign budgets to the re-
spective servers so that the H-tasks provably meet their deadlines in L-mode, as
long as they all execute for up to their respective CL

i . However, this may lead
to missed deadlines during the mode transition.

A conservative approach would instead consider the CH
i estimates, when

sizing the H-servers for operation in L-mode. However, this approach decreases
the processing capacity available for L-tasks and is inefficient.

Ideally, one should therefore set the server budgets to the optimal interme-
diate value that minimises the processing capacity used for H-servers (i.e., max-
imises the capacity available for L-servers) in L-mode without jeopardising the
schedulability of the H-tasks at any point in time (even when a mode transition
occurs). As part of this work, we identify how to compute these optimal H-server
budgets, using the analysis of Ekberg and Yi [4].

In summary, a processor Pp with an H-server assigned to it is equivalently
modelled as a separate uniprocessor system, whereupon a transformed task sub-
set runs under EDF with deadline scaling. This consists of all H-tasks assigned
to the single H-server P̃p mapped to Pp plus a single “fake” L-task with param-

eters (Cfake, Dfake, Tfake)
def
= (S −X

P̃p
, S −X

P̃p
, S), where X

P̃p
is the budget of

P̃p. This zero-laxity fake task equivalently represents the periodic unavailability

of the processor, for the tasks of P̃p to execute on. The budget X
P̃p

is then set

to the minimum value for which the transformed MC task subset is schedulable
on a uniprocessor, using the deadline-scaling by Ekberg and Yi.

In detail. The proposed approach (outlined in pseudocode as Algorithm 1), is
divided into three offline stages, (i) task-to-server assignment, (ii) sizing servers
(“inflating”, in NPS-F jargon) and (iii) mapping servers to processors.

The first stage assigns H-tasks to servers via First-Fit (FF) bin-packing,
subject to an exact uniprocessor EDF schedulability test, from classic (criticality-

oblivious) EDF theory [7] that uses the respective H-WCETs as input. The L-
tasks are assigned to a different set of servers via First-Fit, using the same test,
but using their L-WCETs as inputs.

The “inflated utilisation” U infl. def
=

X
P̃p

S
of each server is computed in the

second stage. The sum of inflated utilisations of all servers corresponds to the
total processing capacity (informally, the number of processors) required for
successfully scheduling the given task set under the proposed approach. Finally,
in the third stage, servers are mapped to physical processors and their periodic
reserves are arranged to avoid time-overlaps of reserves belonging to same server.

(i) Task-to-server mapping: Initially (Algorithm 1, lines 1-5), the H-tasks
are assigned to servers (as many as needed) using First-Fit, assuming their CH

i

WCET estimate and according to an exact uniprocessor (single-criticality) EDF

schedulability test. The m
′′

H servers P̃1 to P̃
m

′′

H

thus formed, are all H-servers.

Algorithm 2 presents the First-Fit bin-packing routine that assigns tasks to
servers. The exact uniprocessor EDF schedulability test employed therein makes
use of the demand bound function [7]. It is an abstraction of the computational
requirements of the tasks. The demand of an arbitrary-deadline task τi over any
possible time interval of length t, denoted by DBF(τi, t, κ), is a tight (i.e., exact
and least) upper bound on the maximum cumulative execution requirement of
jobs by τi over a time interval of length t; the additional argument κ ∈ L,H
denotes whether the WCET assumed for those jobs is CL

i or CH
i (see Equation 1).

The DBF for a set of tasks and the corresponding schedulability condition are
given by Equations 2 and 3, respectively.

∀t ≥ 0, DBF(τi, t, κ)
def
= max

(
0,

⌊
t−Di

Ti

⌋
+ 1

)
· Cκ

i (1)

DBF(τ, t, κ) =
∑

τi∈τ

DBF(τi, t, κ) (2)

∀t ≥ 0, DBF(τ, t, κ) ≤ t (3)

The schedulability of a server is tested with the following expression: ∀t >
0, DBF(τ(P̃k), t, κ) ≤ t. If the test succeeds, a provisional assignment is made

permanent. The task-to-server assignment procedure per se always succeeds,
because we are not a priori bounded to any particular number of servers; we
can create/populate as many servers as needed (and, at worst, a task will be the
first task assigned to a newly populated server). As mentioned, when assigning
H-tasks, we assume κ = H. To speed up the computation, we use the improved
Quick Processor Demand analysis (QPA∗) by Zhang and Burns [12].

After all H-tasks are assigned to H-servers, if the number of H-servers (m
′′

H)
exceeds the number of processors (m), then NPS-F-MC declares failure (see lines
6-8 in Algorithm 1). This reflects the real-world requirement that each H-server
be mapped to only one processor and not allowed to migrate at run-time, because
those tasks are critical and their scheduling should be as predictable as possible.

Afterwards, the L-tasks are assigned to the L-servers, indexed P̃
m

′′

H
+1 and

upwards, by the same bin-packing procedure, but using their CL
i WCET es-

timates for the schedulability test guiding the assignments (Algorithm 1, lines
9-13). Once this is done, m

′′

servers have been created and populated with tasks:

of these, servers P̃1 to P̃
m

′′

H

are H-servers and P̃
m

′′

H
+1 to P̃m

′′ are L-servers.

(ii) Sizing servers: The second step of the offline phase performs the server
sizing (see Algorithm 1, lines 14-21). The timeslot length S (i.e., the period of all

servers) is defined as S
def
= DTmin/δ where DTmin is the shortest inter-arrival

time or relative deadline of all tasks and δ is a positive integer (usually δ = 1)1.

Let X
P̃k

denote the fixed time budget of server P̃k. Then, the system utilisation
consumed by the server (i.e., its “inflated utilisation”, in NPS-F jargon) is:

U infl

P̃k

def
=

X
P̃k

S
(4)

The value of X
P̃k

is computed for each server by the function presented in
Algorithm 3. Assume that a contiguous time window X ≤ S denotes the time
that server P̃k is active within a given timeslot of length S. The remaining
fraction of the timeslot, consisting of a time window of length S−X wherein P̃k

is inactive, is modelled as an interfering periodic zero-laxity fake L-task with the

following attributes: τfake
def
= 〈Tfake = S,Dfake = S −X,Cfake = S −X,L〉. This

standard task set transformation technique, for analytical convenience, was first
used (for single-criticality workloads) for NSP-F server sizing by Souza et al. and
is explained in [13], p. 702. This conceptual fake task along with the real tasks

mapped to server P̃k, i.e., τ(P̃k) ∪ {τfake} are tested with the mixed-criticality
schedulability uniprocessor analysis of Ekberg and Yi [4]. This analysis scales
the deadlines of H-tasks (if needed) to make the task set schedulable in both H-
and L-mode. If the analysis succeeds, the scaled H-task deadlines are output.

Computing X
P̃k

is an iterative process whose objective is to minimise the

value of X (duration of periodic reserve allocated to P̃k). This minimum value
of X that works corresponds to the optimal value for X

P̃k
. To obtain it we

iteratively sample the interval X ∈ [0, S] using binary search and applying the
test of Ekberg and Yi at each iteration, until the desired level of precision.
Note that for each feasible value of X, Ekberg and Yi’s algorithm could output
different task deadline scale factors, in the general case.

Similarly, we compute the server budget X
P̃k

for each L-server P̃k. This is
a simpler procedure because L-servers are only active in L-mode. So, there is
no need to use the mixed-criticality schedulability test of Ekberg an Yi; the
standard (single-criticality) optimal server sizing method for NPS-F is used [13]
instead. Again, the attributes of a fake task are computed in a similar way,

i.e., τfake
def
= 〈Tfake = S,Dfake = S −X,Cfake = S −X,L〉. The total demand of

an L-server P̃k along with the fake task τfake is given as follows:
DBF(τ(P̃k) ∪ {τfake}, t, L) = DBF(τ(P̃k), t, L) + DBF(τfake, t, L).

If ∀t > 0, DBF(τ(P̃k)∪{τfake}, t, L) ≤ t, then this server is schedulable with
a budget of X. As in the case of H-servers discussed previously, Algorithm 3
minimises the value of X. The process of computing ∀t > 0, DBF(τ(P̃k) ∪
{τfake}, t, L) ≤ t can be sped up with the QPA∗ algorithm.

If the L-servers are allowed to migrate among different processors then the
task set is schedulable if the sum of inflated utilisations of all servers does not
exceed m, the number of processors in the platform.

1 Setting S to an integral fraction of DTmin was handy for proving a utilisation bound
for NPS-F in [3], but in fact the DBF-based server-sizing by Sousa et al. [13] allows
for dropping this constraint. In this paper, we just stick to tradition.

(iii) Server-to-processor mapping:We employ the so-called “semi-partitioned”
mapping from the original NPS-F. This ensures that at least m servers never
migrate; in our case, it is the H-servers that do not migrate and there can be at
most m of those. Figure 1 is an example of this mapping arrangement.

Fig. 1: Mapping of m
′′

=4 servers to m=3 processors. Three servers (P̃1 to P̃3)
never migrate and the remaining timeslot portions on each processor are re-
used for mapping P̃4. The timeslot boundaries on different processors are shifted
accordingly, such that the reserves of the migrating server never overlap in time.
NPS-F-MC assigns H-tasks to non-migrating servers.

5 Other derivative approaches

We now formulate other MC scheduling algorithm variants drawing from NPS-
F and the scheduling with deadline-scaling by Ekberg and Yi: NPS-F-IMA, a
strictly partitioned variant of NPS-F-MC, and SP-EKB which differs from NPS-
F-MC mainly in that tasks of mixed criticalities can be scheduled together in
the same server (potentially leading to migration of H-tasks). For comparison,
we also formulate cNPS-F, which foregoes deadline scaling but instead sizes
H-servers only considering the H-WCETs (i.e., the “conservative approach” of
Section 4). Finally P-EKB is the partitioned multiprocessor version of Ekberg
and Yi’s algorithm. Studying these variants helps understand the performance
tradeoffs of different scheduling arrangements and safety requirements.

IMA-mindful variant (NPS-F-IMA) The Integrated Modular Avionics (IMA)
standard ARINC 653 enforces spatial and temporal partitioning to ensure safety
aspects and enable incremental development and certification. However, NPS-F-
MC allows L-servers to migrate among different processors. For a scheduling ar-

rangement more inline with IMA standards, we propose a variant (NPS-F-IMA)
that disallows the migration of L-servers and sizes their budgets accordingly.

The pseudocode for NPS-F-IMA is derived by adding a few lines of pseu-
docode to Algorithm 1, as described in Algorithm 3. As we know, each H-server
is mapped to one processor. The leftover portion of the timeslot on such a proces-
sor can be turned into an L-server. Assume that m

′′

H is the number of H-servers.

Then up to m
′′

H L-servers each share a processor with an H-server. Assume that

H-server P̃q and L-server P̃r share a processor Pm. Let X
P̃q

be the size of pe-

riodic reserve allocated to P̃q. Then P̃r should be filled with L-tasks such that
its periodic reserve size never exceeds S −X

P̃r
. In order to ensure this require-

ment, we add to P̃r a fake task τfake = 〈Tfake = S,Dfake = X
P̃q
, Cfake = X

P̃q
, L〉,

that corresponds to the workload of P̃q, before adding any real task into it. The
method ensures that, after the task-to-server assignment completes, the size of
the periodic reserve for P̃r (which is computed based on the computational re-
quirements of the real tasks assigned to it), never exceeds S −X

P̃q
.

This procedure is repeated for all servers indexed m
′′

H + 1 to 2 · m
′′

H . The
pseudocode of this additional code that adds fake tasks to L-servers is presented
in Algorithm 4 (lines 1 to 6). An L-server that does not share the processor with
an H-server is not subject to this and can therefore use the full timeslot if needed.
The NPS-F-IMA algorithm declares failure, if the number of L-servers exceeds
the number of processors (see lines 7 to 8 in Algorithm 4). Once, L-servers are
instantiated, these “placeholder” fake tasks are removed (see line 9 to 11 in
Algorithm 4). The inflated utilisation of all the servers is then computed. In the

server-to-processor mapping phase, each H-server P̃k is mapped to processor Pk

with the same index. An L-server P̃k, whose index lies in the range m
′′

H + 1 to

m
′′

is mapped to processor P
k−m

′′

H

.

Non-deadline-scaled cNPS-F To assess the benefits from deadline-scaling
in semi-partitioned scheduling, we define cNPS-F, a variant not using deadline-
scaling. It uses the same bin-packing but (i) bases scheduling decisions on the real
deadlines also in L-mode and (ii) uses only the H-WCETs for H-server sizing.

P-EKB and SP-EKB Ekberg and Yi’s approach, formulated for unipro-
cessors, can be used for multiprocessor scheduling with processor partitioning.

We call this approach P-EKB. Tasks are assigned to the m processors via bin-
packing (we assume First-Fit). On each processor, to test the feasibility of each
assignment, the deadline scaling algorithm is used, as a schedulability test. Each
time that a new task is assigned, the deadline scale factors of already assigned
tasks are computed anew. This arrangement is migration-free but L-tasks and
H-tasks are scheduled together on each processor, without strict isolation.

Similarly, for a semi-partitioned approach that borrows from NPS-F but with-
out the server-level isolation of H-tasks and L-tasks, one could perform this bin-
packing over m

′′

bins (as many as needed; not necessarily bound to m) and
then create mixed-criticality servers out of those, which are mapped to the m
processors as in NPS-F. We call this arrangement SP-EKB. One thing to note is
that, for the purpose of sizing servers under SP-EKB, the “fake task” modelling
the periodic unavaibility of the processor to the server has to be modelled as an
H-task – unlike what was the case for MC-NPS-F. The reason for this is that, in
the general case, neighboring servers may have both H-tasks and L-tasks mean-
ing that it would not be possible in the H-mode to drop the server arrangement
and collapse to pure partitioning/use of an entire processor’s full capacity for a
server’s H-tasks. This means that, all other things being equal, a server would
have greater inflated utilisation under SP-EKB than under MC-NPS-F.

Although SP-EKB dominates P-EKB (if the same task ordering is used for
both algorithms), it allows the migration of high-criticality tasks, which may be
undesirable for in practice. Table 1 summarises the different design aspects.

algorithm scheduling class deadline scaling server-based H-task/L-task isol. H-task migration

NPS-F-MC semi-part. YES YES YES NO
NPS-F-IMA part. YES YES YES NO

cNPS-F semi-part. NO YES YES NO
P-EKB part. YES NO NO NO
SP-EKB semi-part. YES NO NO YES

Table 1: Comparison of scheduling approaches

6 Evaluation

Experimental setup To evaluate the theoretical scheduling effectiveness of
the approaches presented, we apply the respective offline schedulability tests to
synthetic task sets, whose generation is controlled with the following parameters:

– L-mode utilisations (UL
i): Generated using the UUnifast-discard algorithm [14]

for unbiased distribution. CL
i is derived as UL

i · Ti.
– Task period (Ti): Generated with a log-uniform distribution, in the range

of 10ms to 100ms, i.e., Ti = 10x : x ∈ [log1010, log10100].
– Task deadline (Di): The scheduling approaches discussed work for con-

strained deadlines (Di≤Ti) but this evaluation assumes implicit deadlines (Di=Ti).
– Distribution of high and low criticality tasks: The fraction of H-tasks in

the task set is configurable. (For an integer number of H-tasks, we round up.)

2 3 4
0.4

0.5

0.6

0.7

0.8

0.9

1

U
i

H
 transfer function gain (k)

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

VT
NPS−F−MC
NPS−F−IMA
cNPS−F

P−EKB−κU

SP−EKB−κU

P−EKB−U
SP−EKB−U

Fig. 2: n=12,m=4, 40%H-tasks

4 8 12
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of processors (m)

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

VT
NPS−F−MC
NPS−F−IMA
cNPS−F

P−EKB−κU

SP−EKB−κU

P−EKB−U
SP−EKB−U

Fig. 3: n=16, 40% H-tasks, k=2

0.2 0.3 0.4 0.5 0.6
0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of high−criticality tasks

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

VT
NPS−F−MC
NPS−F−IMA
cNPS−F

P−EKB−κU

SP−EKB−κU

P−EKB−U
SP−EKB−U

Fig. 4: n=12, m=4, k=2

6 8 10 12 16 24
0.4

0.5

0.6

0.7

0.8

0.9

1

Task set size (n)

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

VT
NPS−F−MC
NPS−F−IMA
cNPS−F

P−EKB−κU

SP−EKB−κU

P−EKB−U
SP−EKB−U

Fig. 5: m=4, 40% H-tasks, k=2

– H-mode utilisation (UH
i): Derived from UL

i via a transfer function f(UL
i , k)

with a parameter k. For small values of UL
i , f(U

L
i , k) ≈ k · UL

i but for greater
values the gain is progressively smaller, so that UL

i ≤ f(UL
i , k) ≤ 1, ∀ UL

i ∈
[0, 1]. For details, see the Appendix of our TR [15]. CH

i is computed as Ti ·U
H
i .

The resolution is microsecond. Each task set is generated for a given target
utilisation U∗ = x ∗ m : x ∈ (0, 1], where m is the number of processors. For
each combination of input parameters explored we generate 1000 task sets.

We compare the scheduling approaches listed in Table 1. To keep the number
of plots in check, in each experiment we vary one parameter with the others
fixed. We also plot a “validity test” (VT), namely: (UL ≤ m)∧ (UH ≤ m). This
test (a necessary but not sufficient condition for schedulability) rejects trivially
infeasible tasks sets. Its curve over-approximates the feasible task sets.

Due to lack of space instead of providing plots comparing the algorithms in
terms of scheduling success ratio (i.e., the fraction of task sets deemed schedu-
lable under the respective schedulability test), we condense this information by
providing plots of weighted schedulability.2 This performance metric is adopted

2 The plots of (non-weighted) schedulability can still be found in the Appendix of our
TR [15].

from [16] and allows condensing what would have been three-dimensional plots
into two dimensions. It is a weighted average, in which more weight is given
to task-sets with higher utilisation, i.e., task-sets that are supposedly harder to
schedule. Specifically, using the notation from [17]:

Let Sy(τ, p) represent the binary result (0 or 1) of the schedulability test y
for a given task-set τ with an input parameter p. Then Wy(p), the weighted
schedulability for some schedulability test y as a function of parameter p, is:

Wy(p) =

∑

∀τ

(
ŪL(τ) · Sy(τ, p)

)

∑

∀τ

ŪL(τ)
(5)

In the above equation (adapted from [17]), ŪL(τ)
def
= UL(τ)

m
is the system

utilisation in L-mode, normalised by the number of processors m.

Results For P-EKB and SP-EKB, we used two different configurations: “-κU”
means that tasks are indexed with H-tasks preceding L-tasks and in order of
non-increasing UL

i , for same-criticality tasks. “-U” means that tasks are simply
indexed by non-increasing UL

i . The corresponding variants with ordering by Di,
instead of UL

i , almost always performed worse, so we don’t include them.

For all four parameters varied (transfer function gain k, number of proces-
sors m, fraction of H-tasks, number of tasks n), most of the time3 SP-EKB
outperforms P-EKB. In turn, P-EKB usually outperforms NPS-F-MC and, by a
larger margin, cNPS-F. Figure 3 is an exception, with P-EKB dropping in per-
formance, as m rises, contrary to the other algorithms, and being overtaken by
NPS-F-MC and NPS-F-IMA. This is because, when both the system utilisation
(normalised by m) and the number of processors are kept the same during task
generation but m increases, the average UL

i also increases. This implies increased
bin-packing fragmentation for non-server-based partitioned approaches.

Some conclusions drawn from these experiments:

–Semi-partitioning helps moderately but noticeably with performance. (Com-
pare NPS-F-MC to NPS-F-IMA and SP-EKB to P-EKB).

–For SP-EKB and P-EKB, the choice of task ordering for the bin-packing
matters a lot.

– The isolation of H-tasks from L-tasks, through separate servers for the two
task categories, sharply penalises performance. (Compare NPS-F-MC to SP-
EKB.) By comparison, the performance hit from disallowing L-server migration
is smaller. (Compare NPS-F-MC with NPS-F-IMA.)

3 Recall that, for the same configuration, SP-EKB strictly dominates P-EKB. How-
ever, some task sets schedulable by SP-EKB-κU are unschedulable by P-EKB-U
(and vice versa) and some tasks schedulable by SP-EKB-U are unschedulable by
P-EKB-κU (and vice versa).

Ultimately, the choice of scheme will depend on the kind of scheduling guar-
antees and isolation the particular application scenario requires, but our exper-
iments explore the performance ceilings associated with each arrangement.

7 Conclusions and future work

This work brought together server-based semi-partitioning and deadline-scaling
techniques for mixed-criticality scheduling. Our main contribution, the schedul-
ing algorithm NPS-F-MC, offers isolation between tasks of different criticalities
but allows low-criticality tasks to migration, for better system utilisation. Our
experiments show that deadline scaling also works well in a semi-partitioned
context. However, enforcing complete scheduling isolation, can be expensive. In
practice, different application requirements might mean that any task migration
is to be avoided or, conversely, that complete scheduling isolation between task
of different criticalities is not a requirement, as long as schedulability is ensured
even in the case of mode change. For these cases, we therefore formulate the re-
lated scheduling algorithms NPS-F-IMA and SP-EKB, respectively. Our experi-
mental results of theoretical schedulability offer some preliminary exploration of
the performance tradeoffs when considering different scheduling arrangements:
partitioning vs semi-partitioning, scheduling isolation for tasks of different criti-
calities by use of separate servers vs mixed-criticality scheduling within the same
server, use of deadline scaling in the context of a semi-partitioned approach.

As future work, we intend to also incorporate the effects of task contention
over cache and memory into the schedulability tests.

Acknowledgments

We would like to thank Pontus Ekberg for clarifying to us some aspects of his
algorithm.

This work was partially supported by National Funds through FCT/MEC
(Portuguese Foundation for Science and Technology) and co-financed by ERDF
(European Regional Development Fund) under the PT2020 Partnership, within
the CISTER Research Unit (CEC/04234); also by by FCT/MEC and the EU
ARTEMIS JU within project ARTEMIS/0001/2013- JU grant nr. 621429 (EMC2).

References

1. A. Burns and R. Davis, “Mixed criticality systems: A review,” TR. Computer
Science, U. of York, UK, 2013.

2. S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance,” in Proc. RTSS, 2007, pp. 239–243.

3. K. Bletsas and B. Andersson, “Preemption-light multiprocessor scheduling of spo-
radic tasks with high utilisation bound,” in Proc. RTSS, 2009.

4. P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-criticality
sporadic tasks,” in Proc. ECRTS, 2012, pp. 135–144.

5. S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der
Ster, and L. Stougie, “The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems,” in Proc. ECRTS, 2012, pp. 145–154.

6. Federal Aviation Authority, “CAST-32: Multi-core Processors,”
https://www.faa.gov/, 2014.

7. S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-time spo-
radic tasks on one processor,” in Proc. RTSS, 1990, pp. 182–190.

8. P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized mixed-
criticality sporadic task systems,” Real-Time Systems, vol. 50, no. 1, pp. 48–86,
2014.

9. A. Masrur, D. Müller, and M. Werner, “Bi-level deadline scaling for admission
control in mixed- criticality systems,” in RTCSA, 2015, pp. 100–109.

10. A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic tasks on one
processor,” in Proc. RTSS, 2013.

11. K. Bletsas and S. M. Petters, “Using NPS-F for Mixed-Criticality Multicore Sys-
tems,” in Proc. RTSS WiP, 2012.

12. F. Zhang and A. Burns, “Improvement to Quick Processor-Demand Analysis for
EDF-Scheduled Real-Time Systems,” in Proc. ECRTS, 2009, pp. 76–86.

13. P. B. Sousa, K. Bletsas, E. Tovar, P. F. Souto, and B. Åkesson, “Unified overhead-
aware schedulability analysis for slot-based task-splitting,” Real-Time Systems,
vol. 50, no. 5-6, pp. 680–735, 2014.

14. E. Bini and G. Buttazzo, “Measuring the performance of schedulability tests,”
Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2009.

15. M. A. Awan, K. Bletsas, P. F. Souto, and E. Tovar, “Semi-partitioned mixed-criti-
cality scheduling,” TR. CISTER/ISEP. http://www.cister.isep.ipp.pt/docs/CISTER-
TR-161102, 2016.

16. A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemption and
migration delays: Empirical approximation and impact on schedulability,” Proc.

OSPERT, pp. 33–44, 2010.
17. A. Burns and R. Davis, “Adaptive mixed criticality scheduling with deferred pre-

emption,” in Proc. RTSS, 2014, pp. 21–30.

